Asymptotic normality of $L_p$-estimators in nonlinear regression models with weak dependence
Authors:
O. V. Ivanov and I. V. Orlovs’kiĭ
Translated by:
Oleg Klesov
Journal:
Theor. Probability and Math. Statist. 79 (2009), 57-72
MSC (2000):
Primary 62J02; Secondary 62J99
DOI:
https://doi.org/10.1090/S0094-9000-09-00780-7
Published electronically:
December 29, 2009
MathSciNet review:
2494535
Full-text PDF Free Access
Abstract |
References |
Similar Articles |
Additional Information
Abstract: A theorem on asymptotic normality is proved, and the limit distribution is found for $L_p$-estimators of a vector parameter in a nonlinear regression model with continuous time and weakly dependent random noise.
References
- T. A. Bardadym and A. V. Ivanov, Asymptotic normality of $l_\alpha $-estimates of parameters of a nonlinear regression model, Dokl. Akad. Nauk Ukrain. SSR Ser. A 8 (1988), 68–70, 88 (Russian, with English summary). MR 966270
- T. O. Bardadim and O. V. Īvanov, On the asymptotic normality of $l_\alpha $-estimators of a parameter of a nonlinear regression model, Teor. Ĭmovīr. Mat. Stat. 60 (1999), 1–10 (Ukrainian, with Ukrainian summary); English transl., Theory Probab. Math. Statist. 60 (2000), 1–11 (2001). MR 1826135
- R. N. Bhattacharya and R. Ranga Rao, Normal approximation and asymptotic expansions, John Wiley & Sons, New York-London-Sydney, 1976. Wiley Series in Probability and Mathematical Statistics. MR 0436272
- Yu. V. Goncharenko and S. I. Lyashko, Brouwer’s Theorem, Kiĭ, Kiev, 2000. (Russian)
- I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, Academic Press, New York-London, 1965. Fourth edition prepared by Ju. V. Geronimus and M. Ju. Ceĭtlin; Translated from the Russian by Scripta Technica, Inc; Translation edited by Alan Jeffrey. MR 0197789
- Il′dar Abdullovich Ibragimov and Y. A. Rozanov, Gaussian random processes, Applications of Mathematics, vol. 9, Springer-Verlag, New York-Berlin, 1978. Translated from the Russian by A. B. Aries. MR 543837
- A. V. Ivanov, A solution of the problem of detecting hidden periodicities, Teor. Veroyatnost. i Mat. Statist. 20 (1979), 44–59, 156–157 (Russian, with English summary). MR 529259
- A. V. Ivanov, On the consistency of $l_\alpha $-estimates for the parameters of a regression function, Teor. Veroyatnost. i Mat. Statist. 42 (1990), 42–48 (Russian); English transl., Theory Probab. Math. Statist. 42 (1991), 47–53. MR 1069312
- N. N. Leonenko and A. V. Ivanov, Statisticheskiĭ analiz sluchaĭ nykh poleĭ, “Vishcha Shkola”, Kiev, 1986 (Russian). With a preface by A. V. Skorokhod. MR 917486
- O. V. Īvanov and Ī. V. Orlovs′kiĭ, Asymptotic normality of Koenker-Bassett estimators in nonlinear regression models, Teor. Ĭmovīr. Mat. Stat. 72 (2005), 30–41 (Ukrainian, with Ukrainian summary); English transl., Theory Probab. Math. Statist. 72 (2006), 33–45. MR 2168134, DOI https://doi.org/10.1090/S0094-9000-06-00662-4
- A. V. Ivanov and I. V. Orlovskiĭ, The consistency of $M$-estimators in nonlinear regression models with continuous time, Naukovi visti NTUU KPI (2005), no. 4 (42), 140–147. (Ukrainian)
- I. V. Orlovskiĭ, The consistency of Koenker–Bassett estimators in nonlinear regression models, Naukovi visti NTUU KPI (2004), no. 3 (35), 144–150.
- Peter J. Huber, Robust statistics, John Wiley & Sons, Inc., New York, 1981. Wiley Series in Probability and Mathematical Statistics. MR 606374
- Leopold Schmetterer, Introduction to mathematical statistics, Springer-Verlag, Berlin-New York, 1974. Translated from the second German edition by Kenneth Wickwire; Die Grundlehren der mathematischen Wissenschaften, Band 202. MR 0359100
- Miguel A. Arcones, Asymptotic theory for $M$-estimators over a convex kernel, Econometric Theory 14 (1998), no. 4, 387–422. MR 1650029, DOI https://doi.org/10.1017/S0266466698144018
- X. R. Chen and Y. H. Wu, Strong consistency of $M$-estimates in linear models, J. Multivariate Anal. 27 (1988), no. 1, 116–130. MR 971177, DOI https://doi.org/10.1016/0047-259X%2888%2990120-0
- S. A. van de Geer, Empirical Processes in $M$-Estimation, Cambridge University Press, 2000.
