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Abstract. We consider an errors-in-variables nonlinear structural model where the
density of the response belongs to the exponential family. We estimate regression
parameters and the dispersion parameter as well as parameters of the hidden variable.
Following the modified quasi-likelihood method we construct a joint estimator that
has the minimal asymptotic covariance matrix in a wide class of estimators. The
polynomial and gamma models are studied in more detail.

1. Introduction

Let a relation between a response y and a random variable x be described by the
conditional mean and conditional variance:

(1) E(y|x) = m(x, β, α), V(y|x) = v(x, β, α, ϕ).

Here β is a column vector of parameters of the regression, α is the column vector of
nuisance parameters that determine the distribution of x, and where ϕ is the dispersion
parameter. The above models are called mean-variance models (see [1]). We want to
estimate β, α, and ϕ from observations (that is, from a sample of independent identically
distributed vectors (xi, yi), i = 1, . . . , n). In what follows the partial derivatives of
functions of several arguments are written with subscripts indicating the corresponding
arguments. The derivatives with respect to a vector argument are column vectors of
partial derivatives.

If α and ϕ are known, the quasi-likelihood estimator β̂Q of the parameter β is con-
structed as follows:

a) introduce the score function

(2) SQ(y, x, β) =
y −m

v
mβ,

where m and v are defined by (1),

b) the estimator β̂Q is defined as a measurable solution of the equation
n∑

i=1

SQ(yi, xi, β) = 0.
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The estimator β̂Q is consistent and asymptotically normal under natural regularity con-
ditions [2]. It is shown in [2, 3] that its asymptotic covariance matrix is minimal in the
class of all estimators generated by score functions that are unbiased and linear in y.

The quasi-likelihood method is extended in [4] to the case where the only known
parameter is ϕ. The corresponding score function is given by

SQ1(y, x;β, α, ϕ) =

(
(y −m)v−1mβ

(y −m)v−1mα + lα

)
,

where l is the logarithm of the density of x. The function SQ1 generates the estimators

(β̂t
Q1, α̂

t
Q1)

t that also have the asymptotic covariance matrix in the class of estimators
generated by unbiased and linear-in-y score functions. Here and in what follows the
symbol t means the transposition.

The case where all three parameters β, α, and ϕ are unknown is considered in the
paper [4]. Since the conditional mean does not depend on ϕ, while the conditional
variance does, one needs to estimate ϕ, too. For this reason, an additional component

(3) S
(ϕ)
Q1 = (y −m)2 − v or y2 −m2 − v

should be added to the score function SQ1. This leads to the estimator (β̃t
Q1, α̃

t
Q1, ϕ̃Q1)

t.
Its asymptotic covariance matrix is given by

Σ
(β,α,ϕ)
Q1 =

[
Σ(β,α) A
At σ2

(ϕ)

]
.

Here Σ(β,α) is the asymptotic covariance matrix of the estimator (β̃t
Q1, α̃

t
Q1)

t and σ2
(ϕ)

is the asymptotic variance of the estimator ϕ̃Q1. It turns out that Σ
(β,α) coincides with

the asymptotic covariance matrix of the estimator (β̂t
Q1, α̂

t
Q1)

t. This means that the
asymptotic effectiveness of the other estimators does not depend on whether or not ϕ is
known.

A question arises on how to extend the quasi-likelihood method to the case where the
parameters β, α, and ϕ are unknown and to obtain an optimal joint estimator in the
class of unbiased score functions that are quadratic with respect to y? This paper is
devoted to a solution of this problem.

The idea is to consider the mean-variance model for a vector response

Y =
(
y, (y −m)2

)t
.

This model requires not only the first two conditional moments of y given x but also
the third and fourth conditional moments. The moment functions (of x, β, α, and ϕ)
can be constructed explicitly in many cases. The mean-variance model (1) appears in a
natural way when considering the structural errors-in-variables regression models where
the response belongs to the exponential family of densities [2, 3, 4]. The moment functions
for such (nonlinear) models are expressed in terms of ϕ and derivatives of the structural
function C(η) (see Section 2).

