AN ESTIMATE FOR THE RATE OF CONVERGENCE
OF THE DISTRIBUTION OF THE NUMBER OF FALSE SOLUTIONS
OF A SYSTEM OF NONLINEAR RANDOM EQUATIONS
IN THE FIELD \(GF(2) \)

UDC 519.21

V. I. MASOL AND M. V. SLOBODYAN

Abstract. We prove a result on the rate of convergence as \(n \to \infty \) of the distribution of the number of false solutions of a system of nonlinear random equations in the field \(GF(2) \) to the Poisson distribution with parameter \(2^m \). We assume, in particular, that the difference between the number \(n \) of unknowns and the number \(N \) of equations of the system is a constant \(m \).

1. Setting of the problem. Statement of the result

Consider the following system of equations:

\[
g_i(n) \sum_{k=1}^{g_i(n)} \sum_{1 \leq j_1 < \cdots < j_k \leq n} a_{j_1 \ldots j_k}^{(i)} x_{j_1} \cdots x_{j_k} = b_i, \quad i = 1, 2, \ldots, N,
\]

in the field \(GF(2) \). Throughout the paper we assume that the following conditions are satisfied:

- the coefficients \(a_{j_1 \ldots j_k}^{(i)} \), \(1 \leq j_1 < \cdots < j_k \leq n \), \(k = 1, 2, \ldots, g_i(n) \), \(i = 1, 2, \ldots, N \), are independent random variables such that
 \[P \{ a_{j_1 \ldots j_k}^{(i)} = 1 \} = 1 - P \{ a_{j_1 \ldots j_k}^{(i)} = 0 \} = p_{ik}; \]
- the elements \(b_i \), \(i = 1, 2, \ldots, N \), are obtained after the substitution of a fixed \(n \)-dimensional \((0, 1)\)-vector \(\bar{x}^0 \) with exactly \(\rho(n) \) nonzero coordinates to the left hand side of system (1) where
 \[\rho(n) = \rho n, \quad \rho = \text{const}, \quad 0 < \rho < 1; \]
- the functions \(g_i(n) \) are nonrandom, \(g_i(n) \in \{2, 3, \ldots, n\} \), \(i = 1, 2, \ldots, N \).

We denote this set of conditions by (A).

Let \(\nu_n \) be the total number of false solutions of system (1), that is, the total number of solutions of system (1) that do not coincide with \(\bar{x}^0 \). In this paper, we study the rate of convergence of the distribution of the random variable \(\nu_n \) to the limit Poisson distribution with parameter \(2^m \) if condition (2) holds.

Theorem. Suppose the conditions (A) are satisfied. Assume that

\[n - N = m, \quad m = \text{const}, \quad -\infty < m < \infty, \]

2000 Mathematics Subject Classification. Primary 60C05, 15A52, 15A03.
Key words and phrases. System of nonlinear random equations, the field \(GF(2) \), rate of convergence.

©2009 American Mathematical Society

121
and that for any \(i = 1, 2, \ldots, N \), there exists a set \(T_i \neq \emptyset \) such that
\[
T_i \subseteq \{2, \ldots, g_i(n)\}, \quad 0 \leq \delta_{it}(n) \leq p_{it} \leq 1 - \delta_{it}(n), \quad t \in T_i,
\]
for sufficiently large \(n \), where \(\delta_{it}(n) \) are some numbers such that \(0 \leq \delta_{it}(n) \leq \frac{1}{2} \). Furthermore, let a function \(\varphi(n) \) be such that \(\varphi(n) \leq \ln^2 n \). Assume that, given a constant \(\varepsilon_0 \in (0; 1) \) and a fixed integer \(l \geq 0 \), one can find a natural number \(n_0 = n_0(\varepsilon_0, l) \) for which
\[
2^{l+1} B(n) < \varepsilon_0
\]
for all \(n \geq n_0 \), where \(\gamma = [\log_2 n/6] \) for \(n \geq 2^{6l} \),
\[
B(n) = \sum_{i=1}^{N} \exp \left\{ -2 \sum_{t \in T_i} \delta_{it}(n) C_{f(n)}^{t} \right\},
\]
and \(f(n) \) assumes positive integer values and is such that \(f(n) = o(\varphi(n)) \) as \(n \to \infty \).

(Here and in what follows, the symbol \(C_{f(n)}^{t} \) stands for the binomial coefficient \(\binom{f(n)}{t} \).)

If \(k = 0, 1, 2, \ldots \) is fixed, then
\[
\left| P\{\nu_n = k\} - \frac{\lambda^k}{k!} e^{-\lambda} \right| \leq \left(\frac{2e\lambda}{\gamma} \right)^{\gamma} \left\{ 2 + 2^{l+1} B(n) + \Theta_2 (1 + 2^{l+1} B(n)) + 7\Theta_1 \right\} + e^{4\lambda \gamma} B(n) + e^{2\lambda \gamma} \left(\Theta_2 (1 + 2^{l+1} B(n)) + 7\Theta_1 \right),
\]
where \(\lambda = 2^m \),
\[
\Theta_1 = \exp \left\{ -2^{-2\gamma} \sum_{i=1}^{N} \delta_i + \log_2 \sqrt{\varphi(n)} + \sqrt{\varphi(n)} + \ln(\hat{\rho} n) - m \ln 2 \right\},
\]
\[
\Theta_2 = 2^{-n} \exp \left\{ \varepsilon \sqrt{\varphi(n)} \ln 2 n \left(\log_2 \sqrt{\varphi(n)} + \ln \left(\frac{n^{5/6} e}{\varepsilon \ln^2 n} \right) \right) + \sqrt{\varphi(n)} + 2 \ln \left(\varepsilon \sqrt{\varphi(n)} \ln 2 n \right) \right\},
\]
\[
\hat{\rho} = \max \{ \rho, 1 - \rho \}, \quad \varepsilon = \min \left\{ \sum_{t \in T_i} \delta_{it}(n) C_{f(n)}^{t-1}, \frac{2 \ln n}{\sqrt{\varphi(n)}} \right\},
\]
\(r = [\varepsilon \varphi(n)], \, 0 < \varepsilon < 1, \) and \(\varepsilon = \text{const.} \).

