Skip to Main Content
Remote Access Theory of Probability and Mathematical Statistics

Theory of Probability and Mathematical Statistics

ISSN 1547-7363(online) ISSN 0094-9000(print)

 
 

 

An estimate for the mean error probability of a Bayesian criterion for testing hypotheses in the problem of cryptanalysis of a combined gamma generator with nonuniform noise


Authors: A. M. Oleksiĭchuk and R. V. Proskurovs’kiĭ
Translated by: S. Kvasko
Journal: Theor. Probability and Math. Statist. 78 (2009), 167-174
MSC (2000): Primary 94A60; Secondary 94B70
DOI: https://doi.org/10.1090/S0094-9000-09-00770-4
Published electronically: August 4, 2009
MathSciNet review: 2446857
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A probability model for a combined gamma generator with nonuniform noise in a resynchronization mode is studied. We consider the problem of testing hypotheses about the distribution of a random binary vector $X^{(0)}$ (the state of a combined gamma generator) by using a sampled binary sequence whose signs depend on $X^{(0)}$ in a specified way and on certain other random parameters. We obtain a nonasymptotic upper bound for the mean error probability of a Bayesian criterion for testing the hypotheses mentioned above.


References [Enhancements On Off] (What's this?)

References
  • Patrik Ekdahl and Thomas Johansson, Another attack on A5/1, IEEE Trans. Inform. Theory 49 (2003), no. 1, 284–289. MR 1966707, DOI https://doi.org/10.1109/TIT.2002.806129
  • A. N. Alekseĭchuk and R. V. Proskurovskiĭ, A lower bound for the probability of distinguishing the inner states of a clock-controlled combiner, Pravove, Normatyvne ta Metrologychne Zabezpechennya Systemy Zahystu Informacii v Ukraine 2(13) (2006), 159–169. (Russian)
  • Frederik Armknecht, Joseph Lano, and Bart Preneel, Extending the resynchronization attack, Selected areas in cryptography, Lecture Notes in Comput. Sci., vol. 3357, Springer, Berlin, 2005, pp. 19–38. MR 2180666, DOI https://doi.org/10.1007/978-3-540-30564-4_2
  • A. A. Borovkov, Matematicheskaya statistika, “Nauka”, Moscow, 1984 (Russian). Otsenka parametrov. Proverka gipotez. [Estimation of parameters. Testing of hypotheses]. MR 782295
  • O. A. Logachëv, A. A. Sal′nikov, and V. V. Yashchenko, Bulevy funktsii v teorii kodirovaniya i kriptologii, Informatsionnaya Bezopastnost′: Kriptografiya. [Information Security: Cryptography], Moskovskiĭ Tsentr Nepreryvnogo Matematicheskogo Obrazovaniya, Moscow, 2004 (Russian). With a foreword by V. A. Sadovnichiĭ. MR 2078186
  • Wassily Hoeffding, Probability inequalities for sums of bounded random variables, J. Amer. Statist. Assoc. 58 (1963), 13–30. MR 144363
  • Imre Csiszár and János Körner, Information theory, Probability and Mathematical Statistics, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. Coding theorems for discrete memoryless systems. MR 666545

Similar Articles

Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2000): 94A60, 94B70

Retrieve articles in all journals with MSC (2000): 94A60, 94B70


Additional Information

A. M. Oleksiĭchuk
Affiliation: Institute of Special Communication and Protection of Information, National Technical University of Ukraine KPI, Moskovs’ka Street 45/1, Kyiv 01011, Ukraine
Email: alex-crypto@mail.ru

R. V. Proskurovs’kiĭ
Affiliation: Institute of Special Communication and Protection of Information, National Technical University of Ukraine KPI, Moskovs’ka Street 45/1, Kyiv 01011, Ukraine
Email: roman-crypto@mail.ru

Keywords: Statistical methods of cryptanalysis, test of hypotheses
Received by editor(s): December 4, 2006
Published electronically: August 4, 2009
Article copyright: © Copyright 2009 American Mathematical Society