Conditions for the existence and smoothness of the distribution density of the Ornstein–Uhlenbeck process with Lévy noise
Authors:
S. V. Bodnarchuk and O. M. Kulyk
Translated by:
S. Kvasko
Journal:
Theor. Probability and Math. Statist. 79 (2009), 23-38
MSC (2000):
Primary 60J75, 60E99, 60H10
DOI:
https://doi.org/10.1090/S0094-9000-09-00778-9
Published electronically:
December 29, 2009
MathSciNet review:
2494533
Full-text PDF Free Access
Abstract |
References |
Similar Articles |
Additional Information
Abstract: Some sufficient conditions are found for the distribution of the Ornstein–Uhlenbeck process with Lévy noise to be absolutely continuous or to have a smooth density. These conditions are necessary for one-dimensional processes with a nondegenerate drift coefficient. We also give a multidimensional analog of the condition that the drift parameter is nondegenerate.
References
- P. Imkeller and I. Pavlyukevich, First exit times of SDEs driven by stable Lévy processes, Stochastic Process. Appl. 116 (2006), no. 4, 611–642. MR 2205118, DOI https://doi.org/10.1016/j.spa.2005.11.006
- Rama Cont and Peter Tankov, Financial modelling with jump processes, Chapman & Hall/CRC Financial Mathematics Series, Chapman & Hall/CRC, Boca Raton, FL, 2004. MR 2042661
- H. Geman, Pure jump Lévy processes for asset price modelling, J. Banking and Finance 26 (2002), no. 7, 1297–1316.
- A. M. Kulik, Exponential ergodicity of the solutions to SDE’s with a jump noise, Stoch. Proc. and Appl. (2008), doi:10.1016/j.spa.2008.02.006.
- Jean-Michel Bismut, Calcul des variations stochastique et processus de sauts, Z. Wahrsch. Verw. Gebiete 63 (1983), no. 2, 147–235 (French, with English summary). MR 701527, DOI https://doi.org/10.1007/BF00538963
- Klaus Bichteler, Jean-Bernard Gravereaux, and Jean Jacod, Malliavin calculus for processes with jumps, Stochastics Monographs, vol. 2, Gordon and Breach Science Publishers, New York, 1987. MR 1008471
- Yu. A. Davydov and M. A. Lifshits, The fibering method in some probability problems, Probability theory. Mathematical statistics. Theoretical cybernetics, Vol. 22, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1984, pp. 61–157, 204 (Russian). MR 778385
- Yu. A. Davydov, M. A. Lifshits, and N. V. Smorodina, Lokal′nye svoĭ stva raspredeleniĭ stokhasticheskikh funktsionalov, Teoriya Veroyatnosteĭ i Matematicheskaya Statistika [Probability Theory and Mathematical Statistics], vol. 46, Fizmatlit “Nauka”, Moscow, 1995 (Russian, with Russian summary). MR 1450402
- Takashi Komatsu and Atsushi Takeuchi, On the smoothness of PDF of solutions to SDE of jump type, Int. J. Differ. Equ. Appl. 2 (2001), no. 2, 141–197. MR 1930241
- Yasushi Ishikawa and Hiroshi Kunita, Malliavin calculus on the Wiener-Poisson space and its application to canonical SDE with jumps, Stochastic Process. Appl. 116 (2006), no. 12, 1743–1769. MR 2307057, DOI https://doi.org/10.1016/j.spa.2006.04.013
- Jean Picard, On the existence of smooth densities for jump processes, Probab. Theory Related Fields 105 (1996), no. 4, 481–511. MR 1402654, DOI https://doi.org/10.1007/BF01191910
