Skip to Main Content
Remote Access Theory of Probability and Mathematical Statistics

Theory of Probability and Mathematical Statistics

ISSN 1547-7363(online) ISSN 0094-9000(print)

 
 

 

Difference approximation of the local times of multidimensional diffusions


Author: Aleksey M. Kulik
Translated by: S. Kvasko
Journal: Theor. Probability and Math. Statist. 78 (2009), 97-114
MSC (2000): Primary 60J55, 60J45, 60F17
DOI: https://doi.org/10.1090/S0094-9000-09-00765-0
Published electronically: August 4, 2009
MathSciNet review: 2446852
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Sequences of additive functionals of difference approximations are considered for multidimensional uniformly nondegenerate diffusions. Sufficient conditions are obtained for the weak convergence of such sequences to a $W$-functional of the limit process. The class of $W$-functionals appearing as limits for such a problem can be described uniquely in terms of the corresponding $W$-measures $\mu$ as follows: \[ \lim _{\delta \downarrow 0}\sup _{x\in \mathbb {R}^m}\int _{\|y-x\|\leq \delta }w(\|y-x\|) \mu (dy)=0, \] where $w(r)=\begin {cases} \max (-\ln r, 1),& m=2,\\ r^{2-m},& m>2. \end {cases}$


References [Enhancements On Off] (What's this?)

References
  • A. V. Skorokhod, Asimptoticheskie metody teorii stokhasticheskikh differentsial′nykh uravneniÄ­, “Naukova Dumka”, Kiev, 1987 (Russian). MR 913305
  • E. B. Dynkin, Markovskie protsessy, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1963 (Russian). MR 0193670
  • A. V. Skorohod and N. P. Slobodenjuk, Predel′nye teoremy dlya sluchaÄ­ nykh bluzhdaniÄ­, Izdat. “Naukova Dumka”, Kiev, 1970 (Russian). MR 0282419
  • A. N. Borodin and I. A. Ibragimov, Limit theorems for functionals of random walks, Trudy Mat. Inst. Steklov. 195 (1994), no. Predel. Teoremy dlya Funktsional. ot SluchaÄ­n. Bluzh., 286 (Russian, with Russian summary); English transl., Proc. Steklov Inst. Math. 2(195) (1995), viii + 259. MR 1368394
  • I. I. Gikhman, Some limit theorems on the number of intersections of a random function and the boundary of a given domain, Nuk. Zap. Kiev University 16 (1957), no. 10, 149–164. (Ukrainian)
  • I. I. Gikhman, Asymptotic distributions of the number of intersections of a random function and the boundary of a given domain, Visnyk Kiev University, Ser. Astronom, Matem., Mekh. 1 (1958), no. 1, 25–46. (Ukrainian)
  • N. I. Portenko, Integral equations and certain limit theorems for additive functionals of Markov processes, Teor. Verojatnost. i Primenen. 12 (1967), 551–559 (Russian, with English summary). MR 0221596
  • A. N. Borodin, The asymptotic behavior of local times of recurrent random walks with finite variance, Teor. Veroyatnost. i Primenen. 26 (1981), no. 4, 769–783 (Russian, with English summary). MR 636771
  • Edwin Perkins, Weak invariance principles for local time, Z. Wahrsch. Verw. Gebiete 60 (1982), no. 4, 437–451. MR 665738, DOI https://doi.org/10.1007/BF00535709
  • A. S. Cherny, A. N. Shiryaev, and M. Yor, Limit behaviour of the “horizontal-vertical” random walk and some extensions of the Donsker-Prokhorov invariance principle, Teor. Veroyatnost. i Primenen. 47 (2002), no. 3, 498–517 (English, with Russian summary); English transl., Theory Probab. Appl. 47 (2003), no. 3, 377–394. MR 1975425, DOI https://doi.org/10.1137/S0040585X97979834
  • Richard F. Bass and Davar Khoshnevisan, Local times on curves and uniform invariance principles, Probab. Theory Related Fields 92 (1992), no. 4, 465–492. MR 1169015, DOI https://doi.org/10.1007/BF01274264
  • E. B. Dynkin, Self-intersection gauge for random walks and for Brownian motion, Ann. Probab. 16 (1988), no. 1, 1–57. MR 920254
  • Valentin Konakov and Enno Mammen, Local limit theorems for transition densities of Markov chains converging to diffusions, Probab. Theory Related Fields 117 (2000), no. 4, 551–587. MR 1777133, DOI https://doi.org/10.1007/PL00008735
  • V. Konakov, Small Time Asymptotics in Local Limit Theorems for Markov Chains Converging to Diffusions, arXiv:math. PR/0602429, 2006.
  • Yu. N. Kartashov and A. M. Kulik, Weak convergence of additive functionals of a sequence of Markov chains, Theory Stoch. Process. 15(31) (2009), no. 1. (to appear)
  • Alexey M. Kulik, Markov approximation of stable processes by random walks, Theory Stoch. Process. 12 (2006), no. 1-2, 87–93. MR 2316289
  • A. S. Gibbs and F. E. Su, On choosing and bounding probability metrics, Internat. Statist. Review 70 (2001), 419–35.
  • J. L. Doob, Stochastic processes, John Wiley & Sons, Inc., New York; Chapman & Hall, Limited, London, 1953. MR 0058896
  • V. S. Vladimirov, Uravneniya matematicheskoÄ­ fiziki, Izdat. “Nauka”, Moscow, 1967 (Russian). MR 0239242

Similar Articles

Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2000): 60J55, 60J45, 60F17

Retrieve articles in all journals with MSC (2000): 60J55, 60J45, 60F17


Additional Information

Aleksey M. Kulik
Affiliation: Institute of Mathematics, National Academy of Sciences of Ukraine, Tereshchenkivs’ka Street 3, 01601, Kyiv, Ukraine
Email: kulik@imath.kiev.ua

Keywords: Additive functional, local time, characteristic, $W$-measure, Markov approximation
Received by editor(s): February 12, 2007
Published electronically: August 4, 2009
Additional Notes: Supported by the Ministry of Education and Science of Ukraine, project GP/F13/0095
Article copyright: © Copyright 2009 American Mathematical Society