The paper is organized as follows. The general errors-in-variables nonlinear regression
model is introduced in Section 2. The quasi-likelihood method is extended in two ways
to the case where β, α, and ϕ are unknown. We consider the class of quadratic-in-y
unbiased score functions and compare the estimators generated by these functions with
the quasi-likelihood estimators. The partial cases are discussed in Sections 4 and 5 for
the polynomial and gamma models. The appendices contain the proof of the lemma and
two theorems.
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2. General nonlinear regression model

Throughout the paper, the symbol E stands for the expectation of a random variable,
vector, or matrix. Let V denote the covariance function of a random vector. The
operator E is applied to the whole expression to the right of the symbol E. We assume
that EF (z, θ) = Eθ F (z, θ) where z is a vector of observations and θ is the true value
of the vector parameter determining the distribution of z. The convergence of random

variables in distribution is denoted by
d→.

Consider an errors-in-variables nonlinear regression model. Let ν be a σ-finite measure
on the Borel σ-algebra in R. A random variable y is observed. This random variable is
assumed to have the distribution density f(y|η) with respect to the measure ν, and the
density belongs to the exponential family:

(4) f(y|η) = exp

{
yη − C(η)

ϕ
+ c(y, ϕ)

}
.

The function C(·) is smooth enough, C ′′ > 0, and c(y, ϕ) is measurable and does not
depend on η. The parameter ϕ > 0 is called the dispersion parameter.

Assume that η = η(ξ, β), where ξ is a random scalar variable, β is a nonrandom
column vector of regression parameters, β ∈ R

k+1. As usual

β = (β0, β1, . . . , βk)
t,

where β0 is a free term (intercept). The random variable x = ξ + δ is observed where ξ
and δ are independent, and δ is a measurement error.

Let the random vectors (yi, ξi, δi) be independent and identically distributed for i =
1, . . . , n; ξi ∼ N (µ, σ2

ξ ) and δi ∼ N (0, σ2
δ ), where σ2

ξ and σ2
δ are positive numbers. The

variance σ2
δ is assumed to be known. These vectors are a realization of the model (4).

We have xi = ξi + δi ∼ N (µ, σ2), where σ2 = σ2
ξ + σ2

δ .

We consider the following two main cases: a) the parameters µ and σ are known, and
b) the parameters µ and σ are unknown. The combined vector of all unknown parameters
of the model is denoted by θ. In the first case, θ = (βt, ϕ)t, while

θ = (βt, µ, σ, ϕ)t

in the second case. For both cases, d := dim θ. Let θ′ be the vector constituted of the
components of θ where the parameter ϕ is missing. The logarithm of the density of x is
written up to a constant term as follows:

l(x, µ, σ) = − (x− µ)2

2σ2
− lnσ.

3. Estimators

We extend the quasi-likelihood method to the case of an unknown parameter ϕ and
construct two estimators of unknown parameters. Consider the conditional expectation
and variance of the response given x:

m(x, θ) = E[y|x], v(x, θ) = E
[
(y −m(x, θ))2

∣∣x] .
The components of the first score functions are

S
(θ′)
Q1 =

y −m

v
mθ′ + lθ′ , S

(ϕ)
Q1 = (y −m)2 − v

and the first score function can be written as follows:

(5) SQ1 =
(
S
(θ′)
Q1 , S

(ϕ)
Q1

)t

.
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The estimator θ̂Q1 =
(
(θ̂′Q1)

t, ϕ̂Q1

)t
is defined as a measurable solution of the following

system of equations:

(6)
n∑

i=1

SQ1(yi, xi, θ) = 0, θ ∈ Θ,

where Θ is an open set in R
d that contains the true value of the parameter θ. When

constructing the set Θ one should take into account that the true parameters are such
that ϕ > 0 and σ > 0.

It is proved in [4] for the case where ϕ is known that the estimator θ̂′Q1 has the
minimal asymptotic covariance matrix among all estimators constructed from unbiased
and linear-in-y score functions.

