LIMITING BEHAVIOUR OF MOVING AVERAGE PROCESSES UNDER NEGATIVE ASSOCIATION ASSUMPTION

UDC 519.21

P. CHEN, T.-C. HU, AND A. VOLODIN

Abstract. Let \(\{Y_i, -\infty < i < +\infty\} \) be a doubly infinite sequence of identically distributed negatively associated random variables, and \(\{a_i, -\infty < i < +\infty\} \) an absolutely summable sequence of real numbers. In this paper, we prove the complete convergence and complete moment convergence of the maximum partial sums of moving average processes \(\sum_{i=-\infty}^{\infty} a_i Y_{i+n}, n \geq 1 \). We improve the results of Baek et al. (2003) and Li and Zhang (2005).

1. Introduction

We assume that \(\{Y_i, -\infty < i < +\infty\} \) is a doubly infinite sequence of identically distributed random variables. Let \(\{a_i, -\infty < i < +\infty\} \) be an absolutely summable sequence of real numbers, and let

\[
X_n = \sum_{i=-\infty}^{\infty} a_i Y_{i+n}, \quad n \geq 1,
\]

be the moving average process based on the sequence \(\{Y_i, -\infty < i < +\infty\} \).

For the moving average process \(\{X_n, n \geq 1\} \), many limiting results have been obtained. For example, under the independence assumption of the base sequence

\(\{Y_i, -\infty < i < +\infty\}, \)

Burton and Dehling [3] obtained a large deviation principle, and Li et al. [11] obtained the complete convergence result. Under different dependence assumptions of the base sequence \(\{Y_i, -\infty < i < +\infty\}, \) Zhang [17] obtained the complete convergence result when the base sequence \(\{Y_i, -\infty < i < +\infty\} \) consists of \(\varphi \)-mixing random variables, and Baek et al. [2] and Liang et al. [13] obtained the complete convergence result when the base sequence \(\{Y_i, -\infty < i < +\infty\} \) consists of negatively associated random variables. For the Banach space generalizations we refer to the papers Ahmed et al. [1], Chen et al. [5, 6].

Recall that a finite family of random variables \(\{Y_i, 1 \leq i \leq n\} \) is said to be negatively associated (abbreviated to NA) if for any disjoint subsets \(A \) and \(B \) of \(\{1, 2, \ldots, n\} \) and

2000 Mathematics Subject Classification. Primary 60F15.

Key words and phrases. Complete convergence, complete moment convergence, moving average, negative association.

The research of P. Chen was supported by the National Natural Science Foundation of China.

The research of T.-C. Hu was partially supported by the National Science Council.

The research of A. Volodin was partially supported by the National Sciences and Engineering Research Council of Canada.

©2009 American Mathematical Society
any real coordinatewise nondecreasing functions \(f \) on \(\mathbb{R}^A \) and \(g \) on \(\mathbb{R}^B \),
\[
\text{Cov}(f(Y_i, i \in A), g(Y_j, j \in B)) \leq 0
\]
whenever the covariance exists. An infinite family of random variables
\[
\{Y_i, -\infty < i < \infty\}
\]
is NA if every finite subfamily is NA. This concept was introduced by Joag-Dev and Proschan [10].

In what follows, we let \(S_n = \sum_{k=1}^{n} X_k, n \geq 1 \), be the partial sums of the sequence \(\{X_i, i \geq 1\} \), and \(\{a_i, -\infty < i < \infty\} \) be an absolutely summable sequence of real numbers, that is, \(\sum_{i=-\infty}^{\infty} |a_i| < \infty \). Furthermore, for a real number \(x \), let \(x_+ = \max\{0, x\} \), and for any number \(q \), we define \(x_+^q = (x_+)^q \). As usual, \(C \) represents a positive constant although its value may change from one appearance to the next.

First we discuss the previous results connected with complete convergence. The following was proved in Hsu and Robbins [9] and Erdős [8].

Theorem A. Suppose that \(\{X_n, n \geq 1\} \) is a sequence of independent identically distributed random variables. Then \(E X_1 = 0, E|X_1|^2 < \infty \) if and only if
\[
\sum_{n=1}^{\infty} P(|S_n| \geq \varepsilon n) < \infty
\]
for all \(\varepsilon > 0 \).

Hsu–Robbins–Erdős result was generalized by Li et al. [11] for a moving average process based on a sequence of i.i.d. random variables \(\{Y_i, -\infty < i < +\infty\} \).

Theorem B. Suppose \(\{X_n, n \geq 1\} \) is the moving average process based on a sequence of independent identically distributed random variables \(\{Y_i, -\infty < i < \infty\} \) with \(EY_1 = 0, E|Y_1|^2 < \infty, 1 \leq t < 2 \). Then \(\sum_{n=1}^{\infty} P(|S_n| \geq \varepsilon n^{1/2}) < \infty \) for all \(\varepsilon > 0 \).

The result of Li et al. was generalized for a moving average process based on a sequence of NA random variables \(\{Y_i, -\infty < i < +\infty\} \) by Baek et al. [2] and Liang et al. [13]. If we omit some insignificant details connected with slowly varying functions and stochastic domination condition, their result could be formulated in the following way.