- O. M. Kulik, Malliavin calculus for Lévy processes with arbitrary Lévy measures, Teor. Ĭmovīr. Mat. Stat. 72 (2005), 67–83 (Ukrainian, with Ukrainian summary); English transl., Theory Probab. Math. Statist. 72 (2006), 75–92. MR 2168138, DOI https://doi.org/10.1090/S0094-9000-06-00666-1
- A. M. Kulik, On a regularity of distribution for solution of SDE of a jump type with arbitrary Levy measure of the noise, Ukraïn. Mat. Zh. 57 (2005), no. 9, 1261–1283 (English, with English and Ukrainian summaries); English transl., Ukrainian Math. J. 57 (2005), no. 9, 1477–1501. MR 2216045, DOI https://doi.org/10.1007/s11253-006-0008-6
- Ivan Nourdin and Thomas Simon, On the absolute continuity of Lévy processes with drift, Ann. Probab. 34 (2006), no. 3, 1035–1051. MR 2243878, DOI https://doi.org/10.1214/009117905000000620
- A. V. Skorokhod, Sluchaĭ nye protsessy s nezavisimymi prirashcheniyami, 2nd ed., Teoriya Veroyatnosteĭ i Matematicheskaya Statistika. [Probability Theory and Mathematical Statistics], “Nauka”, Moscow, 1986 (Russian). MR 860563
- Ken-iti Sato, Absolute continuity of multivariate distributions of class $L$, J. Multivariate Anal. 12 (1982), no. 1, 89–94. MR 650931, DOI https://doi.org/10.1016/0047-259X%2882%2990085-9
- Olav Kallenberg, Splitting at backward times in regenerative sets, Ann. Probab. 9 (1981), no. 5, 781–799. MR 628873
- M. Yamazato, Absolute continuity of transition probabilities of multidimensional processes with stationary independent increments, Teor. Veroyatnost. i Primenen. 39 (1994), no. 2, 422–429 (English, with Russian summary); English transl., Theory Probab. Appl. 39 (1994), no. 2, 347–354 (1995). MR 1404692, DOI https://doi.org/10.1137/1139024
- A. M. Kulik, Absolute continuity and convergence in variation for distributions of a functionals of Poisson point measure, arXiv:0803.2389v1, 2008.
- Giuseppe Da Prato and Jerzy Zabczyk, Stochastic equations in infinite dimensions, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1992. MR 1207136
- Enrico Priola and Jerzy Zabczyk, Densities for Ornstein-Uhlenbeck processes with jumps, Bull. Lond. Math. Soc. 41 (2009), no. 1, 41–50. MR 2481987, DOI https://doi.org/10.1112/blms/bdn099
- V. S. Vladimirov, Obobshchennye funktsii v matematicheskoĭ fizike, Izdat. “Nauka”, Moscow, 1976 (Russian). Seriya Sovremennye Fiziko-Tekhnicheskie Problemy. [Current Problems in Physics and Technology Series]. MR 0450966
References
- P. Imkeller and I. Pavljukevich, First exit times of SDE’s driven by stable Lévy processes, Stoch. Proc. Appl. 116 (2006), no. 4, 611–642. MR 2205118 (2007e:60046)
- R. Cont and P. Tankov, Financial Modelling with Jump Processes, CRC Press, Boca Raton, FL, 2004. MR 2042661 (2004m:91004)
- H. Geman, Pure jump Lévy processes for asset price modelling, J. Banking and Finance 26 (2002), no. 7, 1297–1316.
- A. M. Kulik, Exponential ergodicity of the solutions to SDE’s with a jump noise, Stoch. Proc. and Appl. (2008), doi:10.1016/j.spa.2008.02.006.
