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FUNCTIONAL LAW OF THE ITERATED LOGARITHM TYPE
FOR A SKEW BROWNIAN MOTION

UDC 519.21

I. H. KRYKUN

ABSTRACT. The functional law of the iterated logarithm is proved for a skew Brow-
nian motion.

1. INTRODUCTION

The functional law of the iterated logarithm for the Wiener process was proved in
a well-known paper by Strassen [I3]. A modification of this result for more general
normalizing functions was proposed by Bulinskii [I]. A functional law of the iterated
logarithm for solutions of It6 stochastic differential equations with a jump process was
obtained by Makhno [I1].

The skew Brownian process studied in this paper was introduced by It6 and McK-
ean [9] in terms of elliptic differential operators of the first order according to the Feller
classification of one-dimensional diffusion processes. The skew Brownian motion has
been studied by many authors since then. Among those authors are, to mention a few,
Harrison and Shepp [§] and Le Gall [I0], who considered this process as a solution of a
stochastic equation with local time. In [10], as well as in [4] and [7], some interrelations
were proposed between the solutions of stochastic equations with local time and solutions
of It6’s equations.

The functional law of the iterated logarithm for a skew Brownian motion is studied in
this paper. In doing so, we follow the approach of the paper [4].

The paper is organized as follows. Notation and the main results are given in Section[2]
An auxiliary Theorem []is proved in Section Bl Section @l is devoted to the proof of some
lemmas and Theorem [l

2. MAIN RESULTS

Consider a skew Brownian motion as a solution of the following stochastic differential
equation with local time:

(1) £(t) =z + BLE(t,0) + w(t), te0,1].
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If |3] < 1, then equation ([l has a strong solution [8]. This means that there exists
a continuous semimartingale (£(t), ) on the probability space (€, S, S, P) equipped
with a flow of o-algebras Sy, t € [0, 1], where a standard one-dimensional Wiener process
(w(t),3¢) leaves, such that the symmetric local time

6—0

(2) L5(t,0) = 1im21—6/0 I_s.65)(&(s))ds

exists almost surely and equation (IJ) is satisfied almost surely.

In relation (Z) and throughout this paper, I4(z) denotes the indicator of a set A.
Let R be the real line and let B(R) be the Borel o-algebra in R. The space of continuous
functions f on [0, 1] assuming values in R is denoted by C[0,1]. Let B(C][0,1]) be the
Borel o-algebra of C'[0, 1] and let the norm in C[0,1] be given by [[x|| = sup,¢jo 17 |2(t)]-
In what follows we use the standard notation f for the density of an absolutely continuous
function f, namely

£ = 1@+ [ fe)ds
Further, let

1
H?[0,1] = {f: f(¢) is absolutely continuous and such that / If () dt < oo} .
0

Recall the following property of absolutely continuous functions (throughout this pa-
per, the symbol Leb(A) denotes the Lebesgue measure of a set A):

(3) Leb (t €[0,1): f(t) =0, f(t) £ 0) = 0.
We put
—1, forx <0,
sgnx = < 0, for z =0,

1, for x > 0.

Let (X,B(X)) be a metric space equipped with a metric p, where B(X) is the Borel
o-algebra in the space X. Let I(x): X — [0,00] be a lower semicontinuous functional
such that {x: I(x) < a} is a compact set for all a > 0.

We say that a family of probability measures {yu.}, € > 0, defined on X satisfies the
large deviation principle with a normalizing coefficient k(¢) such that lim._,¢ k(¢) = +o0
and with an action functional I(z) if

a) for every open set G € B(X),

e 1 .
hgn_}(r)lf 5] Inp.(G) > —inf{I(z),z € G};

b) for every closed set F' € B(X),

1
limsup — Inp.(F) < —inf{I(z),z € F'}.
e—0 k(5)

Next we formulate the contraction principle (see [2, Theorem 5.3.1]). Let measures
{pe} on X be generated by some random elements {X.}. Assume that the family {u.}
satisfies the large deviation principle with an action functional I(x). Further, let F'(x)
be a continuous mapping acting from X to X’. Then the family of measures {u.} on X’
generated by the random elements { F(X.)} satisfy the large deviation principle with the
action functional

M) =t (1),
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Now we introduce the class ® of increasing functions ¢(7") such that
T
lim ¢(T) = oo, 11 o) =0.
T—o0 T—o0 \/_

Throughout the paper we use the notation ¢(T) = ¢(T)V/T.
Consider the functional

“(, h, ) = Zexp{ Q(Ck)}, e>1.