Theorem C. Suppose that \(\{X_n, n \geq 1\} \) is the moving average process based on a sequence of NA identically distributed random variables \(\{Y_i, -\infty < i < \infty\} \) with \(EY_1 = 0, E|Y_1|^2 < \infty, 1 \leq t < 2 \). Then \(\sum_{n=1}^{\infty} P(|S_n| \geq \varepsilon n^{1/2}) < \infty \) for all \(\varepsilon > 0 \).

Next, we discuss the previous results connected with complete moment convergence. The notion was introduced in Chow [7], where the following result was also proved.

Theorem D. Suppose that \(\{X_n, n \geq 1\} \) is a sequence of independent and identically distributed random variables with \(E X_1 = 0 \) and \(1 \leq p < 2, r > p \). If
\[
E(|X_1|^r + |X_1| \log(1 + |X_1|)) < \infty,
\]
then
\[
\sum_{n=1}^{\infty} n^{r-2-1/p} E \left\{ |S_n - \varepsilon n^{1/p}|_+ \right\} < \infty \quad \text{for all} \ \varepsilon > 0.
\]

We refer the interested reader to the papers by Chen [14] and Rosalsky et al. [14] for the generalizations of Theorem D on the Banach space setting.

Li and Zhang [12] extended Theorem D to the case of moving average process based on NA random variables. Their result can be formulated in the following way, where we again omit some insignificant details connected with slowly varying functions.
Theorem E. Suppose \(\{X_n, n \geq 1\} \) is the moving average process based on a sequence of independent identically distributed random variables with \(EY_1 = 0 \), \(EY_1^2 < \infty \). Let \(1 \leq p < 2 \), \(r > 1 + p/2 \). Then \(E|Y_1|^{rp} < \infty \) implies that
\[
\sum_{n=1}^{\infty} n^{r-2-1/p} E \left\{ |S_n| - \varepsilon n^{1/p} \right\}_+ < \infty \quad \text{for all } \varepsilon > 0.
\]

2. Formulation of the main results

The purpose of this paper is to improve the results of Baek et al. \[2\] (stated above as Theorem C) to the maximum partial sums, and extend the results of Li and Zhang \[12\] (Theorem E) to the maximum partial sums of a moving average process based on a sequence of NA random variables \(\{Y_i, -\infty < i < +\infty\} \) under more optimal moment conditions.

Our main results are as follows.

Theorem 1. Let \(1 \leq p < 2 \), \(r \geq 1 \), \(rp \neq 1 \). Suppose that \(\{X_n, n \geq 1\} \) is the moving average process based on a sequence of independent identically distributed random variables \(\{Y_i, -\infty < i < \infty\} \). If \(EY_1 = 0 \) and \(E|Y_1|^{rp} < \infty \), then
\[
\sum_{n=1}^{\infty} n^{r-2} P \left\{ \max_{1 \leq k \leq n} |S_k| > \varepsilon n^{1/p} \right\} < \infty \quad \text{for all } \varepsilon > 0.
\]

Theorem 2. Let \(q > 0 \), \(1 \leq p < 2 \), \(r \geq 1 \), \(rp \neq 1 \). Suppose that \(\{X_n, n \geq 1\} \) is the moving average process based on a sequence of independent identically distributed random variables \(\{Y_i, -\infty < i < \infty\} \). If \(EY_1 = 0 \) and
\[
E|Y_1|^{rp} < \infty, \quad q < rp,
\]
\[
E|Y_1|^{rp} \log(1 + |Y_1|) < \infty, \quad q = rp,
\]
\[
E|Y_1|^q < \infty, \quad q > rp,
\]
then
\[
\sum_{n=1}^{\infty} n^{r-2-q/p} E \left\{ \max_{1 \leq k \leq n} |S_k| - \varepsilon n^{1/p} \right\}^q < \infty \quad \text{for all } \varepsilon > 0.
\]

3. Two technical lemmas

The following lemma plays a crucial role in our proofs; see Shao \[16\] Theorem 2).

Lemma 1. Let \(q \geq 2 \), and let \(\{X_j, 1 \leq i \leq n\} \) be a sequence of NA random variables with zero mean and \(E|X_j|^q < \infty \) for every \(1 \leq j \leq n \). Then
\[
E \max_{1 \leq k \leq n} \left| \sum_{j=1}^{k} X_i \right|^q \leq C \left\{ \left(\sum_{j=1}^{n} E|X_j|^2 \right)^{q/2} + \sum_{j=1}^{n} E|X_j|^q \right\}.
\]

The next lemma is pure technical.

