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SECOND ORDER NECESSARY CONDITIONS OF OPTIMALITY
FOR STOCHASTIC SYSTEMS WITH VARIABLE DELAY
UDC 519.21

CH. A. AGAYEVA

ABSTRACT. The purpose of this paper is to give necessary conditions of optimality
of nonlinear stochastic control systems with variable delay for singular controls. As
a result, the second order necessary optimality condition for the stochastic system
with uncontrolled diffusion coefficient is obtained.

1. INTRODUCTION

Stochastic differential equations with delay have found many applications in automatic
control theory, in the theory of self-oscillating systems, etc., where real systems are
exposed to the influences of random disturbances, which cannot be ignored [1l 2]. The
necessary conditions of optimality for deterministic control problems are obtained in [3].
The first and second order necessary conditions of optimality for the stochastic control
systems without delay are proved in [4]. Optimal control problems for the systems
described by means of stochastic differential equations with delay have already been
investigated and the first order necessary condition of optimality for the stochastic system
is obtained in the research [5] [6]. This research is dedicated to the problem of stochastic
optimal control with variable delay under the influence of singular controls.

2. STATEMENT OF THE PROBLEM

Throughout this paper, unless otherwise specified, we let (2, F,P) be a complete
probability space with the filtration {F*: ty <t < #;} generated by the Wiener process
wy and Ft = o(ws;to < s <t). Let R™ denote the m-dimensional real vector space and
| - | denote the Euclidean norm in R™. Let E represent the expectation. Let L% (to, 1, R™)
denote the space of predictable processes z;(w) such that E f:ol |z¢|?dt < +oo. If Ais a
vector or a matrix, its transpose is denoted by A*.

Consider the following stochastic system with variable delay on state:

(1) dzy = g(T4, Ty n(r)s Wiy t) At + f(@4, Tp_p(r), t) dwy, t € (to,t1],
(2) Tty = Lo,

(3) zy = ®(1), t € [to — h(to), to),

(4) w(w) € Up = {u.(-) € Ly (to, t1;R™) | u.(w) €U C R™ ac.},
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where U is a nonempty bounded set and ®(¢) is a piecewise continuous nonrandom
function. In addition to that, h(t) > 0 is a continuously differentiable, nonrandom
function such that dh(t)/dt < 1. Assume that it is required to minimize the functional:

(5) J(u) = E {p(ztl) + /tl e, g, 1) dt} ,

to

in the set of admissible controls Us. The pair (¥, ), which is the solution of problem

(1)—(5), will be called optimal. Assume that the following requirements are satisfied:
I. Functions [, g, f are continuous with respect to total arguments:

I(z,u,t): R" x R™ x [to, t;] — R;

g(@,y,ut): R" x R" x R™ x [to,t1] — R™;
flz,y,t): R® x R™ x [to, t1] — R™".

IT. When t, u are fixed, then the functions I, g, f satisfy the conditions:

(L4 |z + ly) " (g(z, y, w, )] + |92 (2, y, u, t)|
+ gy (z, y,u, )| + [ f(z, 9, )| + [ fu (@, y, O] + | fy (2,9, 1)) < N;
(L+ [z) " (U, u, t)] + |lo (2, u, t)]) < N.

II1. Function p(x): R™ — R! is continuously differentiable and
(@) + [pa(2)] < N(1+ |z]).

The notation y; = zy_p(;) will be used throughout this paper. The following necessary
condition of optimality for the stochastic control problem ([)—(&]) in terms of Pontryagin’s
maximum principle is obtained in [5].