Note that if J*(¢,h,cp) < oo for some number ¢y > 1, then J*(¢, h,c) < oo for all
c> 1.
Given ¢ € @, let

(4) G?(¢) = inf{h > 0: J*(¢, h,c) < 00}.

We agree that G%(¢) = oo if there is no h < co such that J*(¢,h,c) < co. In what
follows, the numbers G, G2, or G?(+) are always defined according to relation (H).
Put

2 i 2 _
5) Y(f) = {fo R, i £ € B200.1], £(0) =0,

+00 otherwise
and
D2
Fp = {h € C[0,1]: h(0) =0;Y(h) < 7}
If D? = oo, then Fipo {heCOl —O}

For an arbitrary T' > 0, consider the followmg stochastic process:
&Tt)—x  BLE(AT,0) + w(tT
® o) = ST PLCT O+ i),
VT$(T) VTo(T)
The following is the main result of the paper.
Theorem 1. Let |B| < 1, ¢ € ®, and let G be defined by @). Then the set of cluster

points of the family {&r(t)} for the almost sure convergence as T — oo coincides in
C[0,1] with F¢.

3. AUXILIARY RESULTS

The solution of equation () is closely related to the solution of the It6 stochastic
differential equation. Put

_ (1_ﬁ)$7 .’ESO,
Q wlz) = {(1 +B)z, >0

75 ©<0,
o) = { L >0
B T=
be the inverse function to k().
Consider the following It stochastic differential equation:

) o) =)+ [ {3,

Note that the diffusion coefficient of this equation is a discontinuous function of bounded
variation for which a unique strong solution of equation (§]) exists according to a result
from [12].

and let

€ [0, 1].
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It is known that

(9) n(t) = @(E(t)) or &(t) = r(n(t))

(see []).
Now we consider the processes

(Tt —p(x) 1 T dw(s)

(1) = VTH(T) _ﬁ¢(T)/o 1+ Bsgnn(s)’ tel0.1)
Let
(10) L(f(s),f(s)) = (1 + Bsgn f(5))*f3(s)

and introduce the functional J(f) as follows:
_ I LU, f®)d, it £ e B2[0,1], £(0) =0,
J(f) = .
00, otherwise.

Further, let
2
ko= {1 e o) =00 < -}
If D? = oo, then Ko, = {f € C[0,1]: f(0) = 0} and

2
(11) L(f(s), f(s)) = (W) |

Remark 1. It follows from relation () that Y (x(f)) = J(f), whence (f) € Fp in view
of feKp.

Lemma 1. Let |3| < 1 and let the measures {vT} be generated by the processes {nr(t)}.
Then the family of measures {vT} satisfies the large deviation principle in the space
(C[0,1], B(C[0,1])) with the normalizing coefficient ¢*(T) and action functional J(¢).

Proof. Using relation (@), the proof follows from [6l Theorem B] with ¢ = 1/¢(T"), since
the infimum in Theorem B is attained at either p = 0 or p = 1 (note that the infimum
itself equals 0).

Lemma [Tl is proved. |

Consider the sequence of functions zj(t) = 1. (t), that is,

lt) = 1 )/OC dw(s)

b (ck 1+ Bsgnn(s)’
Put
B ¢ dw(s)
ult) = /0 1+ Bsgnn(s)’
Then
u Ck
(12) z(t) = ﬁ

Theorem 2. Let || < 1, ¢ € @, and let G be defined by equality {@). Then the set of
cluster points of the family {nr(t)} with respect to the almost sure convergence as T — 00
coincides with Kg in CI0, 1].

Proof. The proof consists of the following three standard steps.
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Step 1. First we prove that, for G?(¢) < oo, for all ¢ > 1, and for an arbitrary & > 0,
there exists a number kg such that

Pz, Kg) < e

almost surely for all k > ko. Note that {f: J(f) < a} is a compact set in C|0, 1] whatever
a number a < 0.

Put N. = {f: p(f,Kg) > €}. Then there exists ¢ > 0 such that

. G*(¢)
A ===

+4.

By Lemmalll the family {nr(¢)} satisfies the large deviation principle. Using property b)
of the large deviation principle we get

P{zk € N.} < exp {_¢2 () (@ n 5)}

for sufficiently large k. Then the definition of G?(¢) and Borel-Cantelli lemma complete
the proof of Step 1.

