
Teor�� �Imov�r. ta Matem. Statist. Theor. Probability and Math. Statist.
Vip. 82, 2010 No. 82, 2011, Pages 1–10

S 0094-9000(2011)00823-X
Article electronically published on August 2, 2011

THE CUMULANT REPRESENTATION OF THE LUNDBERG ROOT

IN THE CASE OF SEMICONTINUOUS PROCESSES

UDC 519.21

D. V. GUSAK

Abstract. For the case of homogeneous processes ξ(t), ξ(0) = 0, t ≥ 0, with inde-
pendent increments and negative jumps, it is proved in A. V. Skorokhod, Random
Processes with Independent Increments, Nauka, Moscow, 1964 that the functional

τ+(x) = inf {t ≥ 0 : ξ(t) > x} , x ≥ 0,

is a nondecreasing process with independent increments with respect to x, and its
moment generating function is expressed via the cumulant that satisfies the corre-
sponding Lundberg equation. The corresponding representations of this cumulant
are specified and its Lévy characteristics (namely, γ and Lévy’s integral measure
N(x)) are evaluated by using some of the results of the author’s work of 2007 for the
processes under consideration.

1. Introduction

Homogeneous processes ξ(t), ξ(0) = 0, t ≥ 0, with independent increments whose
jumps are of a constant sign are called semicontinuous processes. In particular, if all
the jumps of ξ(t) are negative, then ξ(t) is an upper continuous process and its Lévy–
Khinchine cumulant is of the following form:

(1) ψ (α) =
1

t
lnE eiαξ(t) = iαγ − α2σ2

2
+

∫ 0

−∞

(
eiαx − 1− iαx

1 + x2

)
Π (dx)

(see [1, §23]).
Now we introduce the functionals of interest:

ξ±(t) = sup(inf)
0≤t′≤t

ξ(t′), ξ± = sup(inf)
0≤t<∞

ξ(t),

τ+(x) = inf{t > 0: ξ(t) > x}, τ−(−x) = inf{t > 0: ξ(t) < −x},
γ±(±x) = ξ

(
τ±(±x)

)
∓ x, x ≥ 0.

We denote by θs a random variable whose distribution is exponential with parameter
s > 0, that is,

P {θs > t} = e−st, s, t > 0.

Then the characteristic functions of ξ(t) and ξ(θs) are expressed via the cumulant

ψ(α) = lnE eiαξ(1)
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2 D. V. GUSAK

as follows:

(2) E eiαξ(t) = etψ(α), ϕ (s, α) =: E eiαξ(θs) =
s

s− ψ(α)
.

The equation

(3) k (r) =: ψ(−ir) = s, s ≥ 0,

is called the fundamental Lundberg equation. If E |ξ(1)|2 < ∞, then equation (3) has two
roots r1,2(s), since k(r) is convex in a neighborhood of zero in view of

k′′(0) = Var ξ(1) > 0.

We study the positive root r2(s) = ρ+(s), called Lundberg’s root, in order to obtain
properties of the moment generating function of τ+(x) and the characteristic function of
ξ+(θs), since they are uniquely determined by this root:

T (s, x) = E e−sτ+(x)�τ+(x)<∞ = e−xρ+(s), x ≥ 0,(4)

ϕ+(s, α) =: E eiαξ
+(θs) =

ρ+(s)

ρ+(s)− iα
.(5)

If m = E ξ(1) ≥ 0, then ρ+(s) → 0 as s → 0, P {τ+(x) < ∞} = 1, and

(6) T (s, x) = E e−sτ+(x) = exp

{
x

[
−sγ +

∫ ∞

0

(
e−sy − 1

)
dN(y)

]}

according to equality (23.2) of [1], where γ ≥ 0 and N(x) is a nondecreasing function
such that N(+∞) = 0 and ∫ 1

0

x dN(x) < ∞.

Thus equalities (4) and (6) imply that

(7) −ρ+(s) = kT (−s) = −sγ +

∫ ∞

0

(
e−sy − 1

)
dN(y), s > 0.

This means that −ρ+(s) is the cumulant of the nondecreasing (with respect to x) process
T (x) = τ+(x) whose variation is bounded.

Our aim is to obtain more information about the Lévy characteristics γ and N(y) for
the process T (x). If the variation of ξ(t) is unbounded, then one may expect that γ = 0,
while the properties of N(x) are not known in this case.