Here and in what follows we assume that \(0^0 = 1 \).

Remark. Fix arbitrary numbers \(\varepsilon_0 \in (0; 1) \) and \(\varepsilon \in (0; 1) \). It is easy to check that, given a number \(\gamma > 0 \), there exists a natural number \(n_1 = n_1(\varepsilon_0, \varepsilon, \gamma) \) such that the right hand side of inequality (5) becomes smaller than \(\gamma \) for all \(n \geq n_1 \).

Example. If \(T_i = \{2\} \), \(\varphi(n) = \ln^2 n \), \(f(n) = \lfloor \ln n \rfloor^{3/2} \), \(\delta_2 = \frac{1}{2} \), \(n = 65 \), \(m = -8 \), \(\rho = 0.9 \), \(\varepsilon = 0.25 \), and \(\varepsilon_0 \leq \varepsilon \), then relations (6)–(8) hold. Applying inequality (8) we obtain
\[
\left| P\{\nu_{65} = k\} - \frac{\lambda^k}{k!} e^{-\lambda} \right| \leq 0.086
\]
for all \(k \geq 0 \).

2. Auxiliary results

Denote by \(\mathbb{E} \nu_n^{[k]} \) the factorial moment of order \(k \) for the random variable \(\nu_n \), \(k = 1, 2, \ldots \). We set \(\mathbb{E} \nu_n^{[0]} = 1 \).
Proposition (I). If the conditions (A) hold, then, for all \(k \geq 1 \),
\[
E_{\nu}^{(k)} = 2^{-kN} S(n, k; Q),
\]
where
\[
S(n, k; Q) = \sum_{s=0}^{n-\rho n} \sum (n - \rho n)! \left(\prod_{i \in I} i! \right)^{-1}
\times \sum_{s' \neq 0} \sum' (\rho n')! \left(\prod_{j \in J} j! \right)^{-1} Q,
\]
and the index of summation in \(\sum' \) runs over all elements \(i \in I \) \((j \in J)\) such that
\[
\sum_{i \in I} i = s, \quad \sum_{j \in J} j = s',
\]
where
\[
I = \{ i_{(u_1, \ldots, u_v)} : 1 \leq u_1 < \ldots < u_v \leq k, \nu = 1, \ldots, k \},
\]
\[
J = \{ j_{(u_1, \ldots, u_v)} : 1 \leq u_1 < \ldots < u_v \leq k, \nu = 1, \ldots, k \}.
\]
(The definition of the numbers \(i_{(u_1, \ldots, u_v)} \) and \(j_{(u_1, \ldots, u_v)} \) is given in \(\text{(8)} \).) The elements \(i \in I \) and \(j \in J \) in inequality \(\text{(8)} \) are such that
\[
\sum_{i \in I_{(u)} \cap J_{(u)}} (i + j) \geq 1, \quad u = 1, \ldots, k,
\]
(the sets \(I_{(u)} \) and \(J_{(u)} \) are defined below) and
\[
\sum_{l=0}^{k-2} \sum_{1 \leq \mu_1 < \cdots < \mu_l \leq k} (i_{(u, \mu_1, \ldots, \mu_l)} + j_{(u, \mu_1, \ldots, \mu_l)} + i_{(u_2, \mu_1, \ldots, \mu_l)} + j_{(u_2, \mu_1, \ldots, \mu_l)}) \geq 1,
\]
for \(1 \leq u_1 < \cdots < u_v \leq k, \nu \in \{1, \ldots, k\}, \) and \(t \in \{1, \ldots, n\} \). Moreover
\[
\Gamma_{i,j}^{(u_1, \ldots, u_v)} \geq \sum_{(i,j) \in T} (C_i + C_j),
\]
where
\[
T = I_{(u_1, \ldots, u_v)} \times J_{(u_1, \ldots, u_v)}.
\]
Here
\[
I_{(u_1, \ldots, u_v)} = \{ i_{(\sigma_1, \ldots, \sigma_{\psi}, \mu_1, \ldots, \mu_l)} : A(\psi, l, k) \},
\]
\[
J_{(u_1, \ldots, u_v)} = \{ j_{(\sigma_1, \ldots, \sigma_{\psi}, \mu_1, \ldots, \mu_l)} : A(\psi, l, k) \}
\]
are the sets of numbers \(i_{(\sigma_1, \ldots, \sigma_{\psi}, \mu_1, \ldots, \mu_l)} \) and \(j_{(\sigma_1, \ldots, \sigma_{\psi}, \mu_1, \ldots, \mu_l)} \), respectively, satisfying the collection of restrictions \(A(\psi, l, k) \), where
\[
A(\psi, l, k) \text{ means }
\]
\[
1 \leq \sigma_1 < \cdots < \sigma_{\psi} \leq k, \quad \sigma_{\psi} \in \{ u_1, \ldots, u_v \}, \quad z = 1, \ldots, \psi, \quad \psi = 1, \ldots, \nu,
\]
\[
\psi \equiv 1 \pmod{2}, \quad 1 \leq \mu_1 < \cdots < \mu_l \leq k, \quad \mu_1, \ldots, \mu_l \notin \{ u_1, \ldots, u_v \},
\]
\[
l = 0, \ldots, k - \nu.
\]
If
\[
\rho n - s' \geq t,
\]
then
\[
\Gamma_{t,k}^{\{u_1,\ldots,u_\nu\}} \geq C_{p^n - s'}^{r-1} \sum_{(i,j) \in T} (i + j).
\]

The explicit expression for \(\Gamma_{t,k}^{\{u_1,\ldots,u_\nu\}}\) is given in [1] for the case of \(1 \leq u_1 < \cdots < u_\nu \leq k, \nu \in \{1, \ldots, k\}, t = 1, 2, \ldots, g_i(n), i = 1, \ldots, N\).