Step 2. We prove that every limit point of the family {nr(¢)} almost surely belongs to K¢
if G?(¢) < oco. This result is proved in Step 1 for {T} = {c*}. Now let T € [c*, cF*H1].
Since the function ¥(7T) is non-decreasing with respect to T', we write

1 oT,k) N B(T, k)
O(T) (k) (kL)
where a(T, k) > 0, 8(T, k) > 0, and (T, k) + (T, k) = 1. Put
ﬁT,k(t) = a(T, k)Zk(t) + 5(T, k)2k+1(t).

The desired result follows from the following bound: for every ¢ > 0, there exist two
numbers ¢, > 1 and kg such that

(13)

(14) sup Inr(t) — nre(t) <e
t€[0,1],T€lck ,ck+1]

almost surely for all k > kg and ¢ € (1, ¢.).
It follows from the definition of the family {nr(¢)} and equality ([I3]) that

o = (1 ‘fﬁf = aTya (1) + BT (1),

Note that zx, zx+1 € {f: p(f, Kg) < 8} for sufficiently large k& and for all 4.

Then
T
k41 (1) = 2rt b

Inr(t) — ke (t)| < a(T, k)

el — 2 (tczk) ’ + BT, k)

and
sup I (t) — I,k (t)]
te[0,1],T€[ck ck+1]
< sup lze(t) —zu(s)| + sup  [2p41(t) = 2rta(s)]-

te[0,1],s€(t,ctAl] te[0,1],s€(t/c,t]
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This implies that

P { sup e (t) = ek (8)] = E}

te[0,1],T€[ck ckt1]

N ™

(15) <P { o 1]81110 2k (t) — 2k (s)] =

€[0,1],s€[t,ctAl]

}

€
+P { sup |zk41(t) — 2p+1(8)| > 5} .
te[0,1

J1],s€[t/c,t]

To estimate the probabilities on the right hand side of (Il we apply Lemma 2 of [1]:
there exists a constant C' such that

_ 2
P sup lw(s) —w(t)| > zvVh | < Mexp{—m—}
a<t,s<b;|t—s|<h hx 4

forall 0 <a<b< oo, h <b—a, and for an arbitrary x > 0.
Thus we get, for another Wiener process @(t) = w(c¥t)/V/ck, that

P{ sup |2 (t) — zr(s)| > %}

te[0,1],s€[t,ctAl]
$ dw(u)
=P sup / T m
tef0,1],s€lt,etn1] 1o 1+ Bsgnn(chu)

Next we make a random change of time. Consider the function

2

z¢(ck)5}.

e ds
0= || T
Let v(u) be the inverse function to 7(u). It is clear that «y(u) and 7(u) are increasing
functions and that v(0) = 7(0) = 0. Moreover, the derivatives

, _ 1
") = A Bsganlcw)?

exist almost surely. Letting P, = (1 — |B])? and P, = (1 + \5|)2 we prove that

/ k 2
Y (u) = P o) ( i = (14 Bsgnn(cy(u)))

Pru < v(u) < Pau, —<T() P
1

According to the change of time made above7 we get, for yet another Wiener pro-
cess W(t), that

O R
Further,

/S dw(u)
P sup k
te(0,1],set,eta1] | Je 1+ Bsgnn(cku)

Ck 1
=P{ L i) G (0) ¢ () }

t€[0,1],s€[t,ctAl] 2

P{ sup [B3(5)) ~ B0 > d’((;)g}

Y EM(0),y (D] (s)E[V(E),v(ctAL)]

Y

IN

P { sup |w(v) — w(u)| >
u,v€E[0,Ps] 2




FLIL FOR A SKEW BROWNIAN MOTION 85

}

u W(v) — i (u ¢(Ck)€\ﬁvpz(c—1)}
= i {u,vE[O,Pz]?UE)ugPQ “;1 ‘ ( ) ( )‘ = 2\/P2(C — 1)\/5

< 20 Py/c exn d 2 (ck) e2c

S oM e/Pale—1) P\ 16Ps(c—1) [

Here we used the property

In view of the result of [I] mentioned above,

P { sup |21 (t) — zi(s)| =
te[0,1],s€[t,ctAl]

SRS

c—1

ctAl ctAl
p-ul <ol o= [ V@dse)? [ d <t
t t ¢
since ¢t A1 —t < (¢ —1)/c under the assumptions of the theorem.