2. Semicontinuous process

First we consider a compound Poisson process

(8) ξ(t) = at− S(t), a > 0,

where

S(t) =
∑

k≤ν(t)

ξk, S(0) = 0.

Here ν(t) is a simple Poisson process with intensity λ > 0 and where the random vari-
ables ξk are independent and identically distributed with a common distribution function

F (x) = P {ξk < x} , x ≥ 0,

such that F (0) = 0 and with the characteristic function

ϕ(α) = E eiαξk , f(s) = E e−sξk , k ≥ 1, s ≥ 0.
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THE LUNDBERG ROOT FOR SEMICONTINUOUS PROCESSES 3

Compound Poisson processes have a wide range of applications in risk theory, queueing
theory, etc. The characteristic function of ξ(t) is determined by the cumulant

ψ(α) = iαa+ λ (ϕ(−α)− 1)

(see equality (2)). Substituting iα = r we obtain

k(r) = ar + λ (f(r)− 1) .

If r = ρ+(s) is the root of equation (3), then

(9) ρ+(s) =
s

a
+

λ

a
[1− f(ρ+(s))] .

For simplicity, consider the case of a = 1. Then (8) describes a governing process of a
queueing system. The nondecreasing processes

ξ+(t) = α(t), t ≥ 0, with α(0) = 0

and
T (x) = τ+(x), x ≥ 0, with T (0) = 0

can be viewed as “inverses” to each other in a certain sense (see pp. 197–200 and the
graphs represented on p. 176 in [2]). The process α(t) represents the idle period, while

β(t) = t− α(t)

is the busy period. Clearly, α(t) is a continuous and stepwise linear function with respect
to t; the lengths of the intervals where α(t) is constant are determined by the idle
periods. The mirror image of the graph of ξ+(t) rotated counterclockwise about the
origin by the angle π

4 represents the graph of the “inverse” process T (x) = τ+(x). The
intervals where α(t) and T (x) grow linearly are the same, since a = 1. We denote those
intervals by τ̃r. The random variable τk being the time between two exponential jumps
has an exponential distribution, as well. The random variable τ̃r also has an exponential
distribution with parameter λ > 0.

The lengths of the intervals where α(t) is constant (as well as the value of α(t) on these

intervals) are determined by the busy periods θ̃k. After the “inversion” described above,

the lengths of the intervals θ̃k determine the corresponding jumps of T (x). The coeffi-
cients of the linear growth of α(t) and T (x) are such that a = 1/a = 1. Thus, similarly
to (8), the stochastic process T (x) admits the following stochastic representation:

(10) T (x) = x+
∑

k≤ν̃(x)

θ̃k, ν̃(x) = max

⎧⎨
⎩n :

∑
r≤n

τ̃r ≤ x

⎫⎬
⎭ ,

where ν̃(x) (like ν(t)) is a simple Poisson process with intensity λ > 0.
By Theorem 4.10 (see [2, p. 198]), the moment generating function of the random

variable θ̃r is given by

(11) π(s) = E e−sθ̃1�θ̃1<∞ = f(ρ+(s)) = E e−sτ+(ξ1).

If m = E ξ(1) ≥ 0, then π(s) = f(ρ+(s)) = E e−sθ̃1 → 1 and ρ+(s) → 0 as s → 0.
According to equality (9), the number −ρ+(s) is such that

− ρ+(s) = kT (−s) = lnE e−sT (1) = −s+ λ (π(s)− 1) ,

T (s, x) = E e−sT (x) = exkT (−s), x ≥ 0.
(12)

This cumulant representation means that

γ = 1, N(x) = −λP
{
θ̃1 > x

}
, x > 0,

in relation (7).
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4 D. V. GUSAK

If m < 0, then ρ+(s) → ρ+ > 0 and the conditional moment generating function of
T (x) is determined by

k̂T (−s) = ρ+ − ρ+(s) = −sλ (π(s)− π(0)) , π(0) = f (ρ+(s)) < 1,(13)

T̂ (s, x) = E
[
e−sT (x)

/
T (x) < ∞

]
= exk̂T (−s), x ≥ 0.(14)

Similarly to the stochastic process (8), the following result obtains a more general
relation for an arbitrary drift a > 0. We also determine the Lévy characteristics of the
process T (x).

Theorem 1. Let an upper continuous process (8) have a positive drift a > 0 and let

λ =

∫ 0

−∞
Π(dx) < ∞.