To prove the theorem of Section 1, we need the following auxiliary result.

Lemma. Suppose all the assumptions of the theorem hold for all nonnegative integers \(k\) such that
\[
0 < k \leq \gamma.
\]

Then
\[
E_{\nu}^{[k]} = \lambda^k + \Delta(k, n)
\]
for all sufficiently large \(n\), where
\[
|\Delta(k, n)| \leq 2^{(m+1)k+1}u + 2^{mk} \Theta_2 (1 + 2^{k+1}u) + 7 \left(2^{2^k}\right) 2^{(m+1)k}
\]
\[
\times \exp \left\{ -2^{-2k} \sum_{i=1}^{N} \delta_i + \ln(\rho n) - m \ln 2 \right\},
\]
\[
u = \sum_{i=1}^{N} \exp \left\{ -2 \sum_{t \in T_i} \delta_{it}(n) C_t^r \right\}.
\]

Proof. Using equality (7), we represent the factorial moment \(E_{\nu}^{[k]}\) as follows:
\[
E_{\nu}^{[k]} = 2^{-kN} \sum_{\Delta \geq 0} S^{(\Delta)}(n, k; Q),
\]
where \(S^{(\Delta)}(n, k; Q)\) is defined similarly to the term \(S(n, k; Q)\) with additional restrictions imposed on elements \(i \in I\) and \(j \in J\) appearing in definition (5) of \(S(n, k; Q)\), namely, that there are exactly \(\Delta\) pairwise distinct sets \(\omega_\alpha\),
\[
\omega_\alpha = \{u_1^{(\alpha)}, \ldots, u_{\xi_\alpha}^{(\alpha)}\},
\]
\(1 \leq u_1^{(\alpha)} < \cdots < u_{\xi_\alpha}^{(\alpha)} \leq k, \xi_\alpha \in \{1, \ldots, k\}, \alpha = 1, \ldots, \Delta,\)
such that for each of them there exists \(t^{(\alpha)} \in \{2, \ldots, r\}\) that satisfies
\[
\Gamma_{t^{(\alpha)}}^{\omega_\alpha} < C_{t^{(\alpha)}}^r
\]
and
\[
\Gamma_{t,k}^{\{v_1,\ldots,v_\gamma\}} \geq C_{t}^r
\]
for all \(t \in \{2, \ldots, r\}\) and for all sets \(\{v_1, \ldots, v_\gamma\}\), \(1 \leq v_1 < \cdots < v_\gamma \leq k, \gamma = 1, \ldots, k,\)
such that \(\{v_1, \ldots, v_\gamma\} \neq \omega_\alpha, \alpha = 1, \ldots, \Delta.\)

It is worth mentioning that the term corresponding to \(\Delta = 0\) may indeed appear on the right hand side of (15) (see [1]).

Furthermore, we rewrite equality (15) as follows:
\[
E_{\nu}^{[k]} = S_1 + p_1,
\]
where
\[
S_1 = 2^{-kN} S^{(0)}(n, k; Q), \quad p_1 = 2^{-kN} \sum_{\Delta = 1}^{2^k-1} S^{(\Delta)}(n, k; Q).
\]
Now we turn to the estimation of S_1. If $\Delta = 0$, we use estimate (17) and condition (4).

Then

$$\prod_{i=1}^{N} \left(1 - 2^k \exp \left\{ -2 \sum_{t \in T_i} \delta_{it}(n) C_r^t \right\} \right)$$

$$\leq Q \leq \prod_{i=1}^{N} \left(1 + 2^k \exp \left\{ -2 \sum_{t \in T_i} \delta_{it}(n) C_r^t \right\} \right).$$

Condition (5) and the inequality $r > f(n)$ imply by (12) that

$$2^k u < \varepsilon_0.$$

Now we use bounds (19) and (20) and the elementary inequalities $1 + u_0 \leq e^{u_0}$ and $e^{u_0} \leq 1 + 2u_0$. Then

$$\prod_{i=1}^{N} (1 - u_i) \geq 1 - \sum_{i=1}^{N} u_i, \quad 0 < u_i < 1, \quad i = 0, 1, \ldots, N,$$

and

$$Q_* \leq Q \leq Q^*,$$

where

$$Q^* = 1 + 2^{k+1} u, \quad Q_* = 1 - 2^k u.$$

If

$$\Gamma_{t,k}^{\{u_1, \ldots, u_\nu\}} < C_r^t$$

for some set $\{u_1, \ldots, u_\nu\}$, $1 \leq u_1 < \cdots < u_\nu \leq k$, $\nu = 1, \ldots, k$, and some $t \in \{2, \ldots, r\}$, then inequality (10) holds, whence we get

$$0 \leq i < r, \quad i \in I_{\{u_1, \ldots, u_\nu\}}, \quad 0 \leq j < r, \quad j \in J_{\{u_1, \ldots, u_\nu\}}.$$

