Difference approximation of the local times of multidimensional diffusions
Author:
Aleksey M. Kulik
Translated by:
S. Kvasko
Journal:
Theor. Probability and Math. Statist. 78 (2009), 97-114
MSC (2000):
Primary 60J55, 60J45, 60F17
DOI:
https://doi.org/10.1090/S0094-9000-09-00765-0
Published electronically:
August 4, 2009
MathSciNet review:
2446852
Full-text PDF Free Access
Abstract |
References |
Similar Articles |
Additional Information
Abstract: Sequences of additive functionals of difference approximations are considered for multidimensional uniformly nondegenerate diffusions. Sufficient conditions are obtained for the weak convergence of such sequences to a $W$-functional of the limit process. The class of $W$-functionals appearing as limits for such a problem can be described uniquely in terms of the corresponding $W$-measures $\mu$ as follows: \[ \lim _{\delta \downarrow 0}\sup _{x\in \mathbb {R}^m}\int _{\|y-x\|\leq \delta }w(\|y-x\|) \mu (dy)=0, \] where $w(r)=\begin {cases} \max (-\ln r, 1),& m=2,\\ r^{2-m},& m>2. \end {cases}$
References
- A. V. Skorokhod, Asimptoticheskie metody teorii stokhasticheskikh differentsial′nykh uravneniÄ, “Naukova Dumka”, Kiev, 1987 (Russian). MR 913305
- E. B. Dynkin, Markovskie protsessy, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1963 (Russian). MR 0193670
- A. V. Skorohod and N. P. Slobodenjuk, Predel′nye teoremy dlya sluchaÄ nykh bluzhdaniÄ, Izdat. “Naukova Dumka”, Kiev, 1970 (Russian). MR 0282419
- A. N. Borodin and I. A. Ibragimov, Limit theorems for functionals of random walks, Trudy Mat. Inst. Steklov. 195 (1994), no. Predel. Teoremy dlya Funktsional. ot SluchaÄn. Bluzh., 286 (Russian, with Russian summary); English transl., Proc. Steklov Inst. Math. 2(195) (1995), viii + 259. MR 1368394
- I. I. Gikhman, Some limit theorems on the number of intersections of a random function and the boundary of a given domain, Nuk. Zap. Kiev University 16 (1957), no. 10, 149–164. (Ukrainian)
- I. I. Gikhman, Asymptotic distributions of the number of intersections of a random function and the boundary of a given domain, Visnyk Kiev University, Ser. Astronom, Matem., Mekh. 1 (1958), no. 1, 25–46. (Ukrainian)
- N. I. Portenko, Integral equations and certain limit theorems for additive functionals of Markov processes, Teor. Verojatnost. i Primenen. 12 (1967), 551–559 (Russian, with English summary). MR 0221596
- A. N. Borodin, The asymptotic behavior of local times of recurrent random walks with finite variance, Teor. Veroyatnost. i Primenen. 26 (1981), no. 4, 769–783 (Russian, with English summary). MR 636771
- Edwin Perkins, Weak invariance principles for local time, Z. Wahrsch. Verw. Gebiete 60 (1982), no. 4, 437–451. MR 665738, DOI https://doi.org/10.1007/BF00535709
- A. S. Cherny, A. N. Shiryaev, and M. Yor, Limit behaviour of the “horizontal-vertical” random walk and some extensions of the Donsker-Prokhorov invariance principle, Teor. Veroyatnost. i Primenen. 47 (2002), no. 3, 498–517 (English, with Russian summary); English transl., Theory Probab. Appl. 47 (2003), no. 3, 377–394. MR 1975425, DOI https://doi.org/10.1137/S0040585X97979834
- Richard F. Bass and Davar Khoshnevisan, Local times on curves and uniform invariance principles, Probab. Theory Related Fields 92 (1992), no. 4, 465–492. MR 1169015, DOI https://doi.org/10.1007/BF01274264
- E. B. Dynkin, Self-intersection gauge for random walks and for Brownian motion, Ann. Probab. 16 (1988), no. 1, 1–57. MR 920254
- Valentin Konakov and Enno Mammen, Local limit theorems for transition densities of Markov chains converging to diffusions, Probab. Theory Related Fields 117 (2000), no. 4, 551–587. MR 1777133, DOI https://doi.org/10.1007/PL00008735
- V. Konakov, Small Time Asymptotics in Local Limit Theorems for Markov Chains Converging to Diffusions, arXiv:math. PR/0602429, 2006.
- Yu. N. Kartashov and A. M. Kulik, Weak convergence of additive functionals of a sequence of Markov chains, Theory Stoch. Process. 15(31) (2009), no. 1. (to appear)
- Alexey M. Kulik, Markov approximation of stable processes by random walks, Theory Stoch. Process. 12 (2006), no. 1-2, 87–93. MR 2316289
- A. S. Gibbs and F. E. Su, On choosing and bounding probability metrics, Internat. Statist. Review 70 (2001), 419–35.
