Maximal coupling procedure and stability of discrete Markov chains. I
Authors:
M. V. Kartashov and V. V. Golomozyĭ
Translated by:
N. Semenov
Journal:
Theor. Probability and Math. Statist. 86 (2013), 93-104
MSC (2010):
Primary 60J45; Secondary 60A05, 60K05
DOI:
https://doi.org/10.1090/S0094-9000-2013-00891-6
Published electronically:
August 20, 2013
MathSciNet review:
2986452
Full-text PDF Free Access
Abstract |
References |
Similar Articles |
Additional Information
Abstract: Two discrete Markov chains whose one-step transition probabilities are close to each other in the uniform total variation norm or in the $V$-norm are considered. The problem of stability of the transition probabilities for an arbitrary number of steps is investigated. The main assumption is either the uniform mixing or $V$-mixing condition. In particular, we prove that the uniform distance between the distributions of the chains after an arbitrary number of steps does not exceed $\varepsilon /(1-\rho )$, where $\varepsilon$ is the uniform distance between the transition matrices and where $\rho$ is the uniform mixing coefficient. A number of general examples are considered. The proofs are based on the maximal coupling procedure that maximizes the one-step coupling probabilities.
References
- W. Doeblin, Exposé de la théorie des chaînes simples constantes de Markov à un nombre fini d’états, Mathematique de l’Union Interbalkanique 2 (1938), 77–105.
- Randal Douc, Gersende Fort, and Arnaud Guillin, Subgeometric rates of convergence of $f$-ergodic strong Markov processes, Stochastic Process. Appl. 119 (2009), no. 3, 897–923. MR 2499863, DOI https://doi.org/10.1016/j.spa.2008.03.007
- R. Douc, E. Moulines, and Jeffrey S. Rosenthal, Quantitative bounds on convergence of time-inhomogeneous Markov chains, Ann. Appl. Probab. 14 (2004), no. 4, 1643–1665. MR 2099647, DOI https://doi.org/10.1214/105051604000000620
- R. Douc, E. Moulines, and Jeffrey S. Rosenthal, Quantitative bounds on convergence of time-inhomogeneous Markov chains, Ann. Appl. Probab. 14 (2004), no. 4, 1643–1665. MR 2099647, DOI https://doi.org/10.1214/105051604000000620
- Randal Douc, Gersende Fort, Eric Moulines, and Philippe Soulier, Practical drift conditions for subgeometric rates of convergence, Ann. Appl. Probab. 14 (2004), no. 3, 1353–1377. MR 2071426, DOI https://doi.org/10.1214/105051604000000323
- Randal Douc, Eric Moulines, and Philippe Soulier, Computable convergence rates for sub-geometric ergodic Markov chains, Bernoulli 13 (2007), no. 3, 831–848. MR 2348753, DOI https://doi.org/10.3150/07-BEJ5162
- William Feller, An introduction to probability theory and its applications. Vol. II, John Wiley & Sons, Inc., New York-London-Sydney, 1966. MR 0210154
- V. V. Golomozyĭ, Stability of non-homogeneous Markov chains, Visnyk Kyiv Univ., Ser. Fiz. Mat. Nauk 4 (2009), 10–15. (Ukrainian)
- V. V. Golomoziĭ, A subgeometric estimate for the stability of time-homogeneous Markov chains, Teor. Ĭmovīr. Mat. Stat. 81 (2009), 31–45 (Ukrainian, with English, Russian and Ukrainian summaries); English transl., Theory Probab. Math. Statist. 81 (2010), 35–50. MR 2667308, DOI https://doi.org/10.1090/S0094-9000-2010-00808-8
- Søren F. Jarner and Gareth O. Roberts, Polynomial convergence rates of Markov chains, Ann. Appl. Probab. 12 (2002), no. 1, 224–247. MR 1890063, DOI https://doi.org/10.1214/aoap/1015961162
- N. V. Kartashov, Strong stable Markov chains, VSP, Utrecht; TBiMC Scientific Publishers, Kiev, 1996. MR 1451375