- Liudas Giraitis and Hira Koul, Estimation of the dependence parameter in linear regression with long-range-dependent errors, Stochastic Process. Appl. 71 (1997), no. 2, 207–224. MR 1484160, DOI https://doi.org/10.1016/S0304-4149%2897%2900061-6
- Liudas Giraitis, Hira L. Koul, and Donatas Surgailis, Asymptotic normality of regression estimators with long memory errors, Statist. Probab. Lett. 29 (1996), no. 4, 317–335. MR 1409327, DOI https://doi.org/10.1016/0167-7152%2895%2900188-3
- Ulf Grenander and Murray Rosenblatt, Statistical analysis of stationary time series, John Wiley & Sons, New York; Almqvist & Wiksell, Stockholm, 1957. MR 0084975
- Frank R. Hampel, Elvezio M. Ronchetti, Peter J. Rousseeuw, and Werner A. Stahel, Robust statistics, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1986. The approach based on influence functions. MR 829458
- Peter J. Huber, Robust regression: asymptotics, conjectures and Monte Carlo, Ann. Statist. 1 (1973), 799–821. MR 356373
- Alexander V. Ivanov, Asymptotic theory of nonlinear regression, Mathematics and its Applications, vol. 389, Kluwer Academic Publishers Group, Dordrecht, 1997. MR 1472234
- Alexander V. Ivanov, Asymptotic properties of $L_p$-estimators, Theory Stoch. Process. 14 (2008), no. 1, 60–68. MR 2479706
- A. V. Ivanov and N. N. Leonenko, Asymptotic behavior of $M$-estimators in continuous-time non-linear regression with long-range dependent errors, Random Oper. Stochastic Equations 10 (2002), no. 3, 201–222. MR 1923424, DOI https://doi.org/10.1515/rose.2002.10.3.201
- A. V. Ivanov and I. V. Orlovsky, $L_p$-estimates in nonlinear regression with long-range dependence, Theor. Stoch. Process. 7 (23) (2002), no. 3–4, 38–49.
- A. V. Ivanov and I. V. Orlovsky, Parameter estimators of nonlinear quantile regression, Theory Stoch. Process. 11 (2005), no. 3-4, 82–91. MR 2330004
- Robert I. Jennrich, Asymptotic properties of non-linear least squares estimators, Ann. Math. Statist. 40 (1969), 633–643. MR 238419, DOI https://doi.org/10.1214/aoms/1177697731
- Jana Jurečková, Consistency of $M$-estimators in a linear model, generated by nonmonotone and discontinuous $\psi $-functions, Probab. Math. Statist. 10 (1989), no. 1, 1–10. MR 990395
- Hira L. Koul, $M$-estimators in linear models with long range dependent errors, Statist. Probab. Lett. 14 (1992), no. 2, 153–164. MR 1173413, DOI https://doi.org/10.1016/0167-7152%2892%2990079-K
- Hira L. Koul, Asymptotics of $M$-estimators in non-linear regression with long-range dependent errors, Athens Conference on Applied Probability and Time Series Analysis, Vol. II (1995), Lect. Notes Stat., vol. 115, Springer, New York, 1996, pp. 272–290. MR 1466752, DOI https://doi.org/10.1007/978-1-4612-2412-9_20
- Hira L. Koul, Richard T. Baillie, and Donatas Surgailis, Regression model fitting with a long memory covariate process, Econometric Theory 20 (2004), no. 3, 485–512. MR 2061725, DOI https://doi.org/10.1017/S0266466604203036
- Hira L. Koul and Kanchan Mukherjee, Regression quantiles and related processes under long range dependent errors, J. Multivariate Anal. 51 (1994), no. 2, 318–337. MR 1321301, DOI https://doi.org/10.1006/jmva.1994.1065
- Hira L. Koul and Donatas Surgailis, Asymptotic expansion of $M$-estimators with long-memory errors, Ann. Statist. 25 (1997), no. 2, 818–850. MR 1439325, DOI https://doi.org/10.1214/aos/1031833675
- Hira L. Koul and Donatas Surgailis, Second-order behavior of $M$-estimators in linear regression with long-memory errors, J. Statist. Plann. Inference 91 (2000), no. 2, 399–412. Prague Workshop on Perspectives in Modern Statistical Inference: Parametrics, Semi-parametrics, Non-parametrics (1998). MR 1814792, DOI https://doi.org/10.1016/S0378-3758%2800%2900190-7
- H. L. Koul and D. Surgailis, Robust estimators in regression models with long memory errors, Theory and applications of long-range dependence, Birkhäuser Boston, Boston, MA, 2003, pp. 339–353. MR 1957498
- F. Liese, Necessary and sufficient conditions for consistency of approximate $M$-estimators in nonlinear models, Proc. Prague Stochastics, 1998, pp. 357–360.