Applying the polynomial theorem and relation (21) we get

$$2^{-kN} \left(2^{nk} - \sigma_0 \right) Q_* \leq S_1 \leq 2^{-kN} \left(2^{nk} - \sigma_0 \right) Q^*,$$

where

$$\sigma_0 = 1 + \sum_{d=1}^{2^k-1} S_d^{(0)}(n, k; 1).$$

The definition of $S_d^{(0)}(n, k; 1)$ differs from that of the term $S(n, k; 1)$ in that the elements $i \in I$ and $j \in J$ on the right hand side of equality (8) satisfy an extra restriction, namely that there are exactly d elements of the set

$$\left\{ \Gamma_{t,k}^{\{u_1, \ldots, u_\nu\}}, \ 1 \leq u_1 < \cdots < u_\nu \leq k, \nu = 1, \ldots, k \right\}$$

for which relation (22) holds, $d = 1, 2, \ldots, 2^k - 1$.

Let all the expressions

$$\Gamma_{t,k}^{\{u_1, \ldots, u_\nu\}}, \quad 1 \leq u_1 < \cdots < u_\nu \leq k, \nu = 1, \ldots, k,$$

be labeled with the numbers $1, 2, \ldots, 2^k - 1$. Assume that this numbering is a one-to-one correspondence between the expressions and the numbers. Then the sum $S_d^{(0)}(n, k; 1)$ can be represented as follows:

$$S_d^{(0)}(n, k; 1) = \sum_{1 \leq \zeta_1 < \cdots < \zeta_d \leq 2^k-1} S_d^{(0)}(\zeta_1, \ldots, \zeta_d)(n, k; 1).$$
where the definition of $S_d^{(0)}(n, k; 1)$ differs from that of $S_d^{(0)}(n, k; 1)$ by the restriction that relation (22) holds for those expressions $\Gamma_{t,k}\{u_1, \ldots, u_n\}$ that correspond to the numbers ζ_1, \ldots, ζ_d. Denote by $A(\zeta_1, \ldots, \zeta_d) \ (B(\zeta_1, \ldots, \zeta_d))$ the set of all $i \in I \ (j \in J)$ that are used in the bound (10) for all ζ_1, \ldots, ζ_d. By inequality (22), the number of elements of the set $A(\zeta_1, \ldots, \zeta_d) \ (B(\zeta_1, \ldots, \zeta_d))$ is at least 2^{k-1}:

\[
|A(\zeta_1, \ldots, \zeta_d)| \geq 2^{k-1}, \quad |B(\zeta_1, \ldots, \zeta_d)| \geq 2^{k-1}.
\]

The sum $S_d^{(0)}(n, k; 1)$ can be represented as follows:

\[
S_d^{(0)}(n, k; 1) = \sum_{1 \leq \zeta_1 < \cdots < \zeta_d \leq 2^{k-1}} \sum_{s=0}^{n-\rho n} C_s \sum_{s' + s'' = s} C_{s'} s! \prod_{i \in A} \frac{s_i!}{i!} \prod_{j \in B} \frac{s'_i!}{i!} \prod_{j \in J \setminus B} \frac{s''_i!}{i!},
\]

where $s! \prod_{i \in A} \frac{s_i!}{i!}$ means the sum over all $i \in A(\zeta_1, \ldots, \zeta_d)$ such that $\sum i = s_1$, $s! \prod_{j \in B} \frac{s'_i!}{i!}$ means the sum over all $i \in I \setminus A(\zeta_1, \ldots, \zeta_d)$ such that $\sum i = s_2$, $s! \prod_{j \in J \setminus B} \frac{s''_i!}{i!}$ means the sum over all $j \in B(\zeta_1, \ldots, \zeta_d)$ such that $\sum j = s'_1$, and $s! \prod_{j \in J \setminus B} \frac{s''_i!}{i!}$ means the sum over all $j \in J \setminus B(\zeta_1, \ldots, \zeta_d)$ such that $\sum j = s'_2$.

Using the polynomial theorem and relations (25)–(27) we obtain the following bound:

\[
\sigma_0 \leq 1 + 2^{k-1} \sum_{s=0}^{n-\rho n} C_s \left(\sum_{s_1 \geq 0} C_{s_1} \left(2^{k-1} - 1 \right)^{s_1} \right) \prod_{i \in A} \frac{s_i!}{i!} \prod_{j \in B} \frac{s'_i!}{i!} \prod_{j \in J \setminus B} \frac{s''_i!}{i!}.
\]

Taking into account the inequalities $s_1 \leq \lfloor r2^k \rfloor$ and $s'_1 \leq \lfloor r2^k \rfloor$, we conclude from (28) that

\[
\sigma_0 \leq 2^{2^k} \left(2^{k-1} \right)^n \left(2^k \right)^{r2^k} \left(\sum_{s_1 = 0}^{\lfloor r2^k \rfloor} C_{s_1} \right) \left(\sum_{s'_1 = 0}^{\lfloor r2^k \rfloor} C_{s'_1} \right).
\]

This implies

\[
\sigma_0 \leq 2^{2^k} \left(2^{k-1} \right)^n \left(2^k \right)^{r2^k} \left(\sum_{s'_1 = 0}^{\lfloor r2^k \rfloor} C_{s'_1} \right)^2.
\]

Then

\[
0 \leq \sigma_0 \leq 2^{nk} \Theta_2
\]

by inequality (29), condition (12), and by the lower bound (31)

\[
n! > n^n e^{-n} \sqrt{2\pi ne^{1/12n+1}}
\]

proved in [2].
Considering condition (33) and relations (21), (24), and (30), we get the following bounds:

\[
\lambda^k - \left\{2^{(m+1)}k + 2^{m+k} \Theta_2 (1 + 2^k u)\right\} \\
\leq S_1 \leq \lambda^k + \left\{2^{(m+1)}k + 2^{m+k} \Theta_2 (1 + 2^{k+1} u)\right\}.
\]