If m ≥ 0, then the moment generating function of T (x) = τ+(x), x ≥ 0, with the corre-
sponding cumulant kT (−s) = −ρ+(s) is uniquely determined by the root of equation (3)
as follows:

(15)
T (s, x) = E e−sT (x)�T (x)<∞ = E e−sT (x) = exkT (−s),

kT (−s) = − s

a
+

λ

a
(π(s)− 1) , π(s) = E e−sτ+(ξ1) = f(ρ+(s)).

In particular, the Lévy characteristics in (7) are such that

(16) γ =
1

a
, N(x) = −λ

a
P
{
θ̃1 > x

}
, θ̃1 =̇ τ+(ξ1), x > 0.

If m < 0, then ρ+(s) → ρ+ > 0 as s → 0 and the distribution of T (x) is improper and

P {T (x) < ∞} = e−xρ+ < 1.

The conditional moment generating function of T (x) is given by relation (14), and the
cumulant is

k̂T (−s) = ρ+ − ρ+(s) = − s

a
+

λ

a

∫ ∞

0

(
e−sy − 1

)
dP
{
θ̃1 < y, θ̃1 < ∞

}

= − s

a
+

λ

a
(π(s)− π(0)) , π(0) = f(ρ+) < 1.

(17)

Proof. Similarly to the proof for the case of a = 1, we use the following cumulant repre-
sentation:

k(r) =: ar + λ (f(r)− 1) = s

for equation (3). Substituting r = ρ+(s) > 0 in the latter equation with m ≥ 0 we derive
representations (15) and (16) for the cumulant kT (−s), s ≥ 0, k(0) = 0, and for its Lévy
characteristics.

If m < 0, then the random variable T (x) has an improper distribution, namely

lim
s→0

T (s, x) = lim
s→0

E e−sT (x)�T (x)<∞ = P
{
τ+(x) < ∞

}
= e−ρ+x < 1.

Thus one can consider the conditional moment generating function

T̂ (s, x) = T (s, x)/P {T (x) < ∞} = ex(ρ+−ρ+(s))

instead of T (s, x), where the cumulant k̂T (−s) = ρ+ − ρ+(s) admits the representa-
tion (17). �

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE LUNDBERG ROOT FOR SEMICONTINUOUS PROCESSES 5

3. Almost semicontinuous process

Consider an almost upper semicontinuous process with the cumulant

(18) ψ(α) =
λ1c

c− iα
+ iαa+

∫ 0

−∞

(
eiαx − 1

)
Π(dx), a ≤ 0, c, λ1 > 0.

This process can be represented as a difference of two nondecreasing processes

ξ(t) = ξ1(t)− ξ2(t).

The corresponding cumulants of ξ1 and ξ2 are given by

ψ1(α) =
λ1c

c− iα
,

ψ2(α) = iα|a| −
∫ ∞

0

(
e−iαx − 1

)
Π(−dx),

∫ 1

0

xΠ(−dx) < ∞,

respectively.
The trajectories of the stochastic process ξ(t) are stepwise linear functions with the

drift a < 0. The trajectories of the process α(t) = ξ+(t) are nondecreasing stepwise
constant functions. The intervals where α(t) is constant, α(0) = 0, are determined by

the random variables θ̃k = τ+(0). The same random variables θ̃k determine the values
of the process α(t) in these intervals. The jumps of α(t) are defined by the excesses γ+

k

related to the processes ξ(t). The random variables γ+
k have the exponential distribution

with parameter c > 0.
The heights of the jumps of the “inverse” process T (x) are determined by the random

variables θ̃k, while the lengths of the intervals where T is constant are determined by the
random variables γ+

k . Thus

(19) T (x) =
∑

0≤k≤ν̃c(x)

θ̃k, ν̃c(x) = max

⎧⎨
⎩n :

∑
k≤n

γ+
k ≤ x

⎫⎬
⎭ ,

where ν̃c(x) is a simple Poisson process with intensity c > 0.
Using the stochastic relation (19) one can easily obtain the following result.

Theorem 2. Let ξ(t) be an upper almost semicontinuous process with cumulant (18).
Then the stochastic process T (x) = τ+(x), T (0) = τ+(0) > 0, is a nondecreasing ho-
mogeneous process admitting the stochastic representation (19) if m ≥ 0. The cumulant
and moment generating function of the process T0(x) = τ+(x) − τ+(0), T0(0) = 0, are
determined by the Lundberg root ρ+(s) > 0 of equation (3), namely

(20)

kT0
(−s) = −ρ+(s) = c (π(s)− 1) , π(s) = E e−sτ+(0) = q+(s),

lim
s→0

q+(s) = 1;

T0(s, x) = E e−sT0(x) = exkT (−s), x ≥ 0.