The conditional expectation m does not depend on ϕ, while the conditional variance v
does depend on ϕ. Thus the class of unbiased linear-in-y score functions is not adequate
to estimate the unknown parameter ϕ. It is natural to consider unbiased score functions
that are polynomials of the second order in y (cf. (3)), namely

SL = f(x, θ)y2 + g(x, θ)y + h(x, θ), ESL = 0,

where dim f, g, h = d, and to assume some regularity conditions sufficient for the con-
sistency and asymptotical normality of the estimator constructed with the help of the
function SL. The regularity conditions of this kind related to the theory of score equa-
tions [5] are discussed in [2].

Put

Y =

(
y

(y −m)2

)
,

u(x, θ) = u := E
[
(y −m)3

∣∣x] , w(x, θ) = w := E
[
(y −m)4

∣∣x] .
An unbiased score function SL that is a second order polynomial in y can be represented
as follows:

SL(y, x, θ) = G(x, θ) · Y −H(x, θ), ESL = 0,

where G(x, θ) is a d× 2 matrix and dimH(x, θ) = d.
In addition to the assumption that the score function is unbiased, one should require

that the limit equation have a unique solution. To assure the uniqueness we consider the
limit equation

(7) Eθ0 SL(y, x, θ) = 0, θ ∈ Θ.

Here θ0 is a true value of the parameter θ. We assume that the family of parameters Θ
is a convex compact set. If the matrix Φ(θ, θ0) := Eθ0 SLθ(y, x, θ) is nondegenerate for
all θ ∈ Θ, then equation (7) has a unique solution θ = θ0. Usually we need the property
that θ0 is an interior point of Θ. Since θ0 is unknown, it is natural to assume that

(8) the matrix Φ(θ, θ1) is nondegenerate for all θ ∈ Θ, θ1 ∈ Θ0,

to achieve the uniqueness of the solution of equation (7), where Θ0 is the set of all
interior points of Θ. Note that the matrix Φ(θ, θ) is nondegenerate for all θ ∈ Θ (in
particular, this matrix is negative definite for quasi-likelihood estimators). Since the
matrix-valued function Φ is continuous in all its arguments, condition (8) holds if θ
belongs to a sufficiently small neighborhood of a fixed point θ1 ∈ Θ0.

For particular models, one needs to keep condition (8) and control the size of the
set Θ. In what follows we assume that condition (8) is satisfied for all score functions
SL(y, x, θ) considered in the paper.
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To define a new estimator consider the conditional expectation of the random vector Y
and its conditional covariance matrix given x:

M(x, θ) = M := E[Y |x] =
(
m
v

)
, V (x, θ) = V := V[Y |x] =

(
v u
u w − v2

)
.

We assume that the matrix V (x, θ) is positive definite for all x and θ. Define a new score
function by

(9) SQ2 = M t
θ · V −1 · (Y −M) + lθ.

The estimator θ̂Q2 =
(
(θ̂′Q2)

t, ϕ̂Q2

)t
is defined as a measurable solution of the system of

equations

(10)

n∑
i=1

SQ2(yi, xi, θ) = 0, θ ∈ Θ.

Under some regularity conditions, similar to those in Theorem 4.1 of [2], the systems
(6) and (10) possess solutions eventually (that is, with probability one as n ≥ n0(ω)); if

one of the systems has no solution, then we take θ̂ = θ0 as the estimator of θ, where θ0
is a fixed point of Θ.

The following generalization of the main theorem of the paper [4] to the case of a
vector response Y can be proved similarly to [4].

Theorem 3.1. Let ΣL and ΣQ2 denote the asymptotic covariance matrices of the esti-
mators generated by the score functions SL and SQ2, respectively. Then:

a) ΣL ≥ ΣQ2; moreover, if ΣL = ΣQ2 for all θ, then θ̂L = θ̂Q2 almost surely.
b) rank(ΣL − ΣQ2) + d is equal to the rank of the system of random vectors of the

Hilbert space L2(Ω,F ,P;R3):

rank

⎡⎣⎛⎝ (GV )i1
(GV )i2

(GM −H)i

⎞⎠ ,

⎛⎝(M1)θi
(M2)θi
lθi

⎞⎠ , i = 1, . . . , d

⎤⎦ .

