Maximal coupling procedure and stability of discrete Markov chains. II
Authors:
M. V. Kartashov and V. V. Golomozyĭ
Translated by:
S. Kvasko
Journal:
Theor. Probability and Math. Statist. 87 (2013), 65-78
MSC (2010):
Primary 60J45; Secondary 60A05, 60K05
DOI:
https://doi.org/10.1090/S0094-9000-2014-00905-9
Published electronically:
March 21, 2014
MathSciNet review:
3241447
Full-text PDF Free Access
Abstract |
References |
Similar Articles |
Additional Information
Abstract: Two discrete Markov chains whose one-step transition probabilities are close to each other in the uniform total variation norm or in the $V$-norm are considered. The problem of stability of the transition probabilities over an arbitrary number of steps is investigated. The main assumption is that either the uniform mixing or $V$-mixing condition holds. In particular, we prove that the uniform distance between the distributions of the chains after an arbitrary number of steps does not exceed $\varepsilon /(1-\rho )$, where $\varepsilon$ is the uniform distance between the transition matrices and where $\rho$ is the uniform mixing coefficient. A number of general examples are considered. The proofs are based on the maximal coupling procedure that maximizes the one-step coupling probabilities.
References
- W. Doeblin, Expose de la theorie des chaines simples constantes de Markov a un nomber fini d’estats, Mathematique de l’Union Interbalkanique 2 (1938), 77–105.
- William Feller, An introduction to probability theory and its applications. Vol. II, John Wiley & Sons, Inc., New York-London-Sydney, 1966. MR 0210154
- N. V. Kartashov, Strong stable Markov chains, VSP, Utrecht; TBiMC Scientific Publishers, Kiev, 1996. MR 1451375
- N. V. Kartashov, Exponential asymptotics of the matrix of a Markov renewal, Asymptotic Problems for Stochastic Processes, Preprint # 77-24, Institute of Mathematics, Academy of Science of Ukraine, Kiev, 1977, pp. 2–43. (Russian)
- E. Nummelin, A splitting technique for Harris recurrent Markov chains, Z. Wahrsch. Verw. Gebiete 43 (1978), no. 4, 309–318. MR 0501353, DOI https://doi.org/10.1007/BF00534764
- E. Nummelin and R. L. Tweedie, Geometric ergodicity and $R$-positivity for general Markov chains, Ann. Probability 6 (1978), no. 3, 404–420. MR 474504, DOI https://doi.org/10.1214/aop/1176995527
- Torgny Lindvall, On coupling of discrete renewal processes, Z. Wahrsch. Verw. Gebiete 48 (1979), no. 1, 57–70. MR 533006, DOI https://doi.org/10.1007/BF00534882
- I. N. Kovalenko and N. Ju. Kuznecov, Postroenie vlozhennogo protsessa vosstanovleniya dlya sushchestvenno mnogomernykh protsessov teorii massovogo obsluzhivaniya i ego primenenie k polucheniyu predel′nykh teorem, Preprint 80 [Preprint 80], vol. 12, Akad. Nauk Ukrain. SSR, Inst. Kibernet., Kiev, 1980 (Russian). MR 612478
- Peter Ney, A refinement of the coupling method in renewal theory, Stochastic Process. Appl. 11 (1981), no. 1, 11–26. MR 608004, DOI https://doi.org/10.1016/0304-4149%2881%2990018-1
- Esa Nummelin and Pekka Tuominen, Geometric ergodicity of Harris recurrent Markov chains with applications to renewal theory, Stochastic Process. Appl. 12 (1982), no. 2, 187–202. MR 651903, DOI https://doi.org/10.1016/0304-4149%2882%2990041-2
- Esa Nummelin, General irreducible Markov chains and nonnegative operators, Cambridge Tracts in Mathematics, vol. 83, Cambridge University Press, Cambridge, 1984. MR 776608
- V. M. Zolotarev, Modern Theory of Summation of Independent Random Variables, “Nauka”, Moscow, 1986; English transl., VSP, Utrecht, the Netherlands–Tokyo, Japan, 1997.