If m < 0, then lims→0 ρ+(s) = ρ+ > 0 and the conditional moment generating function
T0(x) is determined from the following relation:

T̂0(s, x) = E
[
e−sT0(x)

/
T0(x) < ∞

]
= exk̂T0

(−s), x ≥ 0,

k̂T0
(−s) = ρ+ − ρ+(s) = c (π(s)− π(0)) , π(0) = q+(0) < 1.

(21)

Relations (20) and (21) imply that

(22) γ = 0, dN(y) =

{
c dP {τ+(0) < y} , m ≥ 0, y > 0;

c dP {τ+(0) < y, τ+(0) < ∞} , m < 0.
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6 D. V. GUSAK

Example 1. Let ξ(t) be an upper almost semicontinuous and at the same time lower
almost semicontinuous symmetric stochastic process (see Example 2.4 in [2] for m = 0)
with the cumulant ψ(α) = λ(iα)2/

(
c− (iα)2

)
. Then

ρ+(s) = cp+(s), p+(s) = P
{
τ+(0) < θs

}
= P

{
ξ+(θs) = 0

}
=

√
s

s+ λ
.

Inverting p+(s) with respect to s, we obtain from (22)

N(z) = −2c

π

∫ 1

0

e−λzy d arcsin
√
y, N(0) = −c, z ≥ 0;

dN(z) =
λc

π

∫ 1

0

√
y

1− y
e−λzy dy, z > 0.

(23)

Denote by Q0,w(t) the time spent by the standard Wiener process w(u), u ∈ R
+, in the

interval 0 ≤ u ≤ t. Then

|N(t)| = cE e−λQ0,w(t), t > 0.

4. Semicontinuous process with jumps whose intensity is unbounded

Now we consider an upper semicontinuous process ξ(t) instead of the process defined
by (8). We assume that ∫ 0

−∞
Π(dx) = ∞

and that its variation is bounded. Then the cumulant is given by

(24)

ψ(α) = iαa+

∫ 0

−∞

(
eiαx − 1

)
Π(dx), a > 0,

∫ 0

−1

|x|Π(dx) < ∞.

Since a > 0, there are intervals where the trajectories of ξ(t) and ξ+(t) grow linearly
with the drift a−1 (moreover there are intervals of arbitrary small lengths, since λ = ∞).

Denoting iα = r, we represent the cumulant k(r) as follows:

(25) k(r) = ra+

∫ ∞

0

(
e−rx − 1

)
Π(−dx).

Using equality (3) and relations (4) and (25) we obtain the following result.

Theorem 3. Let a process ξ(t) be upper continuous and let its cumulant be given by
equalities (24)–(25). If m ≥ 0, then the cumulant of the homogeneous monotonic pro-
cess T (x) is defined by equality (7), while its Lévy characteristics are given by

(26) γ =
1

a
, N(y) = −1

a

∫ ∞

0

P
{
τ+(x) < y

}
Π(−dx), y > 0.

If m < 0, then

lim
s→0

ρ+(s) = ρ+ > 0, T (s, 0) = P
{
ξ+(θs) > 0

}
= q+(s) > 0,

and the conditional moment generating function of T (x) is determined from the relation

(27) T̂ (s, x) = E
[
e−sT (x)

/
T (x) < ∞

]
= ex(ρ+−ρ+(s)) = exk̂T (−s), x ≥ 0,

where

k̂T (−s) = − s

a
+

1

a

∫ ∞

0

(
e−sy − 1

) ∫ ∞

0

Π(−dx) dP
{
τ+(x) < y, τ+(x) < ∞

}
.
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Proof. The Lundberg equation (3) implies that

(28) −aρ+(s) =

∫ ∞

0

(
e−ρ+(s)x − 1

)
Π(−dx)− s.

If m ≥ 0, then

E e−sτ+(x) = e−ρ+(s)x =

∫ ∞

0

e−sy dP
{
τ+(x) < y

}
, x > 0.

Thus (28) implies a “cumulant” relation for kT (−s) = −ρ+(s), namely

(29) −ρ+(s) = − s

a
+

1

a

∫ ∞

0

(
e−sy − 1

) ∫ ∞

0

dP
{
τ+(x) < y

}
Π(−dx).