The asymptotic covariance matrices of the estimators generated by the score func-
tions SQ1 and SQ2 can be compared with the help of Theorem 3.1. Indeed, the score
function SQ1 belongs to the class of functions that are linear in Y :

SQ1 = G1 · Y −H1, G1 =

(
v−1mθ′ 0

0 1

)
, H1 =

(
v−1mmθ′ − lθ′

v

)
.

Corollary 3.1. Let the parameters µ and σ be known and θ = (βt, ϕ)t. Then

rank (ΣQ1 − ΣQ2)

is equal to

rank

[(
0

v−1umβi
− vβi

)
,

(
mβi

vβi

)
, i = 0, . . . , k,

(
u

w − v2

)
,

(
0
vϕ

)]
− d.

Corollary 3.2. Let the parameters µ and σ be unknown and θ = (βt, µ, σ, ϕ)t. Then

rank (ΣQ1 − ΣQ2)

= rank

[(
0

v−1umβi
− vβi

)
,

(
mβi

vβi

)
, i = 0, . . . , k,

(
0

v−1mµu− vµ

)
,

(
0

v−1mσu− vσ

)
,

(
0
vϕ

)
,

(
u

w − v2

)]
− (d− 2).
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In the rest of the paper we consider particular cases of model (4). These models
are such that the regularity conditions, similar to [2], hold, and this implies that the

estimators θ̂Q1 and θ̂Q2 are asymptotically normal.

4. Polynomial model

One observes the random variables

(11)

{
y = β0 + β1ξ + · · ·+ βkξ

k + ε,

x = ξ + δ,

such that ξ ∼ N(µ, σ2
ξ ), δ ∼ N(0, σ2

δ ), and ε ∼ N(0, ϕ). We assume that the random
variables ξ, δ, ε are jointly independent and that all their variances are positive. Put

σ2 = σ2
ξ + σ2

δ , K = 1− σ2
δσ

−2,

and τ2 = σ2
δK. Model (11) is a particular case of (4) for C(η) = η2/2,

η(ξ, β) = β0 + β1ξ + · · ·+ βkξ
k.

The polynomial model is such that

m(x, β) = βtr, v(x, β) = βt
(
R− rrt

)
β + ϕ,

where the components of the vector r = (r0, r1, . . . , rk)
t are such that ri(x) = E[ξi|x]

and R = (ri+j , i, j = 0, . . . , k) (see [7]).
The following result helps to make the system of score equations simpler in the case

of unknown nuisance parameters µ and σ.

Lemma 4.1. There is a linear relation between the derivatives of m and v, namely

(12) mµ = (1−K)βtDmβ , vµ = (1−K)βtDvβ .

All the elements dij, i, j = 0, . . . , k, of the matrix D are zero except for di,i−1 = i,
i = 1, . . . , k.

Consider a linear model, that is, model (11) for k = 1. Then

m = β0 + β1(Kx+ (1−K)µ), v = ϕ+ β2
1τ

2, u = 0, w = 3v2.

It is easy to see that SQ2 = H(θ)SQ1, where the matrix H is nonrandom, nondegenerate,

and depends on θ only. Thus the estimators θ̂Q1 and θ̂Q2 coincide almost surely. This
implies that the estimator obtained with the help of the score function SQ1 has a maximal
asymptotic effectiveness in the class of unbiased quadratic polynomials of y.

Theorem 4.1. Let the true value in the model (11) be such that βk �= 0 and let k ≥ 2.
Then

a) ΣQ1 > ΣQ2 if the parameters µ and σ are known and θ = (βt, ϕ);
b) µ̂Q1 = µ̂Q2 = x if the parameters µ and σ are unknown and θ = (βt, µ, σ, ϕ)t;

moreover

d− 2 ≤ rank
(
Σ

(β,σ,ϕ)
Q1 − Σ

(β,σ,ϕ)
Q2

)
≤ d− 1.

In particular, if k = 2 and d = 6, then

rank
(
Σ

(β,σ,ϕ)
Q1 − Σ

(β,σ,ϕ)
Q2

)
= 4.