Lemma 2. Let \(Y \) be a random variable with \(E|Y|^{rp}(1 + |Y|) < \infty \), where \(r \geq 1 \), \(p \geq 1 \), and \(\psi(x) = 1 \) or \(\psi(x) = \log(x), x \geq 1 \). Then
\[
(i) \sum_{n=1}^{\infty} n^{r-1} P \{|Y| > n^{1/p}\} \leq C E|Y|^{rp}.
\]
\[
(ii) \text{For } q > rp,
\]
\[
\sum_{n=1}^{\infty} n^{r-1-q/p} \psi(n) E|Y|^q I \left\{ |Y| \leq n^{1/p} \right\} \leq C E|Y|^{rp} \psi(|Y|).
\]
(iii) For \(s \geq 1, v > 0, sp > v \) and \(E|Y|^{sp}(1 + |Y|) < \infty \),
\[
\sum_{n=1}^{\infty} n^{s-1-v/p} \psi(n) E|Y|^p I\{ |Y| > n^{1/p} \} \leq C E|Y|^{sp}(1 + |Y|).
\]

Proof. First, we mention that statement (i) is well known, so we will prove only (ii) and (iii). Note that the function \(\psi \) has the following properties:

(a) for any \(m \geq 1 \),
\[
\sum_{n=1}^{m} n^{s-1} \psi(n) \leq C m^s \psi(m) \quad \text{if } u > 0
\]
and
\[
\sum_{n=m}^{\infty} n^{s-1} \psi(n) \leq C m^s \psi(m) \quad \text{if } u < 0;
\]

(b) for any \(p > 0, \psi(|x|^p) = C\psi(|x|) \leq C\psi(1 + |x|).

(ii) Since \(r - q/p < 0 \), we have
\[
\sum_{n=1}^{\infty} n^{r-1-q/p} \psi(n) E|Y|^q I\{ |Y| \leq n^{1/p} \}
\]
\[
= C \sum_{n=1}^{\infty} n^{r-1-q/p} \psi(n) \sum_{m=1}^{n} E|Y|^q I\{ m - 1 < |Y|^p \leq m \}
\]
\[
= C \sum_{m=1}^{\infty} E|Y|^q I\{ m - 1 < |Y|^p \leq m \} \sum_{n=m}^{\infty} n^{r-1-q/p} \psi(n)
\]
\[
\leq C \sum_{m=1}^{\infty} m^{r-q/p} \psi(m) E|Y|^q I\{ m - 1 < |Y|^p \leq m \} \quad \text{(by (a))}
\]
\[
\leq C \sum_{m=1}^{\infty} E m^{r-q/p} \psi(m)|Y|^q I\{ m - 1 < |Y|^p \leq m \}
\]
\[
\leq C \sum_{m=1}^{\infty} E|Y|^r I\{ |Y| > 0 \}|Y|^q I\{ m - 1 < |Y|^p \leq m \}
\]
\[
\leq C \sum_{m=1}^{\infty} E|Y|^r \psi(1 + |Y|) I\{ m - 1 < |Y|^p \leq m \}
\]
\[
\leq C E|Y|^r \psi(1 + |Y|).
\]

(iii) We have
\[
\sum_{n=1}^{\infty} n^{s-1-v/p} \psi(n) E|Y|^v I\{ |Y| > n^{1/p} \}
\]
\[
= C \sum_{n=1}^{\infty} n^{s-1-v/p} \psi(n) \sum_{m=n}^{\infty} E|Y|^v I\{ m < |Y|^p \leq m + 1 \}
\]
\[
= C \sum_{m=1}^{\infty} E|Y|^v I\{ m < |Y|^p \leq m + 1 \} \sum_{n=1}^{m} n^{s-1-v/p} \psi(n)
\]
\[
\leq C \sum_{m=1}^{\infty} m^{s-v/p} \psi(m) E|Y|^v I\{ m < |Y|^p \leq m + 1 \} \quad \text{(by (a))}
\]
Hence, for any $\varepsilon > 0$ let

$$I := \sum_{n=1}^{\infty} n^{r-2} P \left\{ \max_{1 \leq k \leq n} \left| \sum_{i=-\infty}^{\infty} a_i \sum_{j=i+1}^{i+k} \sum_{1 \leq k \leq n} Y_{n,j}^{(1)} - \mathbb{E} Y_{n,j}^{(1)} \right| > \varepsilon n^{1/p}/4 \right\} < \infty$$

and

$$J := \sum_{n=1}^{\infty} n^{r-2} P \left\{ \max_{1 \leq k \leq n} \left| \sum_{i=-\infty}^{\infty} a_i \sum_{j=i+1}^{i+k} Y_{n,j}^{(2)} \right| > \varepsilon n^{1/p}/2 \right\} < \infty.$$
For J, by Markov’s inequality, we have
\[
J \leq C \sum_{n=1}^{\infty} n^{r-2} n^{1-1/p} \mathbb{E} \max_{1 \leq k \leq n} \left| \sum_{i=-\infty}^{\infty} a_i \sum_{j=i+1}^{i+k} Y_{n_j}^{(2)} \right|
\]
\[
\leq C \sum_{n=1}^{\infty} n^{r-1-1/p} \left(\mathbb{E} |Y_1| I \left\{ |Y_1| > n^{1/p} \right\} \right) + n^{1/p} \mathbb{P} \left\{ |Y_1| > n^{1/p} \right\}
\]
\[
\leq C \sum_{n=1}^{\infty} n^{r-1-1/p} \mathbb{E} |Y_1| I \left\{ |Y_1| > n^{1/p} \right\} + C \mathbb{E} |Y_1|^p \quad \text{(by Lemma 2(i))}
\]
\[
\leq C \mathbb{E} |Y_1|^p < \infty \quad \text{(by Lemma 2(iii) with } \psi(x) = 1, v = 1, \text{ and } s = r) \]

