Parametric estimation for linear system of stochastic differential equations driven by fractional Brownian motions with different Hurst indices
Author:
B. L. S. Prakasa Rao
Original publication:
Teoriya Imovirnostei ta Matematichna Statistika, tom 79 (2008).
Journal:
Theor. Probability and Math. Statist. 79 (2009), 143-151
MSC (2000):
Primary 62M09; Secondary 60G18
DOI:
https://doi.org/10.1090/S0094-9000-09-00788-1
Published electronically:
December 30, 2009
MathSciNet review:
2494544
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We consider the problem of maximum likelihood estimation of the common trend parameter for a linear system of stochastic differential equations driven by two independent fractional Brownian motions possibly with different Hurst indices. Asymptotic properties of the maximum likelihood estimator are discussed.
- 1. M. L. Kleptsyna and A. Le Breton, Statistical analysis of the fractional Ornstein-Uhlenbeck type process, Stat. Inference Stoch. Process. 5 (2002), no. 3, 229–248. MR 1943832, https://doi.org/10.1023/A:1021220818545
- 2. R. Sh. Liptser, A strong law of large numbers for local martingales, Stochastics 3 (1980), no. 3, 217–228. MR 573205, https://doi.org/10.1080/17442508008833146
- 3. Y. Mishura and N. Rudomino-Dusyatska, Consistency of Drift Parameter Estimates in Fractional Brownian Diffusion Models, Research paper No. 04-2004, Acturial Education and Reference Centre of the Ukrainian Acturial Society, Lviv, Ukraine, 2004.
- 4. Ilkka Norros, Esko Valkeila, and Jorma Virtamo, An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions, Bernoulli 5 (1999), no. 4, 571–587. MR 1704556, https://doi.org/10.2307/3318691
- 5. David Nualart and Aurel Răşcanu, Differential equations driven by fractional Brownian motion, Collect. Math. 53 (2002), no. 1, 55–81. MR 1893308
- 6. B. L. S. Prakasa Rao, Statistical inference for diffusion type processes, Kendall’s Library of Statistics, vol. 8, Edward Arnold, London; Oxford University Press, New York, 1999. MR 1717690
- 7. B. L. S. Prakasa Rao, Semimartingales and their statistical inference, Monographs on Statistics and Applied Probability, vol. 83, Chapman & Hall/CRC, Boca Raton, FL, 1999. MR 1689166
- 8. B. L. S. Prakasa Rao, Parametric estimation for linear stochastic differential equations driven by fractional Brownian motion, Random Oper. Stochastic Equations 11 (2003), no. 3, 229–242. MR 2009183, https://doi.org/10.1163/156939703771378581
- 9. B. L. S. Prakasa Rao, Berry-Esseen bound for MLE for linear stochastic differential equations driven by fractional Brownian motion, J. Korean Statist. Soc. 34 (2005), no. 4, 281–295. MR 2233242
- 10. B. L. S. Prakasa Rao, Instrumental variable estimation for linear stochastic differential equations driven by fractional Brownian motion, Stoch. Anal. Appl. 25 (2007), no. 6, 1203–1215. MR 2367310, https://doi.org/10.1080/07362990701567306
- 11. Michael Sørensen, Likelihood methods for diffusions with jumps, Statistical inference in stochastic processes, Probab. Pure Appl., vol. 6, Dekker, New York, 1991, pp. 67–105. MR 1138259
- 12. M. Zähle, Integration with respect to fractal functions and stochastic calculus. I, Probab. Theory Related Fields 111 (1998), no. 3, 333–374. MR 1640795, https://doi.org/10.1007/s004400050171
Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2000): 62M09, 60G18
Retrieve articles in all journals with MSC (2000): 62M09, 60G18
Additional Information
B. L. S. Prakasa Rao
Affiliation:
University of Hyderabad, Hyderabad 500 046, India
Email:
blsprao@gmail.com
DOI:
https://doi.org/10.1090/S0094-9000-09-00788-1
Received by editor(s):
August 30, 2007
Published electronically:
December 30, 2009
Article copyright:
© Copyright 2009
American Mathematical Society