Here Σ(β,σ,ϕ) denotes the joint asymptotic covariance matrix of the estimators

β̂, σ̂, and ϕ̂.
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5. Gamma model

Let

(13) f(y|η) = 1

Γ(b)

(
b

a

)b

yb−1e−yb/a, a = exp{β0 + β1ξ}, b = ϕ−1,

where β = (β0, β1)
t. We observe y and let x = ξ + δ. The assumptions are ξ ∼ N (0, σ2

ξ )

and δ ∼ N (0, σ2
δ ). We also assume that both variances are positive and the random

variables ξ and δ are independent.
The gamma model is a particular case of (4) for η(ξ, β) = −a−1 and C(η) = − ln(−η).

Note that (13) is a generalized linear model.
Put c = exp{β2

1τ
2}. Then

m(x, θ) = exp
{
β0 + β1µ1(x) + β2

1τ
2/2

}
, v(x, θ) = (c(ϕ+ 1)− 1)m2,

u(x, θ) =
(
c3(1 + 2ϕ)(1 + ϕ)− 3c(ϕ+ 1) + 2

)
m3,

w(x, θ) =
(
c6(1 + 3ϕ)(1 + 2ϕ)(1 + ϕ)− 4c3(1 + 2ϕ)(1 + ϕ) + 6c(ϕ+ 1)− 3

)
m4.

Since c ≥ 1,

c3(1 + 2ϕ)(1 + ϕ)− 3c(ϕ+ 1) + 2 ≥ 2ϕ2 > 0,

whence u(x, θ) > 0 for all x and θ. Similarly, w − v2 > 0 for all x and θ.
Now we evaluate the derivatives of the functions m and v:

mβ0
= m, mβ1

=
(
µ1(x) + β1τ

2
)
m,

vβ0
= 2v, vβ1

= 2
(
µ1(x) + β1τ

2
)
v + 2cβ1τ

2(ϕ+ 1)m2, vϕ = cm2.

Theorem 5.1. Let the true value of the parameter in the model (13) be such that β1 �= 0.
Then

a) rank(ΣQ1 − ΣQ2) = 2 if the parameters µ and σ are known and θ = (β0, β1, ϕ);
b) µ̂Q1 = µ̂Q2 = x if the parameters µ and σ are unknown and θ = (β0, β1, µ, σ, ϕ)

t;

moreover rank
(
Σ

(β,σ,ϕ)
Q1 − Σ

(β,σ,ϕ)
Q2

)
= 2.

6. Concluding remarks

We considered two quasi-likelihood estimators in the errors-in-variables linear struc-
tural regression model with the response belonging to the exponential family of densities.

The second (new) estimator has a smaller asymptotic covariance matrix for the poly-
nomial model whose degree is greater than one if the parameters of the distribution of

the independent variable are known. This means that the estimator θ̂Q2 has a better

asymptotic effectiveness than another estimator θ̂Q1.
We showed that the difference between the asymptotic covariance matrices is nonneg-

ative definite and nonzero if the nuisance parameters µ and σ are unknown (this means

that the estimator θ̂Q2 is more effective in some directions than the estimator θ̂Q1 is).
The difference of matrices is a nonnegative definite matrix of rank 2 in the gamma

model for both cases of known or unknown parameters µ and σ. Since dim θ ≥ 3, the

estimator θ̂Q2 is more effective than θ̂Q1 in some directions only in the case of the gamma
model. Both estimators of the unknown parameter µ coincide with the empirical mean
value of the variable x, which is a characterizing feature of generalized linear models.

The question on the rank of the difference of asymptotic covariance matrices is still
open for the polynomial model of degree k ≥ 3 if the nuisance parameters are unknown.
This question will be discussed elsewhere.
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Appendix A. Proof of Lemma 4.1

The distribution of the random variable ξ|x is normal with parameters Kx+(1−K)µ
and τ2. Then ri(x) = E[(Kx+ (1−K)µ+ τγ)i|x] for a normal random variable γ that
is independent of x. Thus

∂ri(x)

∂µ
= i(1−K)E

[
(Kx+ (1−K)µ+ τγ)i−1

∣∣x] = i(1−K)ri−1(x).