For I, fix any $q \geq 2$ (to be specified later). Then
\[
I \leq C \sum_{n=1}^{\infty} n^{r-2 - q/p} \mathbb{E} \left(\sum_{i=-\infty}^{\infty} \max_{1 \leq k \leq n} \left| \sum_{j=i+1}^{i+k} \left(Y_{n_j}^{(1)} - \mathbb{E} Y_{n_j}^{(1)} \right) \right|^q \right)
\]
(by Markov’s inequality)
\[
\leq C \sum_{n=1}^{\infty} n^{r-2 - q/p} \mathbb{E} \left(\sum_{i=-\infty}^{\infty} |a_i| \max_{1 \leq k \leq n} \left| \sum_{j=i+1}^{i+k} \left(Y_{n_j}^{(1)} - \mathbb{E} Y_{n_j}^{(1)} \right) \right| \right)^q
\]
\[
\leq C \sum_{n=1}^{\infty} n^{r-2 - q/p} \mathbb{E} \left(\sum_{i=-\infty}^{\infty} |a_i| \max_{1 \leq k \leq n} \left| \sum_{j=i+1}^{i+k} \left(Y_{n_j}^{(1)} - \mathbb{E} Y_{n_j}^{(1)} \right) \right| \right)^q
\]
(by Hölder’s inequality)
\[
\leq C \sum_{n=1}^{\infty} n^{r-2 - q/p} \sum_{i=-\infty}^{\infty} |a_i| \mathbb{E} \max_{1 \leq k \leq n} \left| \sum_{j=i+1}^{i+k} \left(Y_{n_j}^{(1)} - \mathbb{E} Y_{n_j}^{(1)} \right) \right|^q
\]
(since $\sum_{i=-\infty}^{\infty} |a_i| < \infty$)
\[
\leq C \sum_{n=1}^{\infty} n^{r-2 - q/p} \sum_{i=-\infty}^{\infty} |a_i| \left\{ \sum_{j=i+1}^{i+n} \left(\mathbb{E} \left(Y_{n_j}^{(1)} - \mathbb{E} Y_{n_j}^{(1)} \right)^2 \right)^{q/2} + \sum_{j=i+1}^{i+n} \mathbb{E} \left| Y_{n_j}^{(1)} - \mathbb{E} Y_{n_j}^{(1)} \right|^q \right\}
\]
(by Lemma 1)
\[
\leq C \sum_{n=1}^{\infty} n^{r-2 - q/p} \sum_{i=-\infty}^{\infty} |a_i| \left\{ \left(n \left(\mathbb{E} Y_{n_j}^{(1)} \left\{ |Y_1| \leq n^{1/p} \right\} \right) + n^{1/p} \mathbb{P} \left\{ |Y_1| > n^{1/p} \right\} \right)^{q/2} \right. \]
\[\left. + n \left(\mathbb{E} |Y_1|^q |Y_1| \left\{ |Y_1| \leq n^{1/p} \right\} + n^{q/p} \mathbb{P} \left\{ |Y_1| > n^{1/p} \right\} \right) \right\}
\]
\[
\leq C \sum_{n=1}^{\infty} n^{r-2 - q/p} \left\{ \left(n \left(\mathbb{E} Y_{n_j}^{(1)} \left\{ |Y_1| \leq n^{1/p} \right\} \right) + n^{1/p} \mathbb{P} \left\{ |Y_1| > n^{1/p} \right\} \right)^{q/2} \right. \]
\[\left. + n \left(\mathbb{E} |Y_1|^q |Y_1| \left\{ |Y_1| \leq n^{1/p} \right\} + n^{q/p} \mathbb{P} \left\{ |Y_1| > n^{1/p} \right\} \right) \right\}
\]
(since $\sum_{i=-\infty}^{\infty} |a_i| < \infty$).
We consider two separate cases. If \(rp < 2 \), let \(q = 2 \). We have
\[
I \leq C \sum_{n=1}^{\infty} n^{r-2/p} \left(E|Y_1|^2 I \left\{ |Y_1| \leq n^{1/p} \right\} + n^{2/p} P \left\{ |Y_1| > n^{1/p} \right\} \right)
\]
\[
\leq C \sum_{n=1}^{\infty} n^{r-2/p} E|Y_1|^2 I \left\{ |Y_1| \leq n^{1/p} \right\} + C E|Y_1|^{rp} \quad \text{(by Lemma 2(ii))}
\]
\[
\leq C E|Y_1|^{rp} < \infty \quad \text{(by Lemma 2(ii) with } q = 2 \text{ and } \psi(x) = 1). \]