Choosing

62

(1+18)2G2(¢)

#? (ck) 2 2 (ck) ,
7" 3 < -——G
xp { 16Py(c—1) [ =P ;¢ @)
for ¢ € (1,c¢.). Next, for every positive constant Cy, there exists a positive integer kg
such that

08:1—1—8

we get

2CPyr/C

Cy
o (cF) e/ Pa(c—1) =

for all £ > kg. Thus

g ()
(16) P sup |2 (t) — 2k (s)| > B < Crexp —TG (@) ¢
t€(0,1],s€[t,ctAl]
In a similar way we prove that, for any positive constant Cs, there exists a positive
integer ko such that
e ¢2 ck
(1rn P sup |zk1(t) — 2e41(s)| = 5 p < Coexp —QGQ(@
t€[0,1],s€[t/c,t] 2 2
for all k > ko. Hence @), (IE)—(I1), and Borel-Cantelli imply (4.

Step 3. To complete the proof of Theorem B it is sufficient to prove that if G?(¢) < oo,
then every function f € K¢ such that 2J(f) = h? < G*(¢) is a limit point of the sequence
{zk(t)}. Therefore it is sufficient to prove that, for every function f: 2J(f) = h?, there
exists a number ¢ > 1 such that the random events

By, = {w: sup |2 () — f(#)] <5}

te[0,1]

occur infinitely often for every § > 0. This means that

(18) P{limsuka} =1.

k—o0
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We use the Borel-Cantelli-Lévy lemma [5] to prove relation (I8). Introduce the family
of o-algebras S; = o{n(s),s < /}. Put

Ak—{w: sup |Zk(t)_f(t)|<5}

t€[0,1/c]

and

(1/e,1]

Dy = {w: tesup lzi(t) — f(t)] < 5}.

Note that B, = A N Dy and Dy < . Since

k-1
zi(t) = zkl(tc)%,

2k (t) < Sg—1 for t € [0,1/c]. Then Ay < Sk—1 and

(19) P(Bi|Sk—1) = I(Ak) P(Dg|Sk-1).
It follows from the Borel-Cantelli-Lévy lemma that relation (I8) holds if
(20) > I(A) P(Dg[Sk-1) = oo.

k

We construct a partition of the interval [1/c,1] consisting of smaller intervals of
_c—1

length A as follows: let A be a sufficiently small positive number such that n(A) = <x
is a positive integer number. Then the members of the partition of the interval [1/c, 1]

are

1
Aq = [di, diya], di:E‘FiA, i=0,...,n(A) - 1.
In what follows we construct all the partitions of the interval [1/¢, 1] in the way described
above.

Now we consider the set

5k={ sup |z (t) — f(t)] 25}

te[l/e,1]

Wl >

|

} U {stz}p 2k (ds) — f(di)| =

By the Cauchy—Bunyakovskii inequality,

t 2 to
/f(s)ds S(t—di)/\f(s)\zdsgAhQ.
d; s

{su sup 170 - 5012 3
is an empty set. For such a number A,

i tEA;
P(Dk|%k_1) >P {sqp |u (de1> - f(dz)q/) (Ck)‘ < 51/) (Ck) ‘C\\Yk_l}

C {sup sup |z (t) — zx(d;)| >
i teEA;

Wl Wl

u{mpmpuwn—ﬂm>

i tEA;

[f(t) = f(di)? =

If A < A, =62/(9h?), then

[SVRY)

o21) .
-P {sup sup |z (t) — zx(d;)| > —}%k_l} .
i tEA; 3
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Now we make use of several auxiliary results stated below. Lemma [2 (see Section M)
implies that there exists a constant ¢ > 1 such that

(22) I, (w)=1

almost surely for all sufficiently large k.

Now Lemma[3 (see Section H]) implies that, for a fixed ¢ > 1 and all § > 0 and Q > 0,
there exists a partition of the interval [1/c, 1] consisting of smaller intervals of length A,
such that

]

(23) P {sqp suAp |2k (t) — 2z (d;)] > 5’6‘\"“—1} < 2n(A.) exp {—¢2 (ck) Q}
1 teEA;

almost surely. Lemma [ (see Section M) implies that

P {sgp |u(ckdi) — f(d)y (ck)| < gw (c’“) ’%kl}

> e {0 () (52 -4}

almost surely for the constant ¢ defined in Lemma 2] and for an arbitrary ¢ > 0 if k is
sufficiently large.