Using restrictions (12) we show that

\[
p_1 \leq 7 \left(2^{2k}\right)^{(m+1)k} \exp \left\{-2^{2-k} \sum_{i=1}^{N_i} \delta_i + \ln(\tilde{\rho}n) - m \ln 2\right\}
\]

for \(\Delta \geq 1\). Indeed, put

\[
p_2 = p_1 - S_2,
\]

where

\[
S_2 = 2^{-(kN - kN - 1)} \sum_{\Delta=1}^{2^k - 1} S_{\Delta}^{(\Delta)}(n, k; Q).
\]

The definition of \(S_{\Delta}^{(\Delta)}(n, k; Q)\) differs from that of the term \(S_{\Delta}^{(\Delta)}(n, k; Q)\) in that the index of summation \(s'\) in \(S_{\Delta}^{(\Delta)}(n, k; Q)\) satisfies the additional condition, called \(G_0\):

\[
\rho n - r + 1 \leq s' \leq \rho n.
\]

Now we find a bound for \(S_2\). Denote by \(M_1 (\tilde{M}_1)\) the family of all \(i \in I (j \in J)\) that do not belong to \(I_{\omega_n} (J_{\omega_n})\), \(\alpha = 1, \ldots, \Delta\). Also we put

\[
M_2 = I \setminus M_1, \quad \tilde{M}_2 = J \setminus \tilde{M}_1.
\]

Let \(R_1 (\tilde{R}_1)\) denote the number of elements of the set \(M_1 (\tilde{M}_1)\). Let \(z\) be the minimum number such that

\[
\Delta \leq 2^z - 1, \quad 1 \leq z \leq k.
\]

According to Proposition 2.1 of [1] we obtain

\[
R_1 \leq 2^{k-z} - 1, \quad \tilde{R}_1 \leq 2^{k-z} - 1.
\]

If lower bound (17) holds, we take into account (4) and get the following inequality for \(Q\) defined in (34):

\[
Q \leq 2^{zN} \left(1 + 2^{-z} (2^k - \Delta - 1) u\right).
\]

Relation (16) implies that

\[
0 \leq i < r \quad (0 \leq j < r)
\]

for all \(i \in M_2 (j \in \tilde{M}_2)\) by condition (22) and (23). Using (36)–(38) and condition \(G_0\), we prove that

\[
S_2 \leq 2^{2k} 2^{(k-1)m} \exp \left\{-\rho n 2^{-k} + 2^{k} \ln^2 n \ln \left(\frac{\tilde{\rho} n e}{2^k \ln^2 n}\right) + 2^k u\right\}.
\]

Now we introduce condition \(G_1\): let

\[
s' \leq \rho n - r
\]

and let there exist \(i \in M_2\) and (or) \(j \in \tilde{M}_2\) such that \(i \in (r/E_n, r]\) and (or) \(j \in (r/E_n, r]\), where

\[
E_n > 3, \quad E_n = o(\ln n), \quad n \to \infty.
\]

Let

\[
p_3 = p_2 - S_3,
\]
where
\[S_3 = 2^{-kn} \sum_{\Delta=1}^{2^k-1} S^{(\Delta)}(G_1)(n,k;Q). \]

The definition of \(S^{(\Delta)}(G_1)(n,k;Q) \) differs from that of the term \(S^{(\Delta)}(n,k;Q) \) in that the index of summation \(s' \) in \(S \) satisfies the additional condition \(G_1 \).

We show that
\[S_3 \leq 2^{2^k 2^{mk}} \frac{2^m}{2^m} \exp \left\{ -2^{-k} N \left(1 - N^{-\Delta} \right) + 2^{k} \varepsilon n \ln \left(\frac{\hat{\rho} \varepsilon \ln^2 n}{2^{k} \varepsilon \ln^2 n} \right) \right\} \]
where \(A_n = 2\varepsilon/E_n \). If condition \(G_1 \) holds, we get
\[\Gamma_{i,k}^{\omega} \geq C_r^{t-1} \frac{r}{E_n} \]
for all \(t \in \{2, \ldots, r\} \) and some \(\alpha = 1, \ldots, \Delta \) by inequality (11). Using bound (42) and condition (3) we obtain
\[\left| \prod_{i=1}^{g(n)} (1 - 2p_{it}) \Gamma_{i,k}^{\omega} \right| \leq \exp \left\{ -2 \sum_{i \in T_i} \delta_{it}(n) C_r^{t-1} \frac{r}{E_n} \right\}, \quad i = 1, \ldots, N. \]
The latter bound implies
\[Q \leq 2^{-N} \exp \left\{ -2^{-z} \left(N - \sum_{i=1}^{N} \exp \left\{ -2 \sum_{i \in T_i} \delta_{it}(n) C_r^{t-1} \frac{r}{E_n} \right\} \right) \right\}. \]
Relation (43) yields
\[Q \leq \hat{Q} \]
by Hölder’s inequality and relation (20), where
\[\hat{Q} = 2^{-N} \exp \left\{ -2^{-z} \left(N - N^{1-\Delta} \right) \right\}. \]
Now we derive from condition \(G_1 \) that
\[S_3 \leq 2^{2^k 2^{mk}} \frac{2^m}{2^m} \exp \left\{ -2^{-k} N \left(1 - N^{-\Delta} \right) + 2^{k} \varepsilon n \ln \left(\frac{\hat{\rho} \varepsilon \ln^2 n}{2^{k} \varepsilon \ln^2 n} \right) \right\} \]
\[\times \sum_{s=0}^{\rho_n-r} C_{\rho,n-s}^{s'} \sum_{s_1+s_2=s} C_{s_1}^{s_1} \left(\sum_{\sigma_1=\Gamma_1} s_1! \prod_{i \in M_2} \Gamma_i^{s_i} \right) \left(\sum_{\sigma_2=\Gamma_1} s_2! \prod_{i \in M_1} \Gamma_i^{s_i} \right) Q. \]

