Weak convergence of sequences from fractional parts of random variables and applications
Author:
Rita Giuliano
Journal:
Theor. Probability and Math. Statist. 83 (2011), 59-69
MSC (2010):
Primary 60F05, 60G52, 60G70, 11K06; Secondary 62G07, 42A10, 42A61
DOI:
https://doi.org/10.1090/S0094-9000-2012-00841-7
Published electronically:
February 2, 2012
MathSciNet review:
2768848
Full-text PDF Free Access
Abstract |
References |
Similar Articles |
Additional Information
Abstract: We prove results concerning the weak convergence to the uniform distribution on $[0,1]$ of sequences $(Z_n)_{n \geq 1}$ of the form $Z_n = Y_n \pmod 1= \{Y_n \}$, where $(Y_n)_{n \geq 1}$ is a general sequence of real random variables. Applications are given: (i) to the case of partial sums of (i.i.d.) random variables having a distribution belonging to the domain of attraction of a stable law; (ii) to the case of sample maxima of i.i.d. random variables.
References
- Patrick Billingsley, Convergence of probability measures, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0233396
- Patrick Billingsley, Probability and measure, 2nd ed., Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1986. MR 830424
- Luc Devroye, A note on Linnik’s distribution, Statist. Probab. Lett. 9 (1990), no. 4, 305–306. MR 1047827, DOI https://doi.org/10.1016/0167-7152%2890%2990136-U
- William Feller, An introduction to probability theory and its applications. Vol. II., 2nd ed., John Wiley & Sons, Inc., New York-London-Sydney, 1971. MR 0270403
- L. de Haan and S. I. Resnick, Local limit theorems for sample extremes, Ann. Probab. 10 (1982), no. 2, 396–413. MR 647512
- N. Gauvrit and J.-P. Delaye, Pourquoi la loi de Benford n’est pas mystérieuse, Math. & Sci. Hum. 182 (2008), 7–15.
- B. Gnedenko, Sur la distribution limite du terme maximum d’une série aléatoire, Ann. of Math. (2) 44 (1943), 423–453 (French). MR 8655, DOI https://doi.org/10.2307/1968974
- B. V. Gnedenko and A. N. Kolmogorov, Limit distributions for sums of independent random variables, Revised edition, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills., Ont., 1968. Translated from the Russian, annotated, and revised by K. L. Chung; With appendices by J. L. Doob and P. L. Hsu. MR 0233400
- L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. Pure and Applied Mathematics. MR 0419394
- Rachel Kuske and Joseph B. Keller, Rate of convergence to a stable law, SIAM J. Appl. Math. 61 (2000/01), no. 4, 1308–1323. MR 1813681, DOI https://doi.org/10.1137/S0036139998342715
- Ju. V. Linnik, Linear forms and statistical criteria. II, Selected Transl. Math. Statist. and Prob., Vol. 3, Amer. Math. Soc., Providence, R.I., 1962, pp. 41–90. MR 0154361
- Steven J. Miller and Mark J. Nigrini, The modulo 1 central limit theorem and Benford’s law for products, Int. J. Algebra 2 (2008), no. 1-4, 119–130. MR 2417189
- E. Omey, Rates of convergence for densities in extreme value theory, Ann. Probab. 16 (1988), no. 2, 479–486. MR 929058
- Mei Wang and Michael Woodroofe, A local limit theorem for sums of dependent random variables, Statist. Probab. Lett. 9 (1990), no. 3, 207–213. MR 1045185, DOI https://doi.org/10.1016/0167-7152%2890%2990057-E
References
- P. Billingsley, Convergence of Probability Measures, Wiley, 1968. MR 0233396 (38:1718)
- P. Billingsley, Probability and Measure, Wiley, 1986. MR 830424 (87f:60001)
- L. Devroye, A note on Linnik’s distribution, Stat. Probab. Lett. 9 (1990), 305–306. MR 1047827 (91b:60017)
- W. Feller, An Introduction to Probability Theory and its Applications, vol. II, Wiley, 1971. MR 0270403 (42:5292)
- L. de Haan and S. I. Resnick, Local limit theorems for sample extremes, Ann. Probab. 2 (1982), 396–413. MR 647512 (83f:60042)
- N. Gauvrit and J.-P. Delaye, Pourquoi la loi de Benford n’est pas mystérieuse, Math. & Sci. Hum. 182 (2008), 7–15.
- B. V. Gnedenko, Sur la distribution limite du terme maximum d’une série aléatoire, Ann. Math. 44 (1943), 423–453. MR 0008655 (5:41b)
- B. V. Gnedenko and A. N. Kolmogorov, Limit Distributions for Sums of Independent Random Variables, Revised ed., Addison–Wesley, Reading, Mass., 1968. MR 0233400 (38:1722)
- L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley, 1974. MR 0419394 (54:7415)
- R. Kuske and J. B. Keller, Rate of convergence to a stable law, SIAM J. Appl. Math. 61 (2000), no. 4, 1308–1323. MR 1813681 (2001m:60027)
- Yu. V. Linnik, Linear forms and statistical criteria, II, Ukr. Mat. Zh. 5 (1953), 247–290; English transl. in Select. Transl. Math. Stat. Probab. 3 (1963), 41–90. MR 0154361 (27:4310)
- S. J. Miller and M. J. Nigrini, The modulo $1$ central limit theorem and Benford’s law for products, Intern. J. of Alg. 2 (2008) no. 3, 119–130; arXiv:math/0607686v2 [math.PR] 20 Nov 2007. MR 2417189 (2009e:60053)
- E. Omey, Rates of convergence for densities in extreme value theory, Ann. Probab. 16 (1988), no. 2, 479–486. MR 929058 (89h:60054)
- M. Wang and M. Woodroofe, A local limit theorem for sums of dependent random variables, Stat. Probab. Lett. 9 (1990), 207–213. MR 1045185 (91e:60083)
Similar Articles
Retrieve articles in Theory of Probability and Mathematical Statistics
with MSC (2010):
60F05,
60G52,
60G70,
11K06,
62G07,
42A10,
42A61
Retrieve articles in all journals
with MSC (2010):
60F05,
60G52,
60G70,
11K06,
62G07,
42A10,
42A61
Additional Information
Rita Giuliano
Affiliation:
Dipartimento di Matematica, \lq\lq L. Tonelli\rq\rq, Largo B. Pontecorvo 5, Pisa 56100, Italy
Email:
giuliano@dm.unipi.it
Keywords:
Weak convergence,
Weyl criterion,
Fourier coefficient,
characteristic function,
partial sum,
sample maximum,
uniform distribution,
Central Limit Theorem,
domain of attraction,
stable density,
stable law,
unimodal density,
Benford’s law
Received by editor(s):
February 25, 2010
Published electronically:
February 2, 2012
Additional Notes:
Work partially supported by MURST, Italy. The author wishes to thank G. Grekos and E. Janvresse for some helpful discussions, from which the present investigation has arisen
Article copyright:
© Copyright 2012
American Mathematical Society