- N. V. Kartashov, Exponential asymptotics of matrices of the Markov renewal, Asymptotic Problems for Stochastic Processes, Preprint 77-24, Institute of Mathematics of Academy of Science off Ukraine, Kiev, 1977, 2–43. (Russian)
- M. V. Kartashov, Boundedness, limits, and stability of solutions of an inhomogeneous perturbation of a renewal equation on a half-line, Teor. Ĭmovīr. Mat. Stat. 81 (2009), 65–75 (Ukrainian, with English and Ukrainian summaries); English transl., Theory Probab. Math. Statist. 81 (2010), 71–83. MR 2667311, DOI https://doi.org/10.1090/S0094-9000-2010-00811-8
- M. V. Kartashov and V. V. Golomoziĭ, The mean coupling time of independent discrete renewal processes, Teor. Ĭmovīr. Mat. Stat. 84 (2011), 77–83 (Ukrainian, with English, Russian and Ukrainian summaries); English transl., Theory Probab. Math. Statist. 84 (2012), 79–86. MR 2857418, DOI https://doi.org/10.1090/S0094-9000-2012-00855-7
- I. N. Kovalenko and N. Ju. Kuznecov, Postroenie vlozhennogo protsessa vosstanovleniya dlya sushchestvenno mnogomernykh protsessov teorii massovogo obsluzhivaniya i ego primenenie k polucheniyu predel′nykh teorem, Preprint 80 [Preprint 80], vol. 12, Akad. Nauk Ukrain. SSR, Inst. Kibernet., Kiev, 1980 (Russian). MR 612478
- Torgny Lindvall, On coupling of discrete renewal processes, Z. Wahrsch. Verw. Gebiete 48 (1979), no. 1, 57–70. MR 533006, DOI https://doi.org/10.1007/BF00534882
- Torgny Lindvall, Lectures on the coupling method, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1992. A Wiley-Interscience Publication. MR 1180522
- S. P. Meyn and R. L. Tweedie, Markov chains and stochastic stability, Communications and Control Engineering Series, Springer-Verlag London, Ltd., London, 1993. MR 1287609
- Peter Ney, A refinement of the coupling method in renewal theory, Stochastic Process. Appl. 11 (1981), no. 1, 11–26. MR 608004, DOI https://doi.org/10.1016/0304-4149%2881%2990018-1
- E. Nummelin, A splitting technique for Harris recurrent Markov chains, Z. Wahrsch. Verw. Gebiete 43 (1978), no. 4, 309–318. MR 0501353, DOI https://doi.org/10.1007/BF00534764
- Esa Nummelin, General irreducible Markov chains and nonnegative operators, Cambridge Tracts in Mathematics, vol. 83, Cambridge University Press, Cambridge, 1984. MR 776608
- Esa Nummelin and Pekka Tuominen, Geometric ergodicity of Harris recurrent Markov chains with applications to renewal theory, Stochastic Process. Appl. 12 (1982), no. 2, 187–202. MR 651903, DOI https://doi.org/10.1016/0304-4149%2882%2990041-2
- E. Nummelin and R. L. Tweedie, Geometric ergodicity and $R$-positivity for general Markov chains, Ann. Probability 6 (1978), no. 3, 404–420. MR 474504, DOI https://doi.org/10.1214/aop/1176995527
- S. T. Rachev, The Monge-Kantorovich problem on mass transfer and its applications in stochastics, Teor. Veroyatnost. i Primenen. 29 (1984), no. 4, 625–653 (Russian). MR 773434
- Hermann Thorisson, Coupling, stationarity, and regeneration, Probability and its Applications (New York), Springer-Verlag, New York, 2000. MR 1741181
- Pekka Tuominen and Richard L. Tweedie, Subgeometric rates of convergence of $f$-ergodic Markov chains, Adv. in Appl. Probab. 26 (1994), no. 3, 775–798. MR 1285459, DOI https://doi.org/10.2307/1427820
- J. N. Corcoran and R. L. Tweedie, Perfect sampling of ergodic Harris chains, Ann. Appl. Probab. 11 (2001), no. 2, 438–451. MR 1843053, DOI https://doi.org/10.1214/aoap/1015345299
- V. M. Zolotarev, Modern Theory of Summation of Independent Random Variables, “Nauka”, Moscow, 1986; English transl., VSP, Utrecht, the Netherlands, Tokyo, Japan, 1997.