Relations (36), (38), (41), and (45) prove (41).
Now we introduce condition \(G_2 \): let inequality (40) hold and let there exist \(i \in M_2 \) and (or) \(j \in M_2 \) such that \(i \in \lfloor r/\ln n, r/E_n \rfloor \) and (or) \(j \in \lfloor r/\ln n, r/E_n \rfloor \).
Put
\[p_4 = p_3 - S_4, \]
where
\[S_4 = 2^{-kn} \sum_{\Delta=1}^{2^k-1} S^{(\Delta)}(G_2)(n,k;Q). \]
The definition of \(S^{(\Delta)}(G_2)(n,k;Q) \) differs from that of the term \(S^{(\Delta)}(n,k;Q) \) in that the index of summation \(s' \) in the sum \(S \) satisfies condition \(G_2 \).
We show that
\[(46) \quad S_4 \leq \frac{2^{2^k}2^{mk}}{2^m} \exp \left\{ -2^{-k} \left(1 - e^{-2\varepsilon} \right) N + \frac{2^k\varepsilon \ln^2 n}{E_n} \ln \left(\frac{\tilde{p}nE_n}{2^{k\varepsilon \ln^2 n}} \right) \right\}. \]

Similarly to the proof of \[(44)\] we obtain
\[(47) \quad Q \leq 2^{zN} \exp \left\{ -2^{-k} \left(1 - e^{-2\varepsilon} \right) N \right\}
if condition \(G_2\) holds. Note that the constant \(\tilde{A}_n = 2\varepsilon/\ln n\) substitutes the constant \(A_n = 2\varepsilon/E_n\) in the proof.

If the indices \(i\) and \(j\) satisfy condition \(G_2\), then bound \((46)\) follows from \((36)\) and \((47)\) similarly to the proof of the corresponding bound for \(S_3\).

The following condition is called \(G_3\): let inequality \((40)\) hold and let
\[(48) \quad 0 \leq i \leq \frac{r}{\ln n} \quad \text{and} \quad 0 \leq j \leq \frac{r}{\ln n}
for all \(i \in M_2\) and \(j \in \tilde{M}_2\). Put
\[(49) \quad p_5 = p_4 - S_5,
where
\[S_5 = 2^{-kN} \sum_{\Delta = 1}^{2^k - 1} S^{(\Delta)}_{(G_3,2^z-2)}(n,k;Q).\]
The definition of \(S^{(\Delta)}_{(G_3,2^z-2)}(n,k;Q)\) differs from that of the term \(S^{(\Delta)}(n,k;Q)\) in that the index of summation \(s'\) in \([8]\) satisfies condition \(G_3\) and that \(\Delta < 2^z - 1\).

We show that
\[(50) \quad S_5 \leq \frac{2^{2^k}2^{mk}}{2^m} \exp \left\{ -2^{-k}N + 2^k\varepsilon \ln^2 n + 2^k u \right\}.
Using \((40)\) and inequality \((10)\), we get
\[(51) \quad \Gamma_{t,k}^{(s)} \geq C_r^{-1} \left(s^{(\alpha)} + \tilde{s}^{(\alpha)} \right)
for all \(t \in \{2, \ldots, r\}\) and \(\alpha = 1, \ldots, \Delta\), where
\[s^{(\alpha)} = \sum_{i \in I_{\alpha}} i, \quad \tilde{s}^{(\alpha)} = \sum_{j \in J_{\alpha}} j.\]
According to \((4)\),
\[(52) \quad \prod_{t=1}^{T} \left(1 - 2p_{it} \right)^{\Gamma_{t,k}^{(s)}} \leq \prod_{t \in T_i} \left(1 - 2\delta_{it}(n) \right)^{\Gamma_{t,k}^{(s)}},
for \(i = 1, \ldots, N\) and \(\alpha = 1, \ldots, \Delta\).

Now we apply \((51)\) to the right hand side of \((52)\). Then
\[(53) \quad \prod_{t \in T_i} \left(1 - 2\delta_{it}(n) \right)^{\Gamma_{t,k}^{(s)}} \leq \exp \left\{ -\frac{2\delta_i}{\sqrt{n}} \left(s^{(\alpha)} + \tilde{s}^{(\alpha)} \right) \right\}.
The inequality \(e^{-y} \leq 1 - y/2, 0 \leq y < 1\), implies that
\[(54) \quad \exp \left\{ -\frac{2\delta_i}{\sqrt{n}} \left(s^{(\alpha)} + \tilde{s}^{(\alpha)} \right) \right\} \leq 1 - \frac{\delta_i}{\sqrt{n}} \left(s^{(\alpha)} + \tilde{s}^{(\alpha)} \right)\]
for $i = 1, \ldots, N$ and $\alpha = 1, \ldots, \Delta$. In turn, inequality (51) yields

$$2^{-kN} \sum_{\Delta=1}^{2^k-1} S^{(\Delta)}_{(G_3)} (n; k; Q) \leq 2^{-kN} 2 \Delta (\Delta + 1)^N$$