If \(rp \geq 2 \), let \(q > 2p(r-1)/(2-p) \geq 2 \). Note that in this case
\[
E|Y_1|^2 I \left\{ |Y_1| \leq n^{1/p} \right\} \leq E|Y_1|^2 \leq (E|Y_1|^{rp})^{2/(rp)} < \infty
\]
and by Markov’s inequality,
\[
n^{2/p} P \left\{ |Y_1| > n^{1/p} \right\} \leq E|Y_1|^2 < \infty.
\]
Hence
\[
I \leq C \sum_{n=1}^{\infty} n^{r-2-q/p} \left(n \left(E|Y_1|^2 I \left\{ |Y_1| \leq n^{1/p} \right\} + n^{2/p} P \left\{ |Y_1| > n^{1/p} \right\} \right) \right)^{q/2}
\]
\[
+ n \left(E|Y_1|^q I \left\{ |Y_1| \leq n^{1/p} \right\} + n^{q/p} P \left\{ |Y_1| > n^{1/p} \right\} \right)
\]
\[
\leq C \sum_{n=1}^{\infty} n^{r-2-q/p+q/2} + C \sum_{n=1}^{\infty} n^{r-1-q/p} E|Y_1|^q I \left\{ |Y_1| \leq n^{1/p} \right\}
\]
\[
+ C \sum_{n=1}^{\infty} n^{r-1} P \left\{ |Y_1| > n^{1/p} \right\}
\]
\[
\leq C + C E|Y_1|^{rirp} \quad \text{(by Lemma 2(i) and (ii) with } \psi(x) = 1). \]

Next, we prove Theorem 2.

Proof. For every \(\varepsilon > 0 \),
\[
\sum_{n=1}^{\infty} n^{r-2-q/p} E \left\{ \max_{1 \leq k \leq n} |S_k| - \varepsilon n^{1/p} \right\}^q
\]
\[
= \sum_{n=1}^{\infty} n^{r-2-q/p} \int_0^{\infty} P \left\{ \max_{1 \leq k \leq n} |S_k| - \varepsilon n^{1/p} > t^{1/q} \right\} dt
\]
\[
= \sum_{n=1}^{\infty} n^{r-2-q/p} \int_0^{n^{q/p}} P \left\{ \max_{1 \leq k \leq n} |S_k| - \varepsilon n^{1/p} > t^{1/q} \right\} dt
\]
\[
+ \sum_{n=1}^{\infty} n^{r-2-q/p} \int_{n^{q/p}}^{\infty} P \left\{ \max_{1 \leq k \leq n} |S_k| - \varepsilon n^{1/p} > t^{1/q} \right\} dt
\]
\[
\leq \sum_{n=1}^{\infty} n^{r-2} P \left\{ \max_{1 \leq k \leq n} |S_k| > \varepsilon n^{1/p} \right\}
\]
\[
+ \sum_{n=1}^{\infty} n^{r-2-q/p} \int_{n^{q/p}}^{\infty} P \left\{ \max_{1 \leq k \leq n} |S_k| > t^{1/q} \right\} dt.
\]
Hence, by Theorem 1, in order to prove Theorem 2, it is enough to show that
\[
\sum_{n=1}^{\infty} n^{r-2-q/p} \int_{n^{q/p}}^{\infty} P \left\{ \max_{1 \leq k \leq n} |S_k| > t^{1/q} \right\} dt < \infty.
\]

Let
\[
Y_j^{(t,1)} = -t^{1/q} I \left\{ Y_j < -t^{1/q} \right\} + Y_j I \left\{ |Y_j| \leq t^{1/q} \right\} + t^{1/q} I \left\{ Y_j > t^{1/q} \right\},
\]
and let \(Y_j^{(t,2)} = Y_j - Y_j^{(t,1)} \) be monotone truncations of \(Y_j, \) \(-\infty < j < \infty\). Then by Joag-Dev and Proschan [10], for any \(t > 0, \)
\[
\left\{ Y_j^{(t,1)} - E Y_j^{(t,1)}, -\infty < j < \infty \right\}
\]
and
\[
\left\{ Y_j^{(t,2)}, -\infty < j < \infty \right\}
\]
are two sequences of NA random variables. Note that
\[
\sum_{k=1}^{n} X_k = \sum_{k=1}^{n} \sum_{i=-\infty}^{1} a_i Y_{i+k} = \sum_{i=-\infty}^{\infty} a_i \sum_{j=i+1}^{i+n} Y_j
\]
and
\[
\sup_{t \geq n^{q/p}} t^{-1/q} \max_{1 \leq k \leq n} \left| E \sum_{i=-\infty}^{\infty} a_i \sum_{j=i+1}^{i+k} Y_j^{(t,1)} \right|
\leq \sup_{t \geq n^{q/p}} t^{-1/q} \sum_{i=-\infty}^{\infty} |a_i| \max_{1 \leq k \leq n} \left| E \sum_{j=i+1}^{i+k} Y_j^{(t,1)} \right|
\leq C \sup_{t \geq n^{q/p}} t^{-1/q} n \left(E |Y_1| I \left\{ |Y_1| \leq t^{1/q} \right\} + t^{1/q} P \left\{ |Y_1| > t^{1/q} \right\} \right)
\leq C \sup_{t \geq n^{q/p}} t^{-1/q} n \left(E |Y_1| I \left\{ |Y_1| > t^{1/q} \right\} + t^{1/q} P \left\{ |Y_1| > t^{1/q} \right\} \right)
\leq C (n^{q/p})^{-1} n E |Y_1| I \left\{ |Y_1| > (n^{q/p})^{1/q} \right\} + C n P \left\{ |Y_1| > n^{1/p} \right\}
\leq C E |Y_1|^p I \left\{ |Y_1| > n^{1/p} \right\} + C n P \left\{ |Y_1| > n^{1/p} \right\} \to 0
\]
as \(n \to \infty \). Hence for \(n \) large enough we have
\[
\sup_{t \geq n^{q/p}} t^{-1/q} \max_{1 \leq k \leq n} \left| E \sum_{i=-\infty}^{\infty} a_i \sum_{j=i+1}^{i+k} Y_j^{(t,1)} \right| < 1/4.
\]