Theorem 2.1. Let conditions I-III hold, where (z9,u?) is an optimal solution of the
problem ([@)-@) and the random processes (¢t Br) € L%(to,t1; R™) x L%(to, t1; R™*™)
are the solutions of the following adjoint equations:

dipy = — [Hw (v, 2,y ug t) + Hy (¢, 22,92, u2, 2) |Z:S(t) s'(t)} dt + By dwy,
to <t <ty — h(t),

dipy = —Hy (g, 27,y ul, t) + Bedwy, ty — h(t]) <t < ty,

7/%1 = —P=zx (iﬂgl) )

(6)

where t = s(T) is a solution of the equation T =t — h(t). Then for allu € U a.e. in
[to, t1) the following maximum principle holds:

(7) IgleaéiH (wtvx?,yi?,uvt) =H (wt,x?,y?,uo,t), a.c.;

here,

H (e, xe, ye,ue, t) = 07 g(e, Yo e, t) + B f (@0, e, ) — Uy, ug, t).
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Let u; = u? + Awu; be some admissible control and T; = xto + Ax; the corresponding
trajectory of system ([I)—@). We will use the following identities:

dAxt = [g (fhymﬂht) -9 ($?7y?>ut0>t)] dt + [f (Ehytat) - f (xtouygut)] dwt
= {Aig (:C?,y?,u?,t) +gz (xgay?vuga V?at)Al't + Gy (xtoay?auga V?at)Ayt} dt

+ {fm (x?,y?,t) Axt + fy (xgay?at) Axt} dwt + Mt te (tO;tl]a
Axy = 0, te [to — h(to),to],

where

M= {/01 (g5 () + pAzy, Gy, T, t) — gk (2, ), ul, )] Azy dp
+/01 (g5 (29,9 + ulyp, T, t) — g (20,92, ul, )] Ay dp} U
i {/01 [£2 (2} + ndw, G, t) = f7 (2.5, 1)] Awedp
+/01 [ (0,90 + nlys t) — £ (2, 90,4)] A, dﬂ} do,

We need the following lemma.

Lemma 2.1. A solution of equation (8) may be described as follows:

t
(9) A'rt = / QtT [Aﬁg(xga ygv ’U,?., T) + WT]dT’
to

where Q¢ is a solution of

th‘r = (gm (ZL’?, yga Ug; t) QtT + Gy (ZL’?, yga Ug; t) QT(t)T) dt
+ (fz (xgvyz?vt) QtT + fy (l'to’yt?at) Q?"(t)T) dwta t>T;

QTT :Ia
Qt‘r:o> t<T;

(10)

here r(t) =t — h(t).
Proof. Differentiating expression (@) we have:

dAxt = Aﬂg (xga yz(f)a Ug, t) + Mt

t
+/ dQir X [Azg (zﬂ,yg,ug,t) + .| dr.

to
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By using ([I0) we obtain the following;:
dAxt = Aﬁg (xga yz?a u?7 t) + Mt

t
+/ {(gaf: (Igvyz(f)vu(t)7t) QtT +gy (Igvyz(f)vu(t)7t) Qr(t)r) dt

to

 (fo (8,90 ) Qur + fy (29, 90,) Quyr) duwn |
x [Aag (27,97, u2,t) + 0] dr.
Then with the help of some simple transformations we obtain that Az, satisfies equa-

tion (@)). The lemma is proved. O

We shall use the following definition.

Definition 2.1. An admissible control us(w), t € [to, 1], is said to be singular in stochas-
tic optimal control problems if there exists a subset U C U, such that for all v4(w) € U,
t € [to,t1] with probability one, the following relation holds:

(11) AVH(wtaxhxtfh(t)autat) =0.

Here

AVH (wbxtuxtfh(tﬁuht) =H (wtyxtaxtfh(tﬁya t) - H (¢t>xt7$t7h(t)7ut7t) .

It is clear that when condition (IIJ) holds, the maximum principle does not apply,
and in this particular case it is impossible to determine the optimal control using (7).
Therefore we must have a necessary condition of optimality for singular controls.

Now, suppose that the following requirements are satisfied:

A1l. Functions [, g, f and their derivatives are continuous in (x, u, t) and have no more
than a linear growth.

A2. Functions [, g, f are twice continuously differentiable with respect to (x,y), and
their derivatives are bounded.

A3. Function

p(z): R" = R!
is twice continuously differentiable and
Ip(2)] + Ipe(z)| < N(L+ [2]),  |paa| < N.