- F. Liese and I. Vajda, Asymptotic Normality of $M$-Estimators in Nonlinear Regression, Research Report No. 1714, UTIA, Prague, 1991.
- F. Liese and I. Vajda, Consistency of $M$-Estimators in Nonlinear Regression, Research Report No. 1713, UTIA, Prague, 1991.
- F. Liese and I. Vajda, Consistency of $M$-estimates in general regression models, J. Multivariate Anal. 50 (1994), no. 1, 93–114. MR 1292610, DOI https://doi.org/10.1006/jmva.1994.1036
- Friedrich Liese and Igor Vajda, Necessary and sufficient conditions for consistency of generalized $M$-estimates, Metrika 42 (1995), no. 5, 291–324. MR 1380211, DOI https://doi.org/10.1007/BF01894328
- F. Liese and I. Vajda, A General Asymptotic Theory of $M$-Estimators, Research Report No. 1951, UTIA, Prague, 1999.
- Christine H. Müller, Robust planning and analysis of experiments, Lecture Notes in Statistics, vol. 124, Springer-Verlag, New York, 1997. MR 1454843
- Igor V. Orlovsky, $M$-estimates in nonlinear regression with weak dependence, Theory Stoch. Process. 9 (2003), no. 1-2, 108–122. MR 2080017
- J. Pfanzagl, On the measurability and consistency of minimum contrast estimates, Metrika 14 (1969), 249–272.
- Arjen E. Ronner, Asymptotic normality of $p$-norm estimators in multiple regression, Z. Wahrsch. Verw. Gebiete 66 (1984), no. 4, 613–620. MR 753816, DOI https://doi.org/10.1007/BF00531893
- Y. Wu and M. M. Zen, A strongly consistent information criterion for linear model selection based on $M$-estimation, Probab. Theory Related Fields 113 (1999), no. 4, 599–625. MR 1717532, DOI https://doi.org/10.1007/s004400050219
References
- T. A. Bardadym and A. V. Ivanov, Asymptotic normality of $l_\alpha$-estimators of parameters of a nonlinear regression model, Dokl. Akad. Nauk Ukrain. SSR Ser. A (1988), no. 8, 68–70, 88. (Russian) MR 966270 (90h:62208)
- T. A. Bardadym and A. V. Ivanov, On the asymptotic normality of $l_\alpha$-estimators of a parameter of a nonlinear regression model, Teor. Imovir. Mat. Stat. 60 (1999), 1–10; English transl. in Theory Probab. Math. Statist. 60 (2000), 1–11. MR 1826135
- R. N. Bhattacharya and R. Ranga Rao, Normal Approximation and Asymptotic Expansions, John Wiley & Sons, New York–London–Sydney, 1976. MR 0436272 (55:9219)
- Yu. V. Goncharenko and S. I. Lyashko, Brouwer’s Theorem, Kiĭ, Kiev, 2000. (Russian)
- I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, GIFML, Moscow, 1963; English transl., Academic Press, New York–London, 1965. MR 0197789 (33:5952)
- I. A. Ibragimov and Yu. A. Rozanov, Gaussian Random Processes, Nauka, Moscow, 1970; English transl., Springer-Verlag, New York–Berlin, 1978. MR 543837 (80f:60038)
- A. V. Ivanov, A solution of the problem of detecting hidden periodicities, Teor. Veroyatnost. i Mat. Statist. 20 (1979), 44–59; English transl. in Theory Probab. Math. Statist. 20 (1980), 51–68. MR 529259 (80c:62107)
- A. V. Ivanov, On the consistency of $l_\alpha$-estimators for the parameters of a regression function, Teor. Veroyatnost. i Mat. Statist. 42 (1990), 42–48; English transl. in Theory Probab. Math. Statist. 42 (1991), 47–53. MR 1069312 (92a:62043)
- A. V. Ivanov and N. N. Leonenko, Statistical Analysis of Random Fields, Vyshcha Shkola, Kiev, 1986; English transl., Kluwer Academic Publishers Group, Dordrecht, 1989. MR 917486 (89e:62125)
- A. V. Ivanov and I. V. Orlovskiĭ, Asymptotic normality of Koenker–Bassett estimators in nonlinear regression models, Teor. Veroyatnost. i Mat. Statist. 72 (2005), 30–41; English transl. in Theory Probab. Math. Statist. 72 (2006), 33–45. MR 2168134 (2007b:62029)
- A. V. Ivanov and I. V. Orlovskiĭ, The consistency of $M$-estimators in nonlinear regression models with continuous time, Naukovi visti NTUU KPI (2005), no. 4 (42), 140–147. (Ukrainian)
- I. V. Orlovskiĭ, The consistency of Koenker–Bassett estimators in nonlinear regression models, Naukovi visti NTUU KPI (2004), no. 3 (35), 144–150.