References
- W. Doeblin, Exposé de la théorie des chaînes simples constantes de Markov à un nombre fini d’états, Mathematique de l’Union Interbalkanique 2 (1938), 77–105.
- R. Douc, G. Fort, and A. Guillin, Subgeometric rates of convergence of f-ergodic strong Markov processes, Stoch. Process. Appl. 119 (2009), no. 3, 897–923. MR 2499863 (2010j:60184)
- R. Douc, E. Moulines, and J. S. Rosenthal, Quantitative bounds for geometric convergence rates of Markov chains, Ann. Appl. Probab. 14 (2004), 1643–1664. MR 2099647 (2005i:60146)
- R. Douc, E. Moulines, and J. S. Rosenthal, Quantitative bounds on convergence of time-inhomogeneous Markov chains, Ann. Appl. Probab. 14 (2004), no. 4, 1643–1665. MR 2099647 (2005i:60146)
- R. Douc, E. Moulines, and P. Soulier, Practical drift conditions for subgeometric rates of convergence, Ann. Appl. Probab. 14 (2004), no. 4, 1353–1377. MR 2071426 (2005e:60156)
- R. Douc, E. Moulines, and P. Soulier, Computable convergence rates for subgeometrically ergodic Markov Chains, Bernoulli 13 (2007), no. 3, 831–848. MR 2348753 (2008j:60172)
- W. Feller, An Introduction to Probability Theory and its Applications, vol. 1, John Wiley & Sons, New York, 1966. MR 0210154 (35:1048)
- V. V. Golomozyĭ, Stability of non-homogeneous Markov chains, Visnyk Kyiv Univ., Ser. Fiz. Mat. Nauk 4 (2009), 10–15. (Ukrainian)
- V. V. Golomozyĭ, A subgeometric estimate of the stability for time-homogeneous Markov chains, Teor. Imovir. Matem. Statyst. 81 (2010), 31–46; English transl. in Theor. Probability and Math. Statist. 81 (2010), 35–50. MR 2667308 (2011c:60232)
- S. F. Jarner and G. O. Roberts, Polynomial convergence rates of Markov chains, Ann. Appl. Probab. 12 (2001), 224–247. MR 1890063 (2003c:60117)
- N. V. Kartashov, Strong Stable Markov Chains, VSP/“TViMS”, Utrecht/Kiev, The Netherlands/Ukraine, 1996. MR 1451375 (99e:60150)
- N. V. Kartashov, Exponential asymptotics of matrices of the Markov renewal, Asymptotic Problems for Stochastic Processes, Preprint 77-24, Institute of Mathematics of Academy of Science off Ukraine, Kiev, 1977, 2–43. (Russian)
- M. V. Kartashov, Boundedness, limits, and stability of solutions of a perturbation of a non-homogeneous renewal equation on a semiaxis, Teor. Imovir. Matem. Statyst. 81 (2009), 65–75; English transl. in Theor. Probability and Math. Statist. 81 (2010), 71–83. MR 2667311 (2011f:60154)
- M. V. Kartashov and V. V. Golomozyĭ, The mean coupling time for independent discrete renewal processes, Teor. Imovir. Matem. Statyst. 84 (2011), 78–85; English transl. in Theor. Probability and Math. Statist. 84 (2012), 79–86. MR 2857418 (2012f:60306)
- I. N. Kovalenko and N. Yu. Kuznetsov, A construction of an embedded renewal process for essentially multidimensional processes of queueing theory and application for proving limit theorems, Preprint 80-12, Institute of Cybernetics, Academy of Science of Ukraine, Kiev, 1980. (Russian) MR 612478 (82i:60142)