Comparing equalities (28) and (7) we easily derive relation (26) for Lévy’s characteris-
tics γ and N(y).

Relation (27) can be obtained similarly for the conditional moment generating function

T̂ (s, x) with the cumulant k̂T (−s) if m < 0 and the Lévy measure is such that

dN(y) =
1

a

∫ ∞

0

dP
{
τ+(x) < y, τ+(x) < ∞

}
Π(−dx), y > 0. �

5. Brownian motion

It is shown in [3] that T (x) = τ+(x), x > 0, is a stable process with respect to x of
index α∗ = 1/2 if the process ξ(t) is Brownian motion. Below we prove a more general
statement for Brownian motion.

Theorem 4. Let ξ0(t) = at+ σw(t), where σ > 0. The moment generating function of
T (x) = τ+(x) = inf {t > 0: ξ0(t) > x} for a ≥ 0 is such that

(30)

T (s, x) = E e−sτ+(x) = exkT (−s), x ≥ 0,

kT (−s) = −ρ+(s) =

∫ ∞

0

(
e−sx − 1

)
dNa(x).

If a = 0, then

(31) N0(x) = − 2

σ

1√
2πx

= − 1

σ

√
2

πx
, x > 0,

and

(32) Na(x) = N0(x) exp

{
−a2x

2σ2

}
+

2a

σ2
Φ0

(
a
√
x

σ

)
, a > 0,

where

Φ0(x) =
1

2π

∫ ∞

x

e−z2/2 dz, x > 0.

If a < 0, then the conditional moment generating function of T (x) is determined from
the following relation:

(33) T̂ (s, x) = E
[
e−sT (x)

/
T (x) < ∞

]
= exk̂T (−s), x ≥ 0,

and the cumulant is such that

(34)

k̂T (−s) = ρ+ − ρ+(s) =

∫ ∞

0

(
e−sx − 1

)
dN̂a(x),

N̂a(x) = N0(x)e
−a2x/(2σ2) +

2|a|
σ2

Φ0

(
|a|√x

σ

)
, x > 0.
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8 D. V. GUSAK

Proof. The Lundberg roots ±ρ±(s) of the equation

2ar + σ2r2 = 2s,

ρ+(s) =
1

σ2

(√
a2 + 2sσ2 ∓ a

)
> 0

uniquely determine the moment generating functions for τ±(±x), x > 0. We consider
separately the following two cases:

(1) Case of a ≥ 0. Then the positive root admits the representation

(35) −ρ+(s) = − 2s

a+
√
a2 + 2sσ2

−→
s→0

0.

(2) Case of a < 0. Then

ρ+(s) −→
s→0

ρ+ > 0

and the above representation holds for

(36) ρ+ − ρ+(s) = k̂T (−s) = − 2s

|a|+
√
a2 + 2sσ2

−→
s→0

0.

Since the dependence of kT (−s) and k̂T (−s) on s in (35) and (36), respectively, is the
same, the right-hand sides of (32) and (34) are similar with respect to x (for a > 0 and
a < 0, respectively).

First we consider the case of a ≥ 0. The Lévy characteristics of the process ξ0(t) in (7)
are determined by the conditions γ = 0 and

∫∞
0

xdNa(y) < ∞, whence

ρ+(s) =

∫ ∞

0

(
1− e−sy

)
dNa(y) = s

∫ ∞

0

|Na(y)|e−sy dy.

Putting ña(s) =
∫∞
0

|Na(x)|e−sx dx we obtain

(37) ρ+(s) = sña(s), ña(s) =

(
a

2
+

√
a2

4
+

σ2s

2

)

in view of equality (34).
Denoting p = a2/4+sσ2/2 and s = 2p/σ2+a2/(2σ2), the Laplace transform of |Na(x)|

is reduced to the following function:

(38) f̃(p) =
1

c+
√
p
=

∫ ∞

0

e−pxf(x) dx.

Inverting (38) with respect to p (by using the tables of the Laplace transform (see [5,
p. 210])) we find

(39) f(x) =
1√
πx

− ae−a2x/4Φ0

(
a

√
x

2

)
, x > 0.

Using the notation s = 2p/σ2 + a2/(2σ2) again we obtain

(40) ña(s) =

∫ ∞

0

|Na(x)| exp
{
−2px

σ2
+

a2x

2σ2

}
dx.