- P. Huber, Robust statistics, John Wiley & Sons, Inc., New York, 1981. MR 606374 (82i:62057)
- L. Schmetterer, Introduction to Mathematical Statistics, Springer-Verlag, Berlin–New York, 1974; Translated from the second German edition. MR 0359100 (50:11555)
- M. A. Arcones, Asymptotic theory of $M$-estimators over a convex kernel, Econometric Theory 14 (1998), no. 4, 387–422. MR 1650029 (99m:62029)
- X. R. Chen and Y. H. Wu, Strong consistency of M-estimates in linear models, J. Multivariate Anal. 27 (1988), 116–130. MR 971177 (90k:62140)
- S. A. van de Geer, Empirical Processes in $M$-Estimation, Cambridge University Press, 2000.
- L. Giraitis and H. L. Koul, Estimation of the dependence parameter in linear regression with long-range-dependent errors, Stochastic Process. Appl. 71 (1997), no. 2, 207–224. MR 1484160 (99b:62145)
- L. Giraitis, H. L. Koul, and D. Surgailis, Asymptotic normality of regression estimators with long memory errors, Stat. Probab. Letters 29 (1996), 317–335. MR 1409327 (97h:62055)
- U. Grenander and M. Rosenblatt, Statistical Analysis of Stationary Time Series, Almqvist and Wiksell, Stockholm, 1956. MR 0084975 (18:959b)
- F. R. Hampel, E. M. Ronchetti, P. J. Rousseeuw, and W. A. Stahel, Robust Statistics. The Approach Based on Influence Functions, Wiley, New York, 1986. MR 829458 (87k:62054)
- P. J. Huber, Robust regression: asymptotics, conjectures and Monte-Carlo, Ann. Statist. 1 (1973), no. 5, 799–821. MR 0356373 (50:8843)
- A. V. Ivanov, Asymptotic Theory of Nonlinear Regression, Kluwer, Dordrecht, 1997. MR 1472234 (99h:62086)
- A. V. Ivanov, Asymptotic properties of $L_p$-estimators, Theor. Stoch. Process. 14 (30) (2008), no. 1, 60–68. MR 2479706
- A. V. Ivanov and N. N. Leonenko, Asymptotic behavior of $M$-estimators in continuous-time non-linear regression with long-range dependent errors, Random Oper. Stoch. Equ. 10 (2002), no. 3, 201–222. MR 1923424 (2003k:62080)
- A. V. Ivanov and I. V. Orlovsky, $L_p$-estimates in nonlinear regression with long-range dependence, Theor. Stoch. Process. 7 (23) (2002), no. 3–4, 38–49.