Now we turn back to the proof of the theorem. We pick up a number ¢ > 1 such that
equality (22) holds. Then we choose

(24)

2
@O,

in inequality (23]), where the constant ¢ is the same as in (24]), and a partition of the
interval [1/¢, 1] with A < min(A,, A,,). If the number k is sufficiently large, namely, if

8n(A) < exp {¢* (")},
then

P {sup sup [24(t) — 24(d)| > g\%} < 2n(A) exp {—¢2 (") (G—“’” gt 1)}

i tEA; 2
2n(A) G

< e o0 {0 @ (57 -0))

1 G*(¢)
<poro (50 0]
almost surely, whence

P(D|Sk-1) > %exp {—¢2 () <% - Q>}

A

2

almost surely by (24) and (21) for sufficiently large k& and some ¢ > 0.
Taking into account equalities (22)) and (I9) together with the definition of G?(¢) we
obtain (20). The proof of Step 3 is complete and thus Theorem Pl is proved. |

4. PROOF OF THEOREM [I] AND FURTHER AUXILIARY RESULTS
We start with the auxiliary results.

Lemma 2. For all § > 0 and all h < oo, there exist a constant ¢ > 1 and a positive
integer number ko such that

(25) sup [z (t) — g(t)] <6
t€[0,1/c]

almost surely for all k > kg and g € Kp,.
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Proof. According to Step 1 in the proof of Theorem Bl for all ¢ > 1 and an arbitrary
6 > 0 there exists a number kg such that

1)
26 inf  sup |zx(t) —g(t)| < =
( ) gEK), te[0,1/¢] ‘ k( ) ( )‘ 3

almost surely for all k > k.
On the other hand, for every g € K},

t
9 = | [ a(ds| <20
0
Let ¢ > max(1, 18h%/62); then
)
(27) sup [g(t)] < 3.
te[0,1/c]
We deduce from (20 and (27) that
26
sup |2, (t)] < 3

t€[0,1/c]

almost surely. The latter inequality together with ([27) proves (25]), which completes the
proof of Lemma [2 a

The following result uses the partition of the interval [1/c, 1] consisting of smaller
intervals of length A described above.

Lemma 3. Let ¢ > 1 be fixred. Then, for all § > 0 and an arbitrary Q@ > 0, there exists
a partition of the interval [1/c,1] consisting of smaller intervals of length A such that

(28) P {sup sup |2k (t) — zx(d;)| > 5‘%k1} <2n(A)exp {—¢* () Q}
N
almost surely.

Proof. Consider the o-algebras G.xq, = o{n(s),s < c*d;}. Then

P{wpzuw—zu¢n>6
teA;

@%}gzwm—&@ﬂQ}

almost surely. The latter bound is proved similarly to the proof of Theorem 5 in [3]
p. 172].
Since Jp—1 C Gerg, for i =0,1,...,n(A) -1,

P { sug) |2k (t) — 21 (d;)| > 5‘3k_1} < 2exp {_¢2 (ck) Q}
teA;
almost surely.

This implies inequality ([28) and completes the proof of Lemma [Bl O

Lemma 4. Let h(x) be a positive increasing function for x > 0. Then

ECl(¢>a) < E¢h(l€])

L
h(a)

for ¢ >0 and a > 0.
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Proof. We have

ECL(g)>a) :/ ¢ P(dw) :/ ¢ P(dw)
(w: [¢]>a) (w: h(l€)>h(a))

h(l€])
<
- /<w: h<\5\>>h<a))< h(a)

Lemma [4] is proved.

1

Put

1
P() < 77 /Q Ch(€l)Plds) < 77os ECH(E]

89

O

SRS B 5 G - o N A (¢ 2 BN I
M3 = gy {E{ p[w—k [ ot ()1 ) - }}

Lemma 5. Let || <1 and let ¢ > 1 be fized. Then
1 1
Mi(fia) € gy [ P)ds
2(1=181)% Juse
almost surely for f € C[0,1].

Proof. Since

oM 1 f(H)

o T sy

_o(H) / F(&)
Ve Jer 1+ Bsgnn(s)

2ck 1+ Bsgnn(s))?

and
1 1

(1 —|—6sgnn(s))2 : (1—18))*

the Girsanov theorem implies

k

. 1 ¢2 (Ck) c s
Mi(f;2) < @2 (c¥) ln{exp {W ‘/Cki1 f? (C_k) ds}}

I S G S SR L
= e fo () = e [, S0

almost surely. Lemma [5lis proved.