The vector r and matrix R are such that

rµ = (1−K)Dr, Rµ = (1−K)(DR+RDt).

Now the first statement of the lemma follows:

mµ = βtrµ = βt(1−K)Dr = (1−K)βtDmβ .

For the proof of the second equality, consider two quadratic forms

(1−K)βtDvβ = (1−K)βt2D
(
R− rrt

)
β,

vµ = (1−K)βt
(
DR+RDt −Drrt − rrtDt

)
β.

The matrices of both forms coincide and they are equal to the matrix

(1−K)
(
D

(
R − rrt

)
+
(
R − rrt

)
Dt

)
.

Appendix B. Proof of Theorem 4.1

Let both parameters µ and σ2 be known and θ = (βt, ϕ)t. We assume that the true
value of the parameter βk is nonzero.

Then vϕ = 1. By Corollary 3.1, rank(ΣQ1 − ΣQ2) + d is equal to

(14) rank

[(
0

v−1umβi
− vβi

)
,

(
mβi

vβi

)
, i = 0, . . . , k,

(
u

w − v2

)
,

(
0
1

)]
.

Let k = 2. Then deg u = 2, degmβ = (0, 1, 2)t, u = f tmβ, deg f tvβ = 2, and
deg(w − v2 − f tvβ) = 4. Thus

rank(ΣQ1 − ΣQ2) = rank[umβi
− vvβi

, i = 0, 1, 2, pv, v]− 1, p = w − v2 − f tvβ .

The degrees of the polynomials are such that deg u = 2,

deg(umβ1
− vvβ1

) = 3, deg(umβ2
− vvβ2

) = 4, deg pv = 6,

and deg v = 2. It is easy to see that

u+ 2τ2β2

(
3ϕ+ 2τ4β2

2

)
= 6β2τ

2v.

Hence u and v are linearly independent. The family of polynomials is of rank 5 and
ΣQ2 < ΣQ1.

Let k = 3. Then deg u = 3k−4 > k and {u,mβi
, i = 0, . . . , 3} are linearly independent.

One can exclude the first row in the system of random vectors (14):

rank(ΣQ1 − ΣQ2) = rank[umβi
− vvβi

, i = 0, . . . , 3, v].

The degrees of the polynomials are (5, 6, 7, 7, 4). One can show that, for some constants
c1, c2, c3, and c4, the polynomial

p = umβ3
− vvβ3

−
(
c0u+ c1(umβ1

− vvβ1
) + c2(umβ2

− vvβ2
) + c4v

)
is nonzero if β3 �= 0. Thus rank(ΣQ1 − ΣQ2) = 5 and ΣQ2 < ΣQ1.

Let k ≥ 4. Then {u,mβi
, i = 0, . . . , k} are linearly independent, since

deg u = 3k − 4 > k.
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Hence deg(umβi
− vvβi

) = 3k + i− 4, i = 0, . . . , k, deg v = 2k − 2, and

3k + i− 4 ≥ 3k − 4 > 2k − 2.

Thus {v, umβi
− vvβi

, i = 0, . . . , k} are linearly independent and ΣQ2 < ΣQ1.
Statement a) is proved.
Consider the case where the parameters µ and σ2 are unknown and θ = (βt, µ, σ, ϕ)t.

As above, we assume that the true value is nonzero: βk �= 0.
Lemma 4.1 implies that the equation for the estimator of µ is of the same form for

both score functions:

(15)
n∑

i=1

(xi − µ) = 0, µ̂Q2 = µ̂Q1 = x.

Thus the estimators of µ coincide and the corresponding diagonal entry of the difference
of the asymptotic covariance matrices is equal to zero. Since the difference ΣQ1 − ΣQ2

is a symmetric nonnegative definite matrix, the corresponding row and column are zero.
Thus we can evaluate

rank (ΣQ1 − ΣQ2) = rank
(
Σ

(β,σ,ϕ)
Q1 − Σ

(β,σ,ϕ)
Q2

)
by using Corollary 3.2.

We derive from equalities (12) that

mµu− vµv = (1−K)βtD(mβu− vβv).