- J. M. Bismut, Calcul des variations stochastiques et processus de sauts, Z. Wahrsch. Verw. Geb. 63 (1983), no. 2, 147–235. MR 701527 (85a:60077)
- K. Bichteler, J.-B. Gravereaux, and J. Jacod, Malliavin Calculus for Processes with Jumps, Gordon and Breach, New York, 1987. MR 1008471 (90h:60056)
- Yu. A. Davydov and M. A. Lifshits, The fibering method in some probability problems, Probability Theory. Mathematical Statistics. Theoretical Cybernetics, Itogi Nauki i Tekhniki, vol. 22, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1984, pp. 61–157. (Russian) MR 778385 (86d:60047)
- Yu. A. Davydov, M. A. Lifshits, and N. V. Smorodina, Local Properties of Distributions of Stochastic Functionals, Nauka, Moscow, 1995; English transl., Translations of Mathematical Monographs, vol. 173, American Mathematical Society, Providence, RI, 1998. MR 1450402 (98k:60053a)
- T. Komatsu and A. Takeuchi, On the smoothness of PDF of solutions to SDE of jump type, Int. Jour. Diff. Eq. Appl. 2 (2001), no. 2, 141–197. MR 1930241 (2003i:60096)
- Y. Ishikawa and H. Kunita, Malliavin calculus on the Wiener-Poisson space and its application to canonical SDE with jumps, Stoch. Proc. Appl. 116 (2006), no. 12, 1743–1769. MR 2307057 (2008a:60142)
- J. Picard, On the existence of smooth densities for jump processes, Prob. Theory Related Fields 105 (1996), no. 4, 481–511. MR 1402654 (97h:60056)
- O. M. Kulik, Malliavin calculus for Lévy processes with arbitrary Lévy measures, Teor. Imovir. Mat. Stat. 72 (2005), 67–83; English transl. in Theory Probab. Math. Statist. 72 (2006), 75–92. MR 2168138 (2006e:60076)
- A. M. Kulik, On a regularity of distribution for solution of SDE of a jump type with arbitrary Lévy measure of the noise, Ukrain. Mat. Zh. 57 (2005), no. 9, 1261–1283; English transl. in Ukrainian Math. J. 57 (2005), no. 9, 1477–1501. MR 2216045 (2006k:60103)
- I. Nourdin and T. Simon, On the absolute continuity of Lévy processes with drift, Ann. Prob. 34 (2006), no. 3, 1035–1051. MR 2243878 (2007j:60073)
- A. V. Skorokhod, Random Processes with Independent Increments, Nauka, Moscow, 1964; English transl. from the second (1986) Russian edition, Kluwer Academic Publishers Group, Dordrecht, 1991. MR 860563 (88b:60171)
- K. I. Sato, Absolute continuity of multivariate distributions of class $L$, Jour. Multivar. Anal. 12 (1982), 89–94. MR 650931 (83f:60032)
- O. Kallenberg, Splitting at backward times in regenerative sets, Ann. Prob. 9 (1981), 781–799. MR 628873 (84h:60103)
- M. Yamazato, Absolute continuity of transition probabilities of multidimensional processes with stationary independent increments, Theory Probab. Appl. 39 (1994), no. 2, 347–354. MR 1404692 (97e:60126)
- A. M. Kulik, Absolute continuity and convergence in variation for distributions of a functionals of Poisson point measure, arXiv:0803.2389v1, 2008.
- G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, 1992. MR 1207136 (95g:60073)
- E. Priola and J. Zabczyk, Densities for Ornstein–Uhlenbeck processes with jumps, arXiv:0708.1084v2, 2007. MR 2481987
- V. S. Vladimirov, Generalized Functions in Mathematical Physics, Nauka, Moscow, 1976; English transl. the second (1979) Russian edition, Mir, Moscow, 1979. MR 0450966 (56:9256); MR 0564116 (80j:46062b)
Similar Articles
Retrieve articles in Theory of Probability and Mathematical Statistics
with MSC (2000):
60J75,
60E99,
60H10
Retrieve articles in all journals
with MSC (2000):
60J75,
60E99,
60H10
Additional Information
S. V. Bodnarchuk
Affiliation:
National Taras Shevchenko University, Academician Glushkov Avenue 6, Kyiv 03127, Ukraine
Email:
sem_bodn@ukr.net
O. M. Kulyk
Affiliation:
Institute of Mathematics, National Academy of Sciences of Ukraine, Tereshchenkivs’ka Street 3, Kyiv 01601, Ukraine
Email:
kulik@imath.kiev.ua
Keywords:
Linear stochastic differential equation,
Lévy process,
distribution density
Received by editor(s):
May 19, 2008
Published electronically:
December 29, 2009
Additional Notes:
Supported by the Ministry of Education and Science of Ukraine, project GP/F26/0106
Article copyright:
© Copyright 2009
American Mathematical Society