Therefore, in order to prove Theorem 2, it is enough to show that
\[
I := \sum_{n=1}^{\infty} n^{r-2-q/p} \int_{n^{q/p}}^{\infty} P \left\{ \max_{1 \leq k \leq n} \left| \sum_{i=-\infty}^{\infty} a_i \sum_{j=i+1}^{i+k} \left(Y_j^{(t,1)} - E Y_j^{(t,1)} \right) \right| > t^{1/q} / 4 \right\} dt < \infty
\]
and
\[
J := \sum_{n=1}^{\infty} n^{r-2-q/p} \int_{n^{q/p}}^{\infty} P \left\{ \max_{1 \leq k \leq n} \left| \sum_{i=-\infty}^{\infty} a_i \sum_{j=i+1}^{i+k} Y_j^{(t,2)} \right| > t^{1/q} / 2 \right\} dt < \infty.
\]
We first show that $J < \infty$. By Markov’s inequality,

\[J \leq C \sum_{n=1}^{\infty} n^{r-2-q/p} \int_{n^{q/p}}^{\infty} t^{-1/q} \mathbb{E} \left[\max_{1 \leq k \leq n} \left| \sum_{i=-\infty}^{\infty} a_i \sum_{j=i+1}^{i+k} Y_j^{(t,1)} \right| \right] dt \]

\[\leq C \sum_{n=1}^{\infty} n^{r-2-q/p} \int_{n^{q/p}}^{\infty} t^{-1/q} \left(\mathbb{E} |Y_1| \{ |Y_1| > t^{1/q} \} + t^{1/q} \mathbb{P} \{ |Y_1| > t^{1/q} \} \right) dt \]

\[\leq C \sum_{n=1}^{\infty} n^{r-2-q/p} \int_{n^{q/p}}^{\infty} t^{-1/q} \mathbb{E} |Y_1| \{ |Y_1| > t^{1/q} \} dt \]

\[= C \sum_{n=1}^{\infty} n^{r-2-q/p} \sum_{m=n}^{\infty} \int_{m^{q/p}}^{\infty} t^{-1/q} \mathbb{E} |Y_1| \{ |Y_1| > t^{1/q} \} dt \]

\[\leq C \sum_{n=1}^{\infty} n^{r-2-q/p} \mathbb{E} |Y_1| \{ |Y_1| > m^{1/p} \} \sum_{m=1}^{m} n^{r-2-q/p} \]

\[\leq \begin{cases} C \sum_{m=1}^{\infty} m^{r-1-q/p} \mathbb{E} |Y_1| \{ |Y_1| > m^{1/p} \} & \text{if } q < rp, \\ C \sum_{m=1}^{\infty} m^{r-1-q/p} \log(1 + m) \mathbb{E} |Y_1| \{ |Y_1| > m^{1/p} \} & \text{if } q = rp, \\ C \sum_{m=1}^{\infty} m^{q/p-1-q/p} \mathbb{E} |Y_1| \{ |Y_1| > m^{1/p} \} & \text{if } q > rp \end{cases}

\]

\[\leq \begin{cases} C \mathbb{E} |Y_1|^p & \text{if } q < rp, \\ C \mathbb{E} |Y_1|^p \log(1 + |Y_1|) & \text{if } q = rp, \\ C \mathbb{E} |Y_1|^q & \text{if } q > rp \end{cases} \]

\[< \infty \quad \text{(by the assumptions of Theorem 2)}. \]