- S. T. Rachev, The Monge-Kantorovich problem on mass transfer and its applications in stochastics, Teor. Veroyatnost. i Primenen. 29 (1984), no. 4, 625–653 (Russian). MR 773434
- Torgny Lindvall, Lectures on the coupling method, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1992. A Wiley-Interscience Publication. MR 1180522
- S. P. Meyn and R. L. Tweedie, Markov chains and stochastic stability, Communications and Control Engineering Series, Springer-Verlag London, Ltd., London, 1993. MR 1287609
- Pekka Tuominen and Richard L. Tweedie, Subgeometric rates of convergence of $f$-ergodic Markov chains, Adv. in Appl. Probab. 26 (1994), no. 3, 775–798. MR 1285459, DOI https://doi.org/10.2307/1427820
- J. N. Corcoran and R. L. Tweedie, Perfect sampling of ergodic Harris chains, Ann. Appl. Probab. 11 (2001), no. 2, 438–451. MR 1843053, DOI https://doi.org/10.1214/aoap/1015345299
- Hermann Thorisson, Coupling, stationarity, and regeneration, Probability and its Applications (New York), Springer-Verlag, New York, 2000. MR 1741181
- Søren F. Jarner and Gareth O. Roberts, Polynomial convergence rates of Markov chains, Ann. Appl. Probab. 12 (2002), no. 1, 224–247. MR 1890063, DOI https://doi.org/10.1214/aoap/1015961162
- R. Douc, E. Moulines, and Jeffrey S. Rosenthal, Quantitative bounds on convergence of time-inhomogeneous Markov chains, Ann. Appl. Probab. 14 (2004), no. 4, 1643–1665. MR 2099647, DOI https://doi.org/10.1214/105051604000000620
- R. Douc, E. Moulines, and Jeffrey S. Rosenthal, Quantitative bounds on convergence of time-inhomogeneous Markov chains, Ann. Appl. Probab. 14 (2004), no. 4, 1643–1665. MR 2099647, DOI https://doi.org/10.1214/105051604000000620
- Randal Douc, Gersende Fort, Eric Moulines, and Philippe Soulier, Practical drift conditions for subgeometric rates of convergence, Ann. Appl. Probab. 14 (2004), no. 3, 1353–1377. MR 2071426, DOI https://doi.org/10.1214/105051604000000323
- Randal Douc, Eric Moulines, and Philippe Soulier, Computable convergence rates for sub-geometric ergodic Markov chains, Bernoulli 13 (2007), no. 3, 831–848. MR 2348753, DOI https://doi.org/10.3150/07-BEJ5162
- Randal Douc, Gersende Fort, and Arnaud Guillin, Subgeometric rates of convergence of $f$-ergodic strong Markov processes, Stochastic Process. Appl. 119 (2009), no. 3, 897–923. MR 2499863, DOI https://doi.org/10.1016/j.spa.2008.03.007
- V. V. Golomozyĭ, Stability of non-homogeneous Markov chains, Visnyk Kyiv Univ., ser. fiz. mat. nauk 4 (2009), 10–15. (Ukrainian)
- V. V. Golomoziĭ, A subgeometric estimate for the stability of time-homogeneous Markov chains, Teor. Ĭmovīr. Mat. Stat. 81 (2009), 31–45 (Ukrainian, with English, Russian and Ukrainian summaries); English transl., Theory Probab. Math. Statist. 81 (2010), 35–50. MR 2667308, DOI https://doi.org/10.1090/S0094-9000-2010-00808-8
- M. V. Kartashov, Boundedness, limits, and stability of solutions of an inhomogeneous perturbation of a renewal equation on a half-line, Teor. Ĭmovīr. Mat. Stat. 81 (2009), 65–75 (Ukrainian, with English and Ukrainian summaries); English transl., Theory Probab. Math. Statist. 81 (2010), 71–83. MR 2667311, DOI https://doi.org/10.1090/S0094-9000-2010-00811-8
- M. V. Kartashov and V. V. Golomoziĭ, The mean coupling time of independent discrete renewal processes, Teor. Ĭmovīr. Mat. Stat. 84 (2011), 77–83 (Ukrainian, with English, Russian and Ukrainian summaries); English transl., Theory Probab. Math. Statist. 84 (2012), 79–86. MR 2857418, DOI https://doi.org/10.1090/S0094-9000-2012-00855-7
- M. V. Kartashov and V. V. Golomoziĭ, Maximal coupling and stability of discrete Markov chains. I, Teor. Ĭmovīr. Mat. Stat. 86 (2011), 81–91 (Ukrainian, with English, Russian and Ukrainian summaries); English transl., Theory Probab. Math. Statist. 86 (2013), 93–104. MR 2986452, DOI https://doi.org/10.1090/S0094-9000-2013-00891-6
References
- W. Doeblin, Expose de la theorie des chaines simples constantes de Markov a un nomber fini d’estats, Mathematique de l’Union Interbalkanique 2 (1938), 77–105.