(55)

where the definition of $S^{(\Delta)}_{(G_3)} (n; k; Q)$ differs from that of $S^{(\Delta)} (n; k; Q)$ in the restriction that the indices in the sum (58) satisfy condition G_3. If $\Delta < 2^z - 1$, then (55) implies bound (50) by condition (3), inequalities (36),

$$\max \{s_*, \tilde{s}_*\} \leq 2^k \varepsilon \ln n,$$

and

(56)

$$\sum_{\alpha=1}^\Delta (s^{(\alpha)} + \tilde{s}^{(\alpha)}) \geq s_* + \tilde{s}_*,$$

where

$$s_* = \sum_{i \in M_2} i, \quad \tilde{s}_* = \sum_{j \in M_2} j.$$

Now let $\Delta = 2^z - 1$. Put

$$p_6 = p_5 - S_6,$$

where

$$S_6 = 2^{-kN} \sum_{\Delta=1}^{2^k-1} S^{(\Delta)}_{(G_3, 2^z-1)} (n; k; Q).$$

The definition of $S^{(\Delta)}_{(G_3, 2^z-1)} (n; k; Q)$ differs from that of the term $S^{(\Delta)} (n; k; Q)$ in that the index of summation s' in (58) satisfies condition G_3 and $\Delta = 2^z - 1$. If condition G_3 holds and $\Delta = 2^z - 1$, then we use condition (3) and relations (56) and (55) together with inequality (50) to find a bound for S_6:

(57)

$$S_6 \leq 2^{2k} 2^{mk} \exp \left\{ -2^{-2k} \sum_{i=1}^N \delta_i + k + \ln(\tilde{\rho} n) - m \ln 2 \right\}$$

for the case of

(58)

$$s_* + \tilde{s}_* \geq 1.$$

Now we show that there exists $\alpha \in \{1, 2, \ldots, \Delta\}$ such that $\xi_\alpha \leq 2$ if $\Delta = 2^z - 1$, $1 \leq z \leq k$, and either $z \in \{k, k-1\}$ or $k \in \{1, 2\}$. Indeed, if either $z = k$ or $k \in \{1, 2\}$, then this property is obvious. If $z = k - 1$, then we derive this property from Remark 2.2 in [1].
Consider condition \(G_4 \); let inequality (59) hold and let
\[
\xi_\alpha \geq 3, \quad \alpha = 1, \ldots, \Delta, \quad \Delta = 2^z - 1, \quad 1 \leq z \leq k - 2, \quad 3 \leq k < \infty.
\]
Put
\[
p_7 = p_6 - S_7
\]
and
\[
S_7 = 2^{-kN} \sum_{\Delta=1}^{2^k-1} S^{(\Delta)}(n, k; Q),
\]
where the definition of \(S^{(\Delta)}(n, k; Q) \) differs from that of the term \(S^{(\Delta)}(n, k; Q) \) in that the index of summation \(s' \) in (55) satisfies conditions \(G_4 \).

Now we obtain a bound for \(S_7 \). If (59) holds, \(\Delta = 2^z - 1 \), and \(\tilde{R}_1 < 2^{k-z} - 1 \), then we rewrite bound (55) as follows:
\[
S_7 \leq 2^{2^k+1+zN-kN} \sum_{s=0}^{n-\rho n} C_{n-\rho n}^s |M_1|^s \sum_{s' = 0}^{\rho n} C_{\rho n}^{s'} |M_1|^{s'} \\
\leq \frac{2^{2^k+1+m}}{2^m} (1 - 2^{1-k})^{\rho n}
\]
(here we used restrictions (36)).

It remains to check that
\[
S_8 \leq \frac{2^{k}2^{mk}}{2^m} \exp \left\{-\rho n 2^{-k+1} + \varepsilon \ln^2 n \ln \left(\frac{\rho n e}{\varepsilon \ln^2 n} \right) \right\}
\]
if the conditions \(G_4 \) hold and
\[
\tilde{R}_1 = 2^{k-z} - 1,
\]
where
\[
p_7 = S_8 = 2^{-kN} \sum_{\Delta=1}^{2^k-1} S^{(\Delta)}(G_4, \tilde{R}_1)(n, k; Q).
\]

Here the definition of \(S^{(\Delta)}(G_4, \tilde{R}_1)(n, k; Q) \) differs from that of the term \(S^{(\Delta)}(n, k; Q) \) in that the index of summation \(s' \) in (55) satisfies conditions \(G_4 \) and (63).

Similarly to the proof in [1] and according to Proposition 2.2 in [1] we conclude from (63) and \(G_4 \) that there exists at least one element \(j_* \in M_1 \) such that \(j_* \leq r \). Therefore, under the assumptions of the theorem and conditions \(G_4 \) and (63), we get
\[
S_8 \leq 2^{2^k} 2^{-kN} 2^{zN} 2^{(k-z)(n-\rho n)} \sum_{s' = 0}^{\rho n} C_{\rho n}^{s'} \sum_{s \geq 1} s! \prod_{j \in M_1 \setminus j_*} s'_{j} \prod_{j \in M_1 \setminus j_*} j!
\]
\[
= 2^{2^k} 2^{-kN} 2^{zN} 2^{(k-z)(n-\rho n)} \sum_{s' = 0}^{\rho n} C_{\rho n}^{s'} \sum_{s \geq 1} s! \prod_{j \in M_1 \setminus j_*} s'_{j} \prod_{j \in M_1 \setminus j_*} j!
\]
\[
\leq 2^{2^k} 2^{(k-z)m} \left(1 - \frac{1}{2^{k-z}} \right) \sum_{j_* = 0}^{\rho n} C_{\rho n}^{j_*}.
\]
Applying inequality (31) we prove bound (62).
Considering conditions $G_0–G_4$, we make sure that they exhaust all possible cases of summation in (8) with respect to the parameters $s, s', i, j, i \in I$ and $j \in J$ for which inequality (16) holds if $\Delta \geq 1$.