We now prove that $I < \infty$. Fix any $s \geq 2$ (to be specified later). By Markov’s inequality,

\[I \leq C \sum_{n=1}^{\infty} n^{r-2-q/p} \int_{n^{q/p}}^{\infty} t^{-s/q} \mathbb{E} \left[\max_{1 \leq k \leq n} \left| \sum_{i=-\infty}^{\infty} a_i \sum_{j=i+1}^{i+k} \left(Y_j^{(t,1)} - \mathbb{E} Y_j^{(t,1)} \right) \right| \right] dt \]

\[\leq C \sum_{n=1}^{\infty} n^{r-2-q/p} \int_{n^{q/p}}^{\infty} t^{-s/q} \left(\sum_{i=-\infty}^{\infty} |a_i| \max_{1 \leq k \leq n} \left| \sum_{j=i+1}^{i+k} \left(Y_j^{(t,1)} - \mathbb{E} Y_j^{(t,1)} \right) \right| \right) dt \]

\[\leq C \sum_{n=1}^{\infty} n^{r-2-q/p} \int_{n^{q/p}}^{\infty} t^{-s/q} \left(\mathbb{E} \left[\left| Y_1^{(t,1)} - \mathbb{E} Y_1^{(t,1)} \right| \right] \right) dt \]

\[\times \int_{n^{q/p}}^{\infty} t^{-s/q} \left(\sum_{i=-\infty}^{\infty} |a_i| \right)^{s-1} \left(\sum_{i=-\infty}^{\infty} |a_i| \right) \int_{n^{q/p}}^{\infty} \left(\sum_{j=i+1}^{i+k} \left(Y_j^{(t,1)} - \mathbb{E} Y_j^{(t,1)} \right) \right) dt \]

(by Hölder’s inequality)
\[
\begin{align*}
&\leq C \sum_{n=1}^{\infty} n^{r-2-q/p} \int_{n^{1/p}}^{\infty} t^{-s/q} \sum_{i=-\infty}^{\infty} |a_i| \mathbb{E} \max_{1 \leq k \leq n} \left| \sum_{j=i+1}^{i+k} (Y_j(t,1) - \mathbb{E} Y_j(t,1)) \right|^s \, dt \\
&\quad \text{(since } \sum_{i=-\infty}^{\infty} |a_i| < \infty) \\
&\leq C \sum_{n=1}^{\infty} n^{r-2-q/p} \int_{n^{1/p}}^{\infty} t^{-s/q} \sum_{i=-\infty}^{\infty} |a_i| \left\{ \begin{array}{c} n^{s/2} \left(\mathbb{E} |Y_1|^2 I \{ |Y_1| \leq t^{1/q} \} + t^{2/q} \mathbb{P} \{ |Y_1| > t^{1/q} \} \right)^{s/2} \\
+ n \left(\mathbb{E} |Y_1|^s I \{ |Y_1| \leq t^{1/q} \} + t^{s/q} \mathbb{P} \{ |Y_1| > t^{1/q} \} \right) \end{array} \right\} \, dt \\
&\leq C \sum_{n=1}^{\infty} n^{r-2-q/p} \int_{n^{1/p}}^{\infty} t^{-s/q} \sum_{i=-\infty}^{\infty} |a_i| \left\{ \begin{array}{c} n^{s/2} \left(\mathbb{E} |Y_1|^2 I \{ |Y_1| \leq t^{1/q} \} + t^{2/q} \mathbb{P} \{ |Y_1| > t^{1/q} \} \right)^{s/2} \\
+ n \left(\mathbb{E} |Y_1|^s I \{ |Y_1| \leq t^{1/q} \} + t^{s/q} \mathbb{P} \{ |Y_1| > t^{1/q} \} \right) \end{array} \right\} \, dt \\
&\quad \text{(since } \sum_{i=-\infty}^{\infty} |a_i| < \infty).
\end{align*}
\]

Consider two separate cases. If \(\max \{ q, rp \} < 2 \), let \(s = 2 \). We have

\[
\begin{align*}
I &\leq C \sum_{n=1}^{\infty} n^{r-1-q/p} \int_{n^{1/p}}^{\infty} t^{-2/q} \left(\mathbb{E} |Y_1|^2 I \{ |Y_1| \leq t^{1/q} \} + t^{2/q} \mathbb{P} \{ |Y_1| > t^{1/q} \} \right) \, dt \\
&\leq C \sum_{n=1}^{\infty} n^{r-1-q/p} \int_{n^{1/p}}^{\infty} t^{-2/q} \mathbb{E} |Y_1|^2 I \{ |Y_1| \leq t^{1/q} \} \, dt \\
&\quad + C \sum_{n=1}^{\infty} n^{r-1-q/p} \int_{n^{1/p}}^{\infty} \mathbb{P} \{ |Y_1| > t^{1/q} \} \, dt \\
&= C \sum_{n=1}^{\infty} n^{r-1-q/p} \sum_{m=n+1}^{\infty} \int_{(m-1)^{1/p}}^{m^{1/p}} t^{-2/q} \mathbb{E} |Y_1|^2 I \{ |Y_1| \leq t^{1/q} \} \, dt \\
&\quad + C \sum_{n=1}^{\infty} n^{r-1-q/p} \mathbb{E} |Y_1|^q I \{ |Y_1| > n^{1/p} \} \\
&\leq C \sum_{n=1}^{\infty} n^{r-1-q/p} \sum_{m=n+1}^{\infty} \mathbb{E} |Y_1|^2 I \{ |Y_1| \leq m^{1/q} \} \int_{(m-1)^{1/p}}^{m^{1/p}} t^{-2/q} \, dt + C \mathbb{E} |Y_1|^{rp} \\
&\quad \text{(by Lemma 2(iii) with } s = r \text{ and } v = q) \\
&\leq C \sum_{n=1}^{\infty} n^{r-1-q/p} \sum_{m=n+1}^{\infty} (m-1)^{q/p-1-2/p} \mathbb{E} |Y_1|^2 I \{ |Y_1| \leq m^{1/p} \} + C \mathbb{E} |Y_1|^{rp}
\end{align*}
\]
\[C \sum_{n=1}^{\infty} n^{r-1-\frac{q}{p}} \sum_{m=n}^{\infty} m^{q/p-1-2/p} E |Y|^{2} I \left\{|Y| \leq m^{1/p}\right\} + C E |Y|^{rp} \]