Put
Cu = {supluted) - faw () < §o ()}

Cili) = {|u () — F(d o ()] < 2w (ck)}, P=0.1,....n(A) - 1

1

1 5 .
1=z (B ) ) s

For |B] < 1, we choose the constants I, m, and p such that

(1-18p>
Al 0<m< CESEIER

Ay. If B # 0, then \/ﬁ}_‘lg‘l <l< ,/m[lgrz (1 —8]); otherwise I = m.

_ (=18D? (P—m?4+m
As. p= U (S +1),

2 (ck c” 2(s
du(s) = 2L )/M( P
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Put

_12—m2+m_ 12
(29) Ke=—m3me ~aome

Remark 2. Tt is not hard to check that the following properties hold:

1. Condition A; implies that 0 < m < 1, that is, the expression under the square
root in condition As is positive.

2. Condition As implies that K7 > 0.

3. The set of numbers [ satisfying the inequality in condition A5 is nonempty, since
this inequality is equivalent to

1 < 1—m
1+ 8| 418 7

the latter inequality holds by condition A;.

For the constants [, m, and p put

¢ () /Ck 1+ Bsgn f()
ek e 14 Bsgnn(s)

_m¢2 (k) /k (1+Bsgnf(c%))2f2 (i) ds}

pre(l,m) = exp{l 7 () duts)

(30)

2ck k-1 (1+ Bsgnn(s))? ck

and

< Bsegn f (%) .
[ ) () awte

th((s) = {

o (F c” e
e [ (s () (3

Lemma 6. Let |3| < 1. Then, for the constants | and m chosen above, there exists a
constant ¢ > 1 such that

2

2 _m
: 2Jc<f>}ak<i)

P { o (L m) Lo\ (i) (@) S—1 } < exp {¢2 () v iEe

almost surely, where the numbers ay (i) do not depend on 0 and A and are such that

lim ax (i) =0, i=0,1,...,n(A) - 1.

k—o0

Proof. Let 6 < Sy_1 be an arbitrary positive bounded random variable. We apply

Lemma [ to the function
10) (ck) N
h(z) =exp{ ——=—=x
() = exp { =
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with some constant N to be specified later. Then

E0pk(l, m)Io\c, (i) (w)
N¢ (c¥)

G
{

< Efpk(l,m)exp

ck
< Efpk(l,m)exp qui—k ) (u(cds) — f(di)wp (c¥)) — g]\hﬁz (Ck)}
+ Epull,m) exp {—N‘ji_j D) ~ s () - Sne? <c'f>}

= Ji (i) + JR ().
First we consider the term J} (7). Using equality (B0) together with

1 1
(L1 Bsgun(sc))? = L+ 1)

we get

J;i(z')zexp{ [Nf )+ N2 +m// 1&23780 ;)zfQ(s)ds]}
i )

Edend 2 (ot ¢ Ot ssenf () F(x),
=0 p{ Vb (N ("di) + /Ck—ll 1+ Bsgnn(s) d ()>}

0 m
N+ NG + )] |

x E{9 E{exp[¢§z_i) (Nu (1)
*/i( L+ 5o () ()

1+ Bsgnn(s)
Njr-1 e, (ik)
At v

The Markov property of the process 7)(t) implies that

AN
@
»

o)
—N
|
-

S
—
Q)
kS
S~—
| —

6 () [ 1+ Bsenf (%)) F (&) + N eeay ()
£ {eXp l vk /Ck—l 1+ Bsgnn(s) dw(s)

= exp {¢2 (ck) My, (l(l + Bsgn f)f + Nljk1 crg, (+);m (ckil) ) } .

%k—l}
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Applying Lemma [l we obtain

) < exp { - () [ N5 + )| |

X E96Xp{¢\§z_];)N (u (1) = f(di)y (ck))}
X exp {¢2 (c*) M, (l(l + ﬂsgnf)f + N1 ek ()in (Ck—l))}
<ow {6 () Vg + e
x EoeXp{¢ (CZ)N (u (F1) = F(1/c) (Ck))}
VR

x exp {¢* (") N (f(1/¢) — f(di))}

2 (¥ 1 _ 9
><exp{2(1_|ﬂ)2 /1/c (l(l+Bsgnf(8))f(s)—I-Nl[l/c’di](s)) ds}.