- W. Feller, An Intoduction to Probability Theory and its Applications, vol. 1, John Wiley & Sons, New York, 1966. MR 0210154 (35:1048)
- N. V. Kartashov, Strong Stable Markov Chains, VSP/TViMS, Utrecht/Kiev, The Netherlands/Ukraine, 1996. MR 1451375 (99e:60150)
- N. V. Kartashov, Exponential asymptotics of the matrix of a Markov renewal, Asymptotic Problems for Stochastic Processes, Preprint # 77-24, Institute of Mathematics, Academy of Science of Ukraine, Kiev, 1977, pp. 2–43. (Russian)
- E. Nummelin, A splitting technique for Harris recurrent chains, Z. Wahrscheinlichkeitstheorie verw. Geb. 43 (1978), 309–318. MR 0501353 (58:18732)
- E. Nummelin and R. L. Tweedie, Geometric ergodicity and R-positivity for general Markov chains, Ann. Probab. 6 (1978), 404–420. MR 0474504 (57:14143)
- T. Lindvall, On coupling of discrete renewal sequences, Z. Wahrscheinlichkeitstheorie verw. Geb. 48 (1979), 57–70. MR 533006 (80g:60091)
- I. N. Kovalenko and N. Yu. Kuznetsov, The construction of the embedded renewal process for essentially multidimensional queueing processes and its application for deriving the limit theorems, Preprint # 80–12, Institute of Cybernetics, Academy of Science of Ukraine, Kiev, 1980. (Russian) MR 612478 (82i:60142)
- P. Ney, A refinement of the coupling method in renewal theory, Stochastic Processes Appl. 11 (1981), 11–26. MR 608004 (82d:60169)
- E. Numemelin and P. Tuominen, Geometric ergodicity of Harris recurrent Markov chains with applicatoins to renewal theory, Stoch. Proc. Appls. 12 (1982), 187–202. MR 651903 (83f:60089)
- E. Nummelin, General Irreducible Markov Chains and Nonnegative Operators, Cambridge University Press, Cambridge, 1984. MR 776608 (87a:60074)
- V. M. Zolotarev, Modern Theory of Summation of Independent Random Variables, “Nauka”, Moscow, 1986; English transl., VSP, Utrecht, the Netherlands–Tokyo, Japan, 1997.