- T. Lindvall, On coupling of discrete renewal sequences, Z. Wahrsch. Verw. Gebiete 48 (1979), 57–70. MR 533006 (80g:60091)
- T. Lindvall, Lectures on the Coupling Method, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons Inc., New York, 1992. A Wiley-Interscience Publication. MR 1180522 (94c:60002)
- S. P. Meyn and R. L. Tweedie, Markov Chains and Stochastic Stability, Communications and Control Engineering Series, Springer-Verlag London Ltd., London, 1993. MR 1287609 (95j:60103)
- P. Ney, A refinement of the coupling method in renewal theory, Stoch. Process. Appl. 11 (1981), 11–26. MR 608004 (82d:60169)
- E. Nummelin, A splitting technique for Harris recurrent chains, Z. Wahrsch. Verw. Gebiete 43 (1978), 309–318. MR 0501353 (58:18732)
- E. Nummelin, General Irreducible Markov Chains and Nonnegative Operators, Cambridge University Press, Cambridge, 1984. MR 776608 (87a:60074)
- E. Numemelin and P. Tuominen, Geometric ergodicity of Harris recurrent Markov chains with applications to renewal theory, Stoch. Process. Appl. 12 (1982), 187–202. MR 651903 (83f:60089)
- E. Nummelin and R. L. Tweedie, Geometric ergodicity and R-positivity for general Markov chains, Ann. Probab. 6 (1978), 404–420. MR 0474504 (57:14143)
- S. T. Rachev, The Monge–Kantorovich mass transference problem and its stochastic applications, Teor. Veroyatnost. Primenen. 29 (1984), no. 4, 625–653; English transl. in Theory Probab. Appl. 29 (1984), no. 4, 647–676. MR 773434 (86m:60026)
- H. Thorisson, Coupling, Stationarity, and Regeneration, Springer, New York, 2000. MR 1741181 (2001b:60003)
- P. Tuominen and R. Tweedie, Subgeometric rates of convergence of $f$-ergodic Markov chains, Adv. Appl. Probab. 26 (1994), 775–798. MR 1285459 (95m:60097)
- R. L. Tweedie and J. N. Corcoran, Perfect sampling of ergodic Harris chains, Ann. Appl. Probab. 11 (2001), no. 2, 438–451. MR 1843053 (2002g:60111)
- V. M. Zolotarev, Modern Theory of Summation of Independent Random Variables, “Nauka”, Moscow, 1986; English transl., VSP, Utrecht, the Netherlands, Tokyo, Japan, 1997.
Similar Articles
Retrieve articles in Theory of Probability and Mathematical Statistics
with MSC (2010):
60J45,
60A05,
60K05
Retrieve articles in all journals
with MSC (2010):
60J45,
60A05,
60K05
Additional Information
M. V. Kartashov
Affiliation:
Department of Probability Theory, Statistics, and Actuarial Mathematics, Faculty for Mechanics and Mathematics, National Taras Shevchenko University, Academician Glushkov Avenue, 4E, Kiev 03127, Ukraine
Email:
nkartashov@skif.com.ua
V. V. Golomozyĭ
Affiliation:
Department of Probability Theory, Statistics, and Actuarial Mathematics, Faculty for Mechanics and Mathematics, National Taras Shevchenko University, Academician Glushkov Avenue, 4E, Kiev 03127, Ukraine
Keywords:
Coupling theory,
coupling method,
maximal coupling,
discrete Markov chains,
stability of distributions
Received by editor(s):
October 7, 2011
Published electronically:
August 20, 2013
Article copyright:
© Copyright 2013
American Mathematical Society