Therefore relations (39), (41), (46), (50), (57), (61), and (62) prove (33) under the assumptions of the lemma. Then, by (18), (32), and (33), we find that

$$E_{\nu_n[k]} = \lambda^k + \Delta(k, n),$$

where

$$\Delta(k, n) = \psi(k, n) + p_1,$$

and

$$- \left\{ 2^{(m+1)k}u + 2^{mk}\Theta_2 \left(1 + 2^k u \right) \right\} \leq \psi(k, n) \leq 2^{(m+1)k+1}u + 2^{mk}\Theta_2 \left(1 + 2^{k+1} u \right).$$

Using relations (33) and (65), we complete the proof of (13) and (14).

3. PROOF OF THE THEOREM

Fix an integer $q \geq 0$. Consider the following inequality:

$$\left| P\{\nu_n = q\} - \frac{\lambda^q}{q!}e^{-\lambda} \right| \leq R_1 + R_2 + R_3,$$

where

$$R_1 = \left| P\{\nu_n = q\} - \sum_{k=q}^{q+2\nu-1} (-1)^{k-q}C_k^q B_{kn} \right|,$$

$$R_2 = \sum_{k=q}^{q+2\nu-1} (-1)^{k-q}C_k^q \left\{ B_{kn} - \frac{\lambda k}{k!} \right\} \left| \right|,$$

$$R_3 = \sum_{k=q}^{q+2\nu-1} (-1)^{k-q}C_k^q \left(\frac{\lambda k}{k!} - \frac{\lambda^q}{q!} \right) e^{-\lambda} \left| \right|,$$

and B_{kn} denotes the binomial moment of order k for the random variable ν_n. Choose n such that

$$\frac{\lambda^{q+2\nu}}{q!(2\nu)!} < \left(\frac{2e\lambda}{\gamma} \right)^\gamma,$$

where $2\nu = \gamma - q \geq 0$. Such a number n exists in view of $n \geq 2^{6q}$. The inequality

$$R_3 < \frac{\lambda^{q+2\nu}}{q!(2\nu)!}$$

together with (67) implies that

$$R_3 < \left(\frac{2e\lambda}{\gamma} \right)^\gamma.$$
Applying (13) we prove that

\[
\left| B_{q+2\nu,n} - \frac{\lambda^{q+2\nu}}{(q+2\nu)!} \right| = \frac{1}{(q+2\nu)!} |\Delta(q+2\nu,n)|
\]

(70)

\[
\leq \frac{2^{q+2\nu+1} B(n) + \Theta_2 \left(1 + 2^{q+2\nu+1} B(n)\right)}{(q+2\nu)!} \left(2^{q+2\nu+1} B(n) + \Theta_2 \left(1 + 2^{q+2\nu+1} B(n)\right) + 7\Theta_1 \right).
\]

Taking into account (12), we get

(71)

\[
\left| B_{q+2\nu,n} - \frac{\lambda^{q+2\nu}}{(q+2\nu)!} \right| \leq \frac{2^{q+2\nu+1} B(n) + \Theta_2 \left(1 + 2^{q+2\nu+1} B(n)\right)}{(q+2\nu)!} \left(2^{q+2\nu+1} B(n) + \Theta_2 \left(1 + 2^{q+2\nu+1} B(n)\right) + 7\Theta_1 \right).
\]

By Bonferroni’s inequality [3],

(72)

\[
0 \leq P\{\nu_n = q\} = \sum_{k=q}^{q+2\nu-1} (-1)^{k-q} C_k^q B_k n \leq C^q_{q+2\nu} B_{q+2\nu,n}.
\]

Using (67) and (72), we derive from (71) that

(73)

\[
R_1 < \left(\frac{2e^{\lambda}}{\gamma}\right) \gamma \left(1 + 2^{q+1} B(n) + \Theta_2 \left(1 + 2^{q+1} B(n)\right) + 7\Theta_1 \right).
\]

Consider

\[
R_2 = \left| \sum_{k=q}^{q+2\nu-1} (-1)^{k-q} C_k^q \left[B_k n - \frac{\lambda^k}{k!} \right] \right|.
\]

It is easy to show that

(74)

\[
\sup_{q \leq k \leq q+2\nu-1} C_k^q \left| B_k n - \frac{\lambda^k}{k!} \right| \leq e^{4\lambda} B(n) + e^{2\lambda} \left(\Theta_2 \left(1 + 2^{q+1} B(n)\right) + 7\Theta_1 \right)
\]

by (12)–(14). Inequality (74) implies

(75)

\[
R_2 < \sum_{k=q}^{q+2\nu-1} C_k^q \left| B_k n - \frac{\lambda^k}{k!} \right| \leq e^{4\lambda} B(n) + e^{2\lambda} \gamma \left(\Theta_2 \left(1 + 2^{q+1} B(n)\right) + 7\Theta_1 \right).
\]

Thus (60), (69), (73), and (75) imply (6). The theorem is proved.
BIBLIOGRAPHY

Department of Probability Theory and Mathematical Statistics, Faculty for Mechanics and Mathematics, National Taras Shevchenko University, Academician Glushkov Avenue 6, Kyiv 03127, Ukraine

E-mail address: vimasol@ukr.net

Department of Probability Theory and Mathematical Statistics, Faculty for Mechanics and Mathematics, National Taras Shevchenko University, Academician Glushkov Avenue 6, Kyiv 03127, Ukraine

E-mail address: mslob@ukr.net

Received 10/FEB/2006

Translated by S. KVASKO