Then we exclude the vector (0, v−1mµu− vµ)
t from the system of vectors:

(16)

[(
0

v−1umβi
− vβi

)
,

(
mβi

vβi

)
, i = 0, . . . , k,

(
0

v−1mσu− vσ

)
,

(
0
v

)
,

(
u

w − v2

)]
.

We consider the quadratic model (that is, we consider the case of k = 2). Then
u = f tmβ and system (16) can be rewritten as follows:

rank(ΣQ1 − ΣQ2) = rank
[
mβi

u− vβi
v, i = 0, 1, 2, mσu− vσv, v, pv

]
− 1,

where p = w−v2−f tvβ . The degrees of the polynomials in the system are (2, 3, 4, 3, 2, 6).
Thus mσu + vσv is a linear combination of components of the vectors mβu − vβv and
v = c1u+ c2, where c2 is nonzero if β2 �= 0. After nondegenerate linear transformations,
the degrees of the polynomials become equal to (2, 3, 4, 0, 6). Therefore

rank(ΣQ1 − ΣQ2) = 4,

and the rank of the difference of the matrices equals 6.
If k ≥ 3, then the polynomials {u,mβi

, i = 0, . . . , k} are linearly independent, since
deg u = 3k − 4 > k and degmβi

= i ≤ k. Then (16) implies that

rank(ΣQ1 − ΣQ2) = rank[mβi
u− vβi

v, i = 0, . . . , k, mσu− vσv, v].

The polynomials

{mβi
u− vβi

v, i = 0, . . . , k − 1, mσu− vσv, v}
have different degrees, deg(mσu− vσv) = deg(mβk

u− vβk
v), whence

d− 2 ≤ rank(ΣQ1 − ΣQ2) ≤ d− 1.

Indeed, the leading terms of the polynomials are

mβi
u− vβi

v = (3k − 3− 2i)k3β3
kτ

4K3k+i−4x3k+i−4 + · · · ,

mσu− vσv = (k − 2)k4β4
kτ

2 ∂τ
2

∂σ
K4k−4x4k−4 + · · · ,

v = k2β2
kτ

2K2k−2x2k−2 + · · · .
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We see that 3k − 3− 2i > k − 1 > 0 and 2k − 2 < 3k + i− 4 < 4k − 4 if 0 ≤ i ≤ k − 1.
Therefore the polynomials are of different degrees, indeed. The statement b) is proved.

Appendix C. Proof of Theorem 5.1

We apply Corollary 3.1. The functions {mβ0
,mβ1

, u} are linearly independent and
thus the formula for the rank is simpler:

rank(ΣQ1 − ΣQ2) = rank{umβ0
− vvβ0

, umβ1
− vvβ1

, vvϕ}.
The functions umβ0

− vvβ0
and vvϕ are proportional to m4, while the third function is

expressed in terms of xm4 and m4:

umβ1
− vvβ1

= cK(ϕ+ 1)
(
c2(2ϕ+ 1)− 2c(ϕ+ 1) + 1

)
x ·m4 + const ·m4.

If β1 �= 0, then c2(2ϕ+ 1)− 2c(ϕ+ 1) + 1 > 0. The rank of this family is 2.
Let both parameters µ and σ be unknown and θ = (β0, β1, µ, σ, ϕ)

t. Then

mµ = β1(1−K)mβ0
, vµ = β1(1−K)vβ0

.

As in the proof of Theorem 4.1, we obtain equation (15) for the estimator of µ for both
score functions, whence µ̂Q2 = µ̂Q1 = x. As above we make sure that

rank (ΣQ1 − ΣQ2) = rank
(
Σ

(β,σ,ϕ)
Q1 − Σ

(β,σ,ϕ)
Q2

)
.

Corollary 3.2 implies that

rank
(
Σ

(β,σ,ϕ)
Q1 − Σ

(β,σ,ϕ)
Q2

)
= rank{mβ1

u− vβ1
v,mσu− vσv, vϕv}.

If β1 �= 0, the rank of the latter family is 2, since

mβ1
u− vβ1

v = c1xm
4 + c2m

4, mσu− vσv = c3xm
4 + c4m

4, vϕv = c5m
4.
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