- A. V. Ivanov and I. V. Orlovsky, Parameter estimators of nonlinear quantile regression, Theor. Stoch. Process. 11 (27) (2005), no. 3–4, 82–91. MR 2330004 (2008j:62068)
- R. I. Jennrich, Asymptotic properties of non-linear least squares estimators, Ann. Math. Statist. 40 (1969), 633–643. MR 0238419 (38:6695)
- J. Jurečková, Consistency of M-estimators in a linear model, generated by nonmonotone and discontinuous $\psi$-functions, Probab. Math. Statist. 10 (1989), 1–10. MR 990395 (90g:62155)
- H. L. Koul, $M$-estimators in linear models with long range dependent errors, Stat. Probab. Letters 14 (1992), 153–164. MR 1173413 (93f:62124)
- H. L. Koul, Asymptotics of $M$-estimations in non-linear regression with long-range dependence errors, Proc. Athens Conf. Appl. Probab. and Time Ser. Analysis (P. M. Robinson and M. Rosenblatt, eds.), Lecture Notes in Statistics, vol. II, Springer-Verlag, 1996, pp. 272–291. MR 1466752 (98g:62124)
- H. L. Koul, R. T. Baillie, and D. Surgailis, Regression model fitting with a long memory covariance process, Economic Theory 20 (2004), 485–512. MR 2061725 (2005e:62124)
- H. L. Koul and K. Mukherjee, Regression quantiles and related processes under long range dependent errors, J. Multivariate Anal. 51 (1994), 318–337. MR 1321301 (96e:62153)
- H. L. Koul and D. Surgailis, Asymptotic expansion of $M$-estimators with long memory errors, Ann. Statist. 25 (1997), 818–850. MR 1439325 (98c:62172)
- H. L. Koul and D. Surgailis, Second order behavior of $M$-estimators in linear regression with long-memory errors, J. Statist. Plann. Inference 91 (2000), 399–412. MR 1814792 (2001m:62101)
- H. L. Koul and D. Surgailis, Robust estimators in regression models with long memory errors, Theory and Application of Long-Range Dependence (P. Doukhan, G. Oppenheim, and M. S. Taqqu, eds.), Birkhäuser, Boston, 2003, pp. 339–353. MR 1957498
- F. Liese, Necessary and sufficient conditions for consistency of approximate $M$-estimators in nonlinear models, Proc. Prague Stochastics, 1998, pp. 357–360.
- F. Liese and I. Vajda, Asymptotic Normality of $M$-Estimators in Nonlinear Regression, Research Report No. 1714, UTIA, Prague, 1991.
- F. Liese and I. Vajda, Consistency of $M$-Estimators in Nonlinear Regression, Research Report No. 1713, UTIA, Prague, 1991.
- F. Liese and I. Vajda, Consistency of $M$-estimates in general regression models, J. Multivariate Anal. 50 (1994), no. 1, 93–114. MR 1292610 (95g:62133)
- F. Liese and I. Vajda, Necessary and sufficient conditions for consistency of generalized $M$-estimates, Metrika 42 (1995), 291–324. MR 1380211 (97b:62039)
- F. Liese and I. Vajda, A General Asymptotic Theory of $M$-Estimators, Research Report No. 1951, UTIA, Prague, 1999.
- Ch. H. Müller, Robust Planning and Analysis of Experiments, Lecture Notes in Statistics, Springer, New York, 1997. MR 1454843 (98g:62140)
- I. V. Orlovsky, $M$-estimates in nonlinear regression with weak dependence, Theor. Stoch. Process. 9(25) (2003), no. 1–2, 108–122. MR 2080017 (2005i:62099)
- J. Pfanzagl, On the measurability and consistency of minimum contrast estimates, Metrika 14 (1969), 249–272.
- A. E. Ronner, Asymptotic normality of $p$-norm estimators in multiple regression, Z. Wahrsch. verw. Gebiete. 66 (1984), 613–620. MR 753816 (86a:62042)
- Y. Wu and M. M. Zen, A strongly consistent information criterion for linear model selection based on $M$-estimation, Probab. Theory Related Fields 113 (1999), 599–625. MR 1717532 (2000g:62167)
Similar Articles
Retrieve articles in Theory of Probability and Mathematical Statistics
with MSC (2000):
62J02,
62J99
Retrieve articles in all journals
with MSC (2000):
62J02,
62J99
Additional Information
O. V. Ivanov
Affiliation:
Department of Mathematical Analysis and Probability Theory, National Technical University of Ukraine, Kyiv Polytechnical Institute, Peremogy Avenue 37, Kyiv-56, 03056, Ukraine
Email:
ivanov@paligora.kiev.ua
I. V. Orlovs’kiĭ
Affiliation:
Department of Mathematical Analysis and Probability Theory, National Technical University of Ukraine, Kyiv Polytechnical Institute, Peremogy Avenue 37, Kyiv-56, 03056, Ukraine
Email:
avalon@ukrpost.ua
Keywords:
$L_p$-estimators,
asymptotic normality,
nonlinear regression models,
weak dependence
Received by editor(s):
September 11, 2008
Published electronically:
December 29, 2009
Article copyright:
© Copyright 2009
American Mathematical Society