Theorem 2.2. Let conditions A1-A3 hold, where u) is a singular optimal control of
problem ([A)-@) and the random processes

(11, Be) € L (to, t1; R™) x L3 (to, t1; R™™)
are the solutions of the system (@)). Then for all v € U, we have the following:

EALg* (22,9202, 7) K(7,7)Avg (22,42, ul, 7)
+ EAVH; (77[}7'5 I?—a ygvugvT) Aug (I70—7y27u5)—5 T)
<0 a.c;
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here

ty
K(T,Q):/ |:Qt7— xTx (wtvxtaytauta )Qt9+Q ym (wtvxtaytauta )Qt9

nax(7,0)

+ QtT Ty (¢ta Ty, yt ) utv ) Qr(t
+ Q:(t vy (¢taxt yta“tv )Qr(t }
- Q:‘,kl‘rpml’(xtol)Qtle-

Proof. Let u; be an admissible control and let T; be the corresponding trajectory of
system ([I)—@). Since the random processes

(Y1, Bt) € Li(to, t1; R™) x LE(to, t1; R™ ™)

are the solutions of the adjoint equations (@), the expression for an increment of functional
@) gets the form as indicated below:

t1
AJ(UO) == E/ {AEH (¢t7x?aygaugat) + AEH (¢t7xtaytauta )Axt

to

+ AzH, (1/Jt,$tayt=ut7 )Ayt

— 050} Hyy (0,29, 90,40, 1) Ay
(12) — 050} Hyy (e, 2,99, ul, t) Ay,

— 0.5Ay; H,, (¢tv$tvytaut’ )Axt

— 0.5Ay; Hy, (wt,xt,yt,ut, )Ayt} dt
+ 0.5A2F pea (T, ) Ay, + 11,

where
1
= /0 [szklpzx (ﬂ??l + MAxtl) - Axrlpm (‘Tgl) Awtl] dM
t1 1
+E/ {/ |:A$>tk T (wt"rt +/J’Axt7yt +/J“Ayt7ut7 )AIt
to 0
— Az Hyy (wtvxt,yt,uta ) Axt} du dt}
t1 1
+ E/ {/ [Ay;‘ ve (V@) + pAzy, Y + pAay, uf, t) Az,
to 0
- Ay: yx (wty Ty yt s Ut R ) Al‘t} du dt}
t1 1
+ E/ {/ [Aw: Ty (whfl;t + MA.’.L't,yt + /,LAxhut’ ) Ayt
to 0
- Al‘: TT ('(/)tv Ty, yt s Ut y ) Ayt} du dt}
11 1
+E/ {/0 [Ayt vy (wtaxt NAxuyt MAa?t,ut, )Ayt
to

— Ay Hy, (1/’tafﬂtvyt7ut7 ) Ayt}dudt}
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Since z4(w) is a predictable random process, properties A1-A2 imply the Fubini proper-
ties for stochastic integrals in the expression for n; [§]. Consequently, increment (I2)) of
the cost functional will be described in the following form:

t1 pta
AJ = —0. 5/ Agg® (22,92,u2, 1) K(7,5)Agg (22,92, 12, s) drds

to to

—E A—H(¢t7$taytaut’t) dt

to

11 t1
- E/ </ AEH; (ws,xgaygaugas) Qst d$> Aﬂg (x?aygaugat) dt
to t

t1 t
—E [ AgHj (Yo7, 97 uist) | Qunsdsdt
to to
t1 t1
- E/ </ AUH; (wsax(s)vygvu(s),s) Qr(s)t dS) Aﬂg (x?,yt?augat) dt
to t—h(t)

th r(t)
_E / A (60, 29,40, 0, ) / Qrioyens ds dt + 1.
to to

Here
ty

1 .
Ne =m + 3 E{Amtlpm (x‘t)l) Q,rnrdT
to

t1 pty
+ / QtlTnTpa:;E (90?1) QtlsAﬂg (.’E(s), 927 U'(s)v S) drds
to to
t1

_ AI:Hxx (1/Jt,$t,yt,ut, </ QtST]gdS) dt

/ </ Qt‘ranT) TT (wtw?,yg,ug,t)
i
X </ QtsAtsAyg (xS,yS,uS, s) ds> dt
to

t
Qtsnsds> dt

to

t1

[ Ay HL, (20500 1) (

to

t t—h(t) *
- / (/ ch(t)rnrd7-> Ha:y (wn J?(t), y,?y u?, t)
to to
¢
X </ QisAzg (arg,yg,ug,s) ds> dt
to