\[= C \sum_{m=1}^{\infty} m^{q/p-1-2/p} E |Y|^{2} I \left\{|Y| \leq m^{1/p}\right\} \sum_{n=1}^{\infty} n^{r-1-\frac{q}{p}} + C E |Y|^{rp} \]

\[\leq \begin{cases}
C \sum_{m=1}^{\infty} m^{r-1-\frac{2}{p}} E |Y|^{2} I \left\{|Y| \leq m^{1/p}\right\} + C E |Y|^{rp} & \text{if } q < rp, \\
C \sum_{m=1}^{\infty} m^{r-1-\frac{2}{p}} \log(1 + m) E |Y|^{2} I \left\{|Y| \leq m^{1/p}\right\} + C E |Y|^{rp} & \text{if } q = rp, \\
C \sum_{m=1}^{\infty} m^{q/p-1-2/p} E |Y|^{2} I \left\{|Y| \leq m^{1/p}\right\} + C E |Y|^{rp} & \text{if } q > rp
\end{cases} \]

\[\leq \begin{cases}
C E |Y|^{rp} & \text{if } q < rp, \\
C E |Y|^{rp} \log(1 + |Y|) + C E |Y|^{rp} & \text{if } q = rp, \\
C E |Y|^{q} + C E |Y|^{rp} & \text{if } q > rp \end{cases} \quad (\text{by Lemma 2(ii)}) \]

\[< \infty. \]

If \(\max\{q, rp\} \geq 2 \), let \(s > \max\{q, 2p(r - 1)/(2 - p)\} \). Note that in this case

\[E |Y|^{2} I \left\{|Y| \leq t^{1/q}\right\} \leq E |Y|^{2} < \infty \]

and by Markov’s inequality,

\[t^{2/q} P \left\{|Y| > t^{1/q}\right\} \leq E |Y|^{2} < \infty. \]

Hence

\[I \leq C \sum_{n=1}^{\infty} n^{r-2-\frac{q}{p}+s/2} \int_{n^{q/p}}^{\infty} t^{-s/q} dt \]

\[+ C \sum_{n=1}^{\infty} n^{r-1-\frac{q}{p}+s} \int_{n^{q/p}}^{\infty} t^{-s/q} E |Y|^{s} I \left\{|Y| \leq t^{1/q}\right\} dt \]

\[+ C \sum_{n=1}^{\infty} n^{r-1-\frac{q}{p}} \int_{n^{q/p}}^{\infty} P \left\{|Y| > t^{1/q}\right\} dt \]

\[\leq C \sum_{n=1}^{\infty} n^{r-2-s/2} + C \sum_{n=1}^{\infty} n^{r-1-\frac{q}{p}} \int_{n^{q/p}}^{\infty} t^{-s/q} E |Y|^{s} I \left\{|Y| \leq t^{1/q}\right\} dt \]

\[+ C E |Y|^{rp} \]

\[\leq C + C E |Y|^{rp} + C \sum_{n=1}^{\infty} n^{r-1-\frac{q}{p}} \int_{n^{q/p}}^{\infty} t^{-s/q} E |Y|^{s} I \left\{|Y| \leq t^{1/q}\right\} dt \]

\[< \infty. \]

\[\square \]

Remark. The key point of the proofs of Theorems 1 and 2 is the application of Hölder’s and the Rosenthal type inequalities for maximum partial sums of the NA sequence presented in Lemma 1. Note that the Rosenthal type inequality for maximum partial sums also holds for \(\rho \)- and \(\rho^* \)-mixing random variables (cf., for example, Shao [15]). Hence Theorems 1 and 2 remain true for \(\rho \) and \(\rho^* \)-mixing random variables.

Bibliography

DEPARTMENT OF MATHEMATICS, JINAN UNIVERSITY, GUANGZHOU, 510630, PEOPLE’S REPUBLIC OF CHINA

E-mail address: chenpingyan@yahoo.com.cn

DEPARTMENT OF MATHEMATICS, NATIONAL TSING HUA UNIVERSITY HSINCHU 300, TAIWAN, REPUBLIC OF CHINA

E-mail address: tchu@math.nthu.edu.tw

DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF REGINA, REGINA, SASKATCHEWAN, S4S0A2, CANADA

E-mail address: andrei@math.uregina.ca

Received 18/AUG/2006

Originally published in English