Functional law of the iterated logarithm type for a skew Brownian motion
Author:
I. H. Krykun
Translated by:
S. Kvasko
Original publication:
Teoriya Imovirnostei ta Matematichna Statistika, tom 87 (2012).
Journal:
Theor. Probability and Math. Statist. 87 (2013), 79-98
MSC (2000):
Primary 60F10; Secondary 60F17
DOI:
https://doi.org/10.1090/S0094-9000-2014-00906-0
Published electronically:
March 21, 2014
MathSciNet review:
3241448
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The functional law of the iterated logarithm is proved for a skew Brownian motion.
- 1. A. V. Bulinskiĭ, A new variant of the functional law of the iterated logarithm, Teor. Veroyatnost. i Primenen. 25 (1980), no. 3, 502–512 (Russian, with English summary). MR 582580
- 2. M. I. Freidlin and A. D. Wentzell, Random perturbations of dynamical systems, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 260, Springer-Verlag, New York, 1984. Translated from the Russian by Joseph Szücs. MR 722136
- 3. I. I. Gikhman and A. V. Skorokhod, Stokhasticheskie differentsial′nye uravneniya i ikh prilozheniya, “Naukova Dumka”, Kiev, 1982 (Russian). MR 678374
- 4. S. Ya. Makhno, A limit theorem for stochastic equations with local time, Teor. Ĭmovīr. Mat. Stat. 64 (2001), 106–109 (Ukrainian, with Ukrainian summary); English transl., Theory Probab. Math. Statist. 64 (2002), 123–127. MR 1922958
- 5. A. N. Širjaev, Veroyatnost′, “Nauka”, Moscow, 1980 (Russian). MR 609521
- 6. Tzuu-Shuh Chiang and Shuenn-Jyi Sheu, Small perturbation of diffusions in inhomogeneous media, Ann. Inst. H. Poincaré Probab. Statist. 38 (2002), no. 3, 285–318 (English, with English and French summaries). MR 1899455, https://doi.org/10.1016/S0246-0203(01)01101-3
- 7. H. J. Engelbert and W. Schmidt, Strong Markov continuous local martingales and solutions of one-dimensional stochastic differential equations. III, Math. Nachr. 151 (1991), 149–197. MR 1121203, https://doi.org/10.1002/mana.19911510111
- 8. J. M. Harrison and L. A. Shepp, On skew Brownian motion, Ann. Probab. 9 (1981), no. 2, 309–313. MR 606993
- 9. K. Itô and H. P. McKean Jr., Brownian motions on a half line, Illinois J. Math. 7 (1963), 181–231. MR 0154338
- 10. J.-F. Le Gall, One-dimensional stochastic differential equations involving the local times of the unknown process, Stochastic analysis and applications (Swansea, 1983) Lecture Notes in Math., vol. 1095, Springer, Berlin, 1984, pp. 51–82. MR 777514, https://doi.org/10.1007/BFb0099122
- 11. Sergey Ya. Makhno, Functional iterated logarithm law for stochastic equations, Stochastics Stochastics Rep. 70 (2000), no. 3-4, 221–239. MR 1800957, https://doi.org/10.1080/17442500008834253
- 12. Shintaro Nakao, On the pathwise uniqueness of solutions of one-dimensional stochastic differential equations, Osaka Math. J. 9 (1972), 513–518. MR 326840
- 13. V. Strassen, An invariance principle for the law of the iterated logarithm, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 3 (1964), 211–226 (1964). MR 175194, https://doi.org/10.1007/BF00534910
Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2000): 60F10, 60F17
Retrieve articles in all journals with MSC (2000): 60F10, 60F17
Additional Information
I. H. Krykun
Affiliation:
Department of Probability Theory and Mathematical Statistics, Institute for Applied Mathematics and Mechanics, National Academy of Science of Ukraine, Luxemburg Street, 74, Donetsk, 83114, Ukraine
Email:
ikrykun@iamm.ac.donetsk.ua
DOI:
https://doi.org/10.1090/S0094-9000-2014-00906-0
Keywords:
Stochastic equations,
local time,
large deviation principle,
functional law of the iterated logarithm
Received by editor(s):
November 9, 2010
Published electronically:
March 21, 2014
Article copyright:
© Copyright 2014
American Mathematical Society