t—h(t)
/ Aw:HylE (whxtvytvutat) </ ch(t)snsd5> dt

to

/ (/ Qt‘ranT) yx (wtvxgayto’ug’t)

o 0,0 .0
X / Qi—nt)s Ay (22,92, ul, s) ds | dt

to
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ty

t—h(t)
- Ay:Hyy (wh x?v y?v ’U,?, t) (/ ch(t)snsd8> dt

to tO

t t—h(t) * 0 o o
- / / Qtfh(t)TanT Hyy (whxrmytvutvt)
to to
t—h(t)
X (/ Qi—n(t)sAag (22,92, ul, s) ds) dt}.

to

Consequently we get:

t1 pty
AJ(ul) = —0.5/ Azg® (22,92, 42, 7) K (7, 5)Aqg (22,y2,ul, s) dr ds
to to

ty t1
o E/ (/ [AEH; (¢s,xg,y2,u2,s) Qst
to t

+ AEH; (¢S7 xga yga uga S) Qr(s)t] d5> Aﬁg (Iga y?7 u(t)v t) dt

ty t1
- E/ (/ [AEH; (¢s,xg,y2,u2,s) Qst
to t

+ AEH; (¢S7 l”g, yga uga S) Qr(s)t] Ts dS) dt

ty
-E AEH ('(/)hx(t)vy?vu?at) dt+772
to
> 0.
Let us consider the following spike variation:

Oa t¢[079+5)a5>0a06[t05t1)5

Auy = Auf, =
" e {V—ugv tG[979+5)3V€L2(Q’F6’P;Rm)'

Since (x?,u?) is a solution of problem ([)-() and u{ is a singular control, the expres-

sion ([I3]) might be described in the following form:
1 O+e rO+e
AT (W) = —5/ / Aygt (22,92, ul, 1) K(7,8)Avg (22,92, ul, s) drds
0o Jo
0+¢ O+¢
- E/ / |:AVH; (77[13,172,242’“2’5) Qst
0 0

+ AVH; (d’sv 332, yg? ug? 5) QT(S)J dS)

< Ayg (o, i up t) dt
O+¢ t
- E/ (/ [AVH; (%790272/27108,8) Qst
0 0

+ AVH.; (wsv CL'(S), yg, Ug, 8) Qr(s)t:| Ns d8> dt + 72
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We will use the following lemma [6]:

Lemma 2.2. Let conditions I-III be met. Then a.e. in [to,t1),
2

<N

— )

0 0
Ty —x

. t, t

limE|—=2—"%

e—0 £

where N > 0 is a constant and xfys is a trajectory corresponding to the control

uf’s =uf + Aul.

According to Lemma we obtain:
2 =o(c?),
0+¢ t
E/e (/0 [AVH; ('l/)sa xga yga ugv S) Qst + AUH; ('l/)s; xga yga uga 3) Qr(s)t] 77st> dt

—0(?).

Finally, since ¢ is arbitrarily small, the proof of Theorem is complete. O

3. PROBLEM WITH CONSTRAINT

Now, we will consider the stochastic control problem ([I)—(E) together with the con-
straint

(15) Eq(zy,) € G,
where G is a closed convex set in RF. Additionally, we assume that the following re-
quirement is satisfied:
IV. Function g(z): R™ — RF¥ is continuously differentiable and
lg(2)] + |¢o(2)] < N(1 + |=]).

Using Theorem 2] of [5] and the variational principle of Ekeland [7], the following
theorem was proved for the stochastic optimal control problem (I)—(E) with the endpoint
constraint (I5)).