- S. T. Rachev, The Monge–Kantorovich mass transference problem and its stochastic applications, Teor. Veroyatnost. Primenen, 29 (1984), no. 4, 625–653; English transl. in Theory Probab. Appl. 29 (1984), no. 4, 647–676. MR 773434 (86m:60026)
- T. Lindvall, Lectures on the Coupling Method, John Wiley & Sons, New York, 1992. MR 1180522 (94c:60002)
- S. P. Mayn and R. L. Tweedie, Markov Chains and Stochastic Stability, Springer-Verlag London, Ltd., London, 1993. MR 1287609 (95j:60103)
- P. Tuominen and R. Tweedie, Subgeometric rates of convergence of f-ergodic Markov chains, Adv. Appl. Probab. 26 (1994), 775–798. MR 1285459 (95m:60097)
- R. L. Tweedie and J. N. Corcoran, Perfect sampling of ergodic Harris chains, Ann. Appl. Probab. 11 (2001), no. 2, 438–451. MR 1843053 (2002g:60111)
- H. Thorisson, Coupling, Stationarity, and Regeneration, Springer, New York, 2000. MR 1741181 (2001b:60003)
- S. F. Jarner and G. O. Roberts, Polynomial convergence rates of Markov chains, Ann. Appl. Probab. 12 (2001), 224–247. MR 1890063 (2003c:60117)
- R. Douc, E. Moulines, and J. S. Rosenthal, Quantitative bounds for geometric convergence rates of Markov chains, Ann. Appl. Probab. 14 (2004), 1643–1664. MR 2099647 (2005i:60146)
- R. Douc, E. Moulines, and J. S. Rothenthal, Quantitative bounds on convergence of time-inhomogeneous Markov chains, Ann. Appl. Probab. 14 (2004), no. 4, 1643–1665. MR 2099647 (2005i:60146)
- R. Douc, E. Moulines, and P. Soulier, Practical drift conditions for subgeometric rates of convergence, Ann. Appl. Probab. 14 (2004), no. 4, 1353–1377. MR 2071426 (2005e:60156)
- R. Douc, E. Moulines, and P. Soulier, Computable convergence rates for subgeometrically ergodic Markov Chains, Bernoulli 13 (2007), no. 3, 831–848. MR 2348753 (2008j:60172)
- R. Douc, G. Fort, and A. Guillin, Subgeometric rates of convergence of f-ergodic strong Markov processes, Stoch. Process. Appl. 119 (2009), no. 3, 897–923. MR 2499863 (2010j:60184)
- V. V. Golomozyĭ, Stability of non-homogeneous Markov chains, Visnyk Kyiv Univ., ser. fiz. mat. nauk 4 (2009), 10–15. (Ukrainian)
- V. V. Golomozyĭ, A subgeometric estimate for the stability of time-homogeneous Markov chains, Teor. Imovir. Mat. Stat. 81 (2010), 31–45; English transl. in Theory Probab. Math. Statist. 81 (2010), 35–50. MR 2667308 (2011c:60232)
- M. V. Kartashov, Boundedness, limits, and stability of solutions of an inhomogeneous perturbation of a renewal equation on a half-line, Teor. Imovir. Mat. Stat. 81 (2009), 65–75; English transl. in Theory Probab. Math. Statist. 81 (2010), 71–83. MR 2667311 (2011f:60154)
- M. V. Kartashov and V. V. Golomozyĭ, The mean coupling time of independent discrete renewal processes, Teor. Imovir. Mat. Stat. 84 (2011), 77–83; English transl. in Theory Probab. Math. Statist. 84 (2012), 79–86. MR 2857418 (2012f:60306)
- M. V. Kartashov and V. V. Golomozyĭ, Maximal coupling and stability of discrete Markov chains. I, Teor. Imovir. Mat. Stat. 86 (2011), 81–91. MR 2986452
Similar Articles
Retrieve articles in Theory of Probability and Mathematical Statistics
with MSC (2010):
60J45,
60A05,
60K05
Retrieve articles in all journals
with MSC (2010):
60J45,
60A05,
60K05
Additional Information
M. V. Kartashov
Affiliation:
Department of Probability Theory, Statistics, and Actuarial Mathematics, Faculty for Mechanics and Mathematics, National Taras Shevchenko University, Academician Glushkov Avenue, 4E, Kiev 03127, Ukraine
Email:
nkartashov@skif.com.ua
V. V. Golomozyĭ
Affiliation:
Department of Probability Theory, Statistics, and Actuarial Mathematics, Faculty for Mechanics and Mathematics, National Taras Shevchenko University, Academician Glushkov Avenue, 4E, Kiev 03127, Ukraine
Keywords:
Coupling theory,
coupling method,
maximal coupling,
discrete Markov chains,
stability of distributions
Received by editor(s):
October 7, 2011
Published electronically:
March 21, 2014
Article copyright:
© Copyright 2014
American Mathematical Society