- J. L. Doob, Stochastic processes, John Wiley & Sons, Inc., New York; Chapman & Hall, Limited, London, 1953. MR 0058896
- V. S. Vladimirov, Uravneniya matematicheskoÄ fiziki, Izdat. “Nauka”, Moscow, 1967 (Russian). MR 0239242
References
- A. V. Skorokhod, Asymptotic Methods in the Theory of Stochastic Differential Equations, Naukova Dumka, Kiev, 1987; English transl., AMS, Providence, 1992. MR 913305 (88m:60164); MR 1020057 (90i:60038)
- E. B. Dynkin, Markov Processes, Fizmatgiz, Moscow, 1963; English transl., Springer-Verlag, Berlin–Göttingen–Heidelberg, 1965. MR 0193670 (33:1886); MR 0193671 (33:1887)
- A. V. Skorokhod and N. P. Slobodenyuk, Limit Theorems for Random Walks, Naukova Dumka, Kiev, 1970. (Russian) MR 0282419 (43:8130)
- A. N. Borodin and I. A. Ibragimov, Limit Theorems for Functionals of Random Walks, Proceedings of Mathematical Institute of RAN, vol. 195, Nauka, Sankt Petersburg, 1994; English transl., AMS, Providence, RI, 1995. MR 1368394 (97j:60140)
- I. I. Gikhman, Some limit theorems on the number of intersections of a random function and the boundary of a given domain, Nuk. Zap. Kiev University 16 (1957), no. 10, 149–164. (Ukrainian)
- I. I. Gikhman, Asymptotic distributions of the number of intersections of a random function and the boundary of a given domain, Visnyk Kiev University, Ser. Astronom, Matem., Mekh. 1 (1958), no. 1, 25–46. (Ukrainian)
- N. I. Portenko, Integral equations and limit theorems for additive functionals of a Markov process, Teor. Veroyatnost. i Primenen. 12 (1967), no. 3, 551–558; English transl. in Theory Probab. Appl. 12 (1967), no. 3, 500–505. MR 0221596 (36:4648)
- A. N. Borodin, On the asymptotic behavior of local times of recurrent random walks with finite variance, Teor. Veroyatnost. i Primenen. 26 (1981), no. 4, 769–783; English transl. in Theory Probab. Appl. 26 (1981), no. 4, 758–772. MR 636771 (83a:60120)
- E. Perkins, Weak invariance principles for local time, Z. Wahrscheinlichkeitstheorie verw. Gebiete 60 (1982), 437–451. MR 665738 (83h:60080)
- A. S. Cherny, A. N. Shiryaev, and M. Yor, Limit behavior of the “horizontal-vertical” random walk and some extensions of the Donsker–Prokhorov invariance principle, Teor. Veroyatnost. i Primenen. 47 (2002), no. 3, 498–517; English transl. in Theory Probab. Appl. 47 (2003), no. 3, 377–394. MR 1975425 (2004b:60121)
- R. F. Bass and D. Khoshnevisan, Local times on curves and uniform invariance principles, Prob. Theory Related Fields 92 (1992), 465–492. MR 1169015 (93e:60161)
- E. B. Dynkin, Self-intersection gauge for random walks for Brownian motion, Ann. Probab. 16 (1988), 1–57. MR 920254 (89f:60053)
- V. Konakov and E. Mammen, Local limit theorems for transition densities of Markov chains converging to diffusions, Prob. Theory Related Fields 117 (2000), 551–587. MR 1777133 (2001j:60141)
- V. Konakov, Small Time Asymptotics in Local Limit Theorems for Markov Chains Converging to Diffusions, arXiv:math. PR/0602429, 2006.
- Yu. N. Kartashov and A. M. Kulik, Weak convergence of additive functionals of a sequence of Markov chains, Theory Stoch. Process. 15(31) (2009), no. 1. (to appear)
- A. M. Kulik, Markov approximation of stable processes by random walks, Theory Stoch. Proccess. 12(28) (2006), no. 1–2 87–93. MR 2316289 (2008j:60082)
- A. S. Gibbs and F. E. Su, On choosing and bounding probability metrics, Internat. Statist. Review 70 (2001), 419–35.
- J. L. Doob, Stochastic Processes, John Wiley, New York, 1953. MR 0058896 (15:445b)
- V. S. Vladimirov, Equations of Mathematical Physics, Nauka, Moscow, 1967; English transl., Marcel Dekker, New York, 1971. MR 0239242 (39:599); MR 0268497 (42:3394)
Similar Articles
Retrieve articles in Theory of Probability and Mathematical Statistics
with MSC (2000):
60J55,
60J45,
60F17
Retrieve articles in all journals
with MSC (2000):
60J55,
60J45,
60F17
Additional Information
Aleksey M. Kulik
Affiliation:
Institute of Mathematics, National Academy of Sciences of Ukraine, Tereshchenkivs’ka Street 3, 01601, Kyiv, Ukraine
Email:
kulik@imath.kiev.ua
Keywords:
Additive functional,
local time,
characteristic,
$W$-measure,
Markov approximation
Received by editor(s):
February 12, 2007
Published electronically:
August 4, 2009
Additional Notes:
Supported by the Ministry of Education and Science of Ukraine, project GP/F13/0095
Article copyright:
© Copyright 2009
American Mathematical Society