Theorem 3.1. Let conditions I-IV hold, where (z9,u?) is a solution of problem (-
@), [@5) and the random processes (Y, B) € L% (to,t1; R™) x L% (to, t1; R™*™) are the
solutions of the following adjoint system.:

dwt = - |:Hm (wtv LE?, yi(ﬁ)a Ug; t) + Hy (Z/Jm xga yga Ug, Z) ’z:s(t)s,(t)} dt + ﬂtdwtv
(16) to <t <ty — h(tl),

dwt = _Ha: (wta x?a yg7u?7t) dt + Bt dwt; tl - h(tl) S t < tla

i, = —Aopa (33?1) — MGy (Igl) )
where (Mo, A1) € R and Ao < 0, Ay is a normal to the set G at point Eq(af,), and
A2+ |\ = 1. Then for allu € U in [ty,t1) we have:

0,0 _ 0,0 .0

(17) IgleagH(waxtaytauat) - H(w,xtaytau at) a.c.

Now, suppose that the following requirement is also satisfied:
A4. Function ¢q(x): R" — R* is twice continuously differentiable and

9(@)| + gu(@)| < N(L+[z]),  [gaa(z)| < N.

The following theorem provides the second order necessary condition of optimality for
the stochastic control system ([)—(&), [IT).
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Theorem 3.2. Let conditions A1-A4 hold, where u) is a singular control of problem
@-E), @) and the random processes (Y1, Bt) € L& (to,t1; R™) x L%(to, t1; R™™™) are
the solutions of the system ([IGl). Then for Vv € U, a.e. T € [to,t1) is satisfied:

EAg* (22,92, ul,7) K(1,7)Aug (22,42, u2,7)

(18) + EAI/H;; (djtvx?-vygau?—aT) AVg (Ig,yg,ug,’?')
<0 a.c;

here
t1
K(Tvg):/ ( 9)[@1&7 T (wt,l'taytautv )Qt0+Q ry (wt,l'taytauta )Qte

(19) +Qt‘r yx (whxtvytvuta ) Q'r(t)@
+Q:(t yy (wtuxt7yt7ut7 )QT :|
- Q;T}‘Opwx (l’gl) Qt19 - Q:ﬂ—)‘lq:cac (Itl) Qtle-

Proof. For any natural j let us introduce the following approximating functional:

1) = 5, (Ep(%) + E/tl Uz, un t) d, Eq(astl))

t
(20) ’
= min

(c:y)eB \/

={(c,y): ¢ < J%y € G}, and J° is the minimum value of the functional in (I)-(H).
V = (Us, d) is a space of controls that are obtained by the following metric:
d(u,v) = (1@ P){(t,w) € [to,t1] X Q: vy # u}.

One can show that V is the complete metric space [7].
In that case, it is easy to prove the following lemma.

2

t1
c—l/j—Ep(zt1>—E/ Uaw un t)de| + y — Eqlan,)I2,

to

Lemma 3.1. Assume that conditions A1-A4 hold, u} is the sequence of admissible
controls from V' and x} is the sequence of corresponding trajectories of the system (II)—
@). If d(ul,ut) = 0, n — oo, then

lim { sup E |z} —:z:t|2} =0,
o0 (o<t
where z, is a trajectory corresponding to an admissible control u;.

According to the continuity of the functional J;: V' — R™ and by Ekeland’s variational
principle we obtain the existence of control u{ such that d(uf,u?) < \/g;. Then for all
u €V we have: I;(u?) < Ij(u) + \/Ejd(u?,u), ¢; = 1/j. This inequality means that
(z,ul) is the solution of the following problem:

Ji(u) = I;(u) +\/_Eft (ug, ud) dt — min,

(21) dxt - g(xhyhuh )dt + f(xhyb )dwt7 t S (t07t1]7
Ty = q)(t), te [to — h(to),to],
Uy € Ua.

Function §(u, v) is determined in the following way:

0, uw=v,
(5(u,l/):{1 Wt v
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Let (;vi, ui ) be a solution of problem (2II). Suppose that the random processes
Wl € Li(to, t1;R™) and  B] € L (to, t1; R™™)
are the solutions of the following system:
diﬁi == [Hx ("/ngxi7y§7 ug7t) + Hy (wg’xg7yg’uz’ z) ‘z:s(t)sl(t)} dt
+6] dwy,  to <t <ty —h(t),
af = —H, (¢l,ol gl il t) dt+ Bldw, b= h(t) St <t
'(/Jt-l = _)‘gpx (wgl) - )‘{QI x{l) )

where nonzero ()\6, )\jl) € R**1 meet the following requirement:

()\6,)\{) = (—cj +1/5+Ep (azt ) —I—E/t:ll(x{,u{,t) dt, —y; +Eq(:ﬂ{1)) /JJQ.
Here
Jj‘?z\/cj—l/j—Ep (mil) —E/ttll(wivyfvt) dtr Yi —Eq(wfl>‘2~

0
It was proved in the paper [6] that: (A, M) = (Ao, A1), if j — oo. _
According to convexity, function S; is Gato-differentiable at the point Eg(z7,). For
all (¢,y) € B, the following inequality is obtained:

(x\é,c—%—Ep(ﬂvgl) _E/ttll(a:t,ut, ) dt—l—/\ y—Eq(le)) < %

o]

(22)

Proceeding to the limit in the last inequality, we see that A\g < 0 and A; is a normal
to the set G at Eq(z},).
Let us introduce the following lemma [6].

Lemma 3.2. Let @/}i be a solution of system ([22), and let 1y be a solution of system

([@6). Then

/t
0

Thus, ] — ¥y in Li(to, ti; R™), 8] — Be, if j — 0.
From Lemma and assumptions A1-A3,
(23) H (w{,x{,yg,u{,t) —H (wt,x?,y?,u?,t) in L% (to,t1;R™) if j — oo.
Considering the fact that
“Npo () = Mao(wl,) = =Aops () = Mda(af,),
if j — oo, and by using assumptions A3, A4, it is easy to show that:

8- a0 ya (o) >0, 5o

. 2 t1
vl —M dt+E/
to

—)\gpm (ﬂl) — A{qm (xtl) — —AoPax (ac?l) — Mz (x?l) if j — oo.

Now, suppose that ug is a singular control of the problem (Z2II). Then Theorem BIlimplies
that

EAg* (zb, b ul,7) K(m,7)Aug (b, yi ul, 7)

(24) +EAH, (W, ol gl ul,7) Ayg (ak, yl ul, 7 —l—\/_/ ut,ut dt

<0 a.c.,
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where

K0 = [ Qi (4, atovd 1) @
max(7,6)
Q¥ Hay (4t 1) Q2
(25) + QlrHyo (vl yl il t) Qi
+ Qi?t)rHyy (UJg, Iivyi’}wi’} t) Qi(t)@} dt
g;k‘l')‘épzz (:ci) {19 - {;)‘{QM ("Egl) leev
and Q7 is a solution of following matrix equation:
4Q, = (90 (sl ) QL + gy (ad, v ul 1) QL))
o+ (fo (2wl t) QL+ 1y (2l v 1) Q) dwns 1>
1. =1
{T =0,t <.
Using Lemma and the assumptions A1, A2, we obtain
I = Qs in Li(to,t1;R™)  as j — oc.

From the assumptions A1-A4 and (23)) it follows that we can proceed to the limit in
@3): 4
K7 (7,0) — K(1,0).

Finally, taking the limit in (24]) we complete the proof of Theorem a
Finally, we will consider the example given below to illustrate our theory.

Example. Consider the following optimal control problem for a stochastic system with
delay:

dry (t) = (23(t) + u(t)) dt — 2dw:(t), te(0,2],
duo(t) = [23(t — 1) — 23(t) + u*(t)] dt + dwa(t), te€(0,2],
(26) x;(t) =0, te[-1,0], i=1,2,
lu(t)| <1, tel0,2],
lu(t)| <1, telo,2,

J(u) = E/o 21(t) X x2(t) dt — min.

It is easy to show that x1(t) = 0 and z2(t) = w(t) is the solution of system (28]
corresponding to the singular control w(t) = 0. Now, check the condition (I8). For this
example,

K (0,0) =diag[2(2—-6),0].
According to Theorem 2.2 for optimality of admissible control, (¢) = 0 must imply that
vK (0,0)v=2(2-0)v> <0 forall [v]<1,0<6<2.

On the other hand, this is impossible for any v # 0, § # 2. Thus, the control u(t) = 0
is not optimal.
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