Representations and properties of weight functions in Tauberian theorems
Author:
B. M. Klykavka
Translated by:
S. Kvasko
Journal:
Theor. Probability and Math. Statist. 77 (2008), 71-90
MSC (2000):
Primary 60G60, 62E20, 40E05
DOI:
https://doi.org/10.1090/S0094-9000-09-00748-0
Published electronically:
January 16, 2009
MathSciNet review:
2432773
Full-text PDF Free Access
Abstract |
References |
Similar Articles |
Additional Information
Abstract: We continue the studies of weight functions in Tauberian theorems for random fields. We obtain the rate of convergence of function series in the representation of a weight function and prove a recurrence relation for weight functions in spaces of various dimensions.
References
- A. Ya. Olenko, A Tauberian theorem for fields with the OR spectrum. II, Teor. Ĭmovīr. Mat. Stat. 74 (2006), 81–97 (Ukrainian, with Ukrainian summary); English transl., Theory Probab. Math. Statist. 74 (2007), 93–111. MR 2336781, DOI https://doi.org/10.1090/S0094-9000-07-00700-4
- Andriy Olenko, Some properties of weight functions in Tauberian theorems. II, Theory Stoch. Process. 13 (2007), no. 1-2, 194–204. MR 2343823
- N. N. Leonenko and A. V. Ivanov, Statisticheskiĭ analiz sluchaĭ nykh poleĭ, “Vishcha Shkola”, Kiev, 1986 (Russian). With a preface by A. V. Skorokhod. MR 917486
- M. Ĭ. Jadrenko, Spektral′naya teoriya sluchaĭ nykh poleĭ, “Vishcha Shkola”, Kiev, 1980 (Russian). MR 590889
- Andriy Olenko and Boris Klykavka, Some properties of weight functions in Tauberian theorems. I, Theory Stoch. Process. 12 (2006), no. 3-4, 123–136. MR 2316570
- A. Ya. Olenko, Upper bound on $\sqrt {x}J_v(x)$ and its applications, Integral Transforms Spec. Funct. 17 (2006), no. 6, 455–467. MR 2238583, DOI https://doi.org/10.1080/10652460600643445
- G. N. Watson, A treatise on the theory of Bessel functions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1995. Reprint of the second (1944) edition. MR 1349110
- Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tricomi, Higher transcendental functions. Vols. I, II, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953. Based, in part, on notes left by Harry Bateman. MR 0058756
- A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Tables of integral transforms. Vol. I, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1954. Based, in part, on notes left by Harry Bateman. MR 0061695
References
- A. Ya. Olenko, A Tauberian theorem for fields with the $OR$ spectrum. II, Teor. Ĭmovīr. Mat. Stat. 74 (2006), 81–97; English transl. in Theory Probab. Math. Statist. 74 (2007), 93–111. MR 2336781 (2008i:60085)
- A. Ya. Olenko, Some properties of weight functions in Tauberian theorems. II, Theory Stoch. Process. 13(29) (2007), no. 1–2, 194–204. MR 2343823
- N. N. Leonenko and A. V. Ivanov, Statistical Analysis of Random Fields, “Vyshcha Shkola”, Kiev, 1986; English transl., Kluwer Academic Publishers Group, Dordrecht, 1989. MR 917486 (89e:62125)
- M. I. Yadrenko, Spectral Theory of Random Fields, “Vyshcha Shkola”, Kiev, 1980; English transl., Optimization Software, Inc., Publications Division, New York, 1983. MR 590889 (82e:60001)
- A. Ya. Olenko and B. M. Klykavka, Some properties of weight functions in Tauberian theorems I, Theory Stoch. Process. 12(28) (2006), no. 3–4, 123–136. MR 2316570
- A. Ya. Olenko, Upper bound on $\sqrt {x}J_\nu (x)$ and its application, Integral Transforms Spec. Funct. 17 (2006), no. 6, 455–467. MR 2238583 (2008c:33003)
- G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, 1995. MR 1349110 (96i:33010)
- A. Erdelyi, W. Magnus, F. Oberhettinger, and F. Tricomi, Higher Transcendental Functions, vol. 1, Mc.Graw-Hill, New York, Toronto, London, 1953. MR 0058756 (15:419i)
- A. Erdelyi, W. Magnus, F. Oberhettinger, and F. Tricomi, Tables of Integral Transforms, vol. 1, McGraw-Hill, New York, Toronto, London, 1954. MR 0061695 (15:868a)
Similar Articles
Retrieve articles in Theory of Probability and Mathematical Statistics
with MSC (2000):
60G60,
62E20,
40E05
Retrieve articles in all journals
with MSC (2000):
60G60,
62E20,
40E05
Additional Information
B. M. Klykavka
Affiliation:
Department of Probability Theory and Mathematical Statistics, Faculty for Mechanics and Mathematics, National Taras Shevchenko University, Academician Glushkov Avenue 6, Kyiv 03127, Ukraine
Email:
bklykavka@yahoo.com
Keywords:
Tauberian theorems,
random fields,
covariance function,
spectral function,
weight function,
rate of convergence
Received by editor(s):
December 25, 2006
Published electronically:
January 16, 2009
Article copyright:
© Copyright 2009
American Mathematical Society