For y = 2x/σ2, the right-hand side of (38) becomes of the following form:

(41)
σ2

2

∫ ∞

0

∣∣∣∣Na

(
σ2y

2

)∣∣∣∣ ea2y/4e−py dy = f̃(p).
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This together with (39) implies that

σ2

2

∣∣∣∣Na

(
σ2y

2

)∣∣∣∣ ea2y/4 =
1

√
πy

− aea
2y/4Φ0

(
a

√
y

2

)
,(42) ∣∣∣∣N0

(
σ2y

2

)∣∣∣∣ = 2

σ2

1
√
πy

, y > 0, a = 0,(43)

∣∣∣∣Na

(
σ2y

2

)∣∣∣∣ = 2

σ2

1
√
πy

e−a2y/4 − 2a

σ2
Φ0

(
a

√
y

2

)
, a > 0.(44)

Turning back to the variable x = σ2y/2, we prove both equalities (31) and (32). Note
that if a = 0, then

|N0(x)| =
∫ ∞

x

dN(dy) =
1

σ

√
2

πx
, x ≥ 0,

is the integral Lévy measure of jumps of a stable process with index α∗ = 1/2. If a 	= 0,
then the measure |Na(x)| =

∫∞
x

dNa(y) is expressed in terms of |N0(x)| and of the tails
of the normal distribution (see (32) and (34)).

If a < 0, then ρ+(s) → ρ+ and T (x) has an improper distribution, since

P
{
τ+(x) < ∞

}
= P

{
ξ+ > x

}
= e−ρ+x < 1, x < 0.

As above, the conditional moment generating function of the random variable T (x) is
exponential, namely

T̂ (s, x) =
T (s, x)

P {T (x) < ∞} = ek̂T (−s)x,

where the cumulant k̂T (−s) = ρ+ − ρ+(s) admits representation (36) similar to (35).

Equality (36) implies that N̂a(x) in (34) can be obtained from (42)–(44) if a is changed
by |a|. Thus the theorem is proved. �
Example 2. Let ξ(t) = ξ∗(t)−S(t), where ξ∗(t) is a stable process with index α∗ = 1/2
and negative jumps (c2 = 0, c1 > 0; see [1, p. 145]), and let S(t) =

∑
k≤ν(t) ξk be a

compound Poisson process with positive exponential jumps ξk > 0. Then the cumulant
of ξ(t) is of the following form:

ψ(α) =
iα

c− iα
− 2C|α|1/2, C = 4c1

√
π, c, c1 > 0,(45)

k(r) = ψ(−ir) =
r

c− r
− 2C

√
|r|.

The process ξ(t) is upper almost semicontinuous and one can easily evaluate ϕ+(s, α),

T (s, x), m ≥ 0, and T̂ (s, x), m < 0, if the root ρ+(s) of equation (3) is known.
The root ρ+(s) exists if s = 0. This can be proved by considering the following two

functions:
y1 =

r

c− r
, y2 = 2C

√
r.

The graphs of y1 and y2 intersect if 0 < r < c and the intersection point determines the
root ρ+ > 0.

Similarly, if s > 0 is sufficiently small, the root ρ+(s) > 0 of equation (3) is determined
by the intersection point of the graphs of functions:

y1 =
r

c− r
− s, 0 ≤ r < c, y2 = 2C

√
r.

Lemma 3.3 in [2] implies that the root ρ+(s) = cp+(s) ≤ c determines

ϕ+(s, α) =
p+(s)(c− iα)

ρ+(s)− iα
, T (s, x) = q+(s)e

−ρ+(s)x, x ≥ 0.
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Note that m = −∞ < 0 in the case under consideration. Thus we consider its conditional
moment generating function T0(s, x) that, according to (21), can be rewritten in the
following exponential form:

(46) T̂0(s, x) = E
[
e−s(τ+(x)−τ+(0)) / τ+(x)− τ+(0) < ∞

]
= exk̂T0

(−s).

Moreover
k̂T0

(−s) = ρ+ − ρ+(s) = c (π(s)− π(0)) ,

where
π(s) = E e−sτ+(0)�τ+(0)<∞, π(0) = q+ < 1.

Note that the root ρ+(s) > 0 of equation (3) plays a crucial role only in the case of
semicontinuous and of almost semicontinuous processes (see equalities (4)–(5)). For
other processes, equation (3) may not have roots. Even though the roots exist, they
do not uniquely determine the moment generating function T (s, x) and characteristic
function ϕ+(s, α).
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