By Lemma 2] there exists a constant ¢ > 1 such that

(31) exp {MN (u (c’“_l) —f(1/c)y (ck))} < exp {quSz (ck)}

Vb

almost surely for sufficiently large k. Then we estimate
1

[ (04 B3 s 0)F0) + Neag(4)) s

d;

< 2%J.(f) + 2Nl /1/ (1+ Bsgn f(s))f(s)ds + N*(1—1/c).

Denote the right hand side of inequality (32) by A.(J., N,1). Then BI)) and [B2) imply

i) < exp {67 () [N§+LJ<f>]}exp{ @) Acuc,zv,z)}

(32)

6 (1+1(8)*"° 2(1—|Bl)?
x exp {¢? () N (f(1/c) — f(d;))} EO
1) m 12
(33) = eXP{—¢2 (ck) {Ng + FEREIE Je(f) — WJC(JC)
N2
-t~
d; .
X exp {¢>2 ()N ., (% - 1) f(s)ds} E6.
The expression written in the parentheses in the integral in ([B3]) does not exceed
1(1+18])
(1—18D)?
while
4 414+ Bsenf ; 27.()/1—1/c
/1/Cf(s)ds§ /1/071+Bsgnff(8)d8 < 18] )
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Thus we deduce from inequality (B3] that

” _o? (k| VO m___ b _MA-1g
Jk<z><exp{ > >[ +J(f)<(1+|ﬁ|)2 (1—|B|)2> 201~ 18)?

6
~ e VIV e

12_m2
= eX 2 Ck P EEEr———
—o {6 () {0}
N6 N2(1-1/¢)
. ex"{‘d’z () {? TS

12 —m?2 m 12
=240 (G + T )

U<V1+ﬁ||ﬂ V2] “‘”C]}

Taking into account equality ([29) we put

ouli) = exp{ - (&) |

N2%(1—1/c) IN(1+ 8] /e
R e G g VALV

Since K7 > 0, the expression in the square brackets is positive for some N > 0. For
such a number N

lim a(i) = 0

k—o00
and
2 ( k I? —m?
Similarly
2 2wy 1P—m® ;
(35) ) < exp {8 () (o D) ban(i 0.
where
khﬂH;O dk(i) = 0.
Now Lemma [d] follows from bounds [B4]) and @B8) with ax (i) = ax (i) + ax (7). O

Lemma 7. Let |8] < 1. Then

12 —m?

(1+181)?

almost surely for the constants I, m, and p chosen above and for all § > 0, where by (9)
does not depend on 0 and is such that limy_, o bi(5) = 0.

P{pr(l,m)Io\1, (5 (@)|Sk- 1}<6XP{¢2( ") (f)}bk((S)

Proof. Let 6 < Si_1 be an arbitrary positive bounded random variable. We use Lemma ]

with the function
10) (ck) N
h(z) =exp{ ——=—=x
(z) = exp { =
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and with some constant 0 < N < 1 to be specified later. Then

E Hpk(l, m)[gz\kap(é) (W)

ck c* nf (%) ./ s
%N/ (1+psenf () 72 (2) as
“Xp{ ¢ (Ck)N< (Slﬂ)?cm}

@) (H)N
(1182 Jc(f)}

k < nf(%) .
ceontmon] A [7 HEELEN (5)

_ 2 (ck

}

(1—1B))?
= JL(8) + JE(0).

Substituting p (I, m), we consider the term J;:(8). We see from the Markov property
of the process n(t) that

& () (N +1 o 1+8sgnf (=) ./ s

— 2 (ck (6+p)N m [ (1+ Bsgn f(s))? 201 4,
¢ ( )<(1—|/6)2Jc(f)+ 2 1/c (1+5Sgnn(sck))2f ( )d )}

2 (6+p)N m
{ i ( S +,“”3')2)}
e { ,e { [ z;f+z) / ] 11++ﬁ;§gnfn((§)) £(2) dw(s)]
(0+p) m
{ (1—% +<1+/3|>2)}E9
xexp{¢ <ck) k((Z+N)(1+ﬂsgnf)f;77(ck’1)>}-

By Lemma B we get

. 2 1 .
Mo (W0 M)+ fsen $)fin (¢74) < 0 [0 s P
_ (I+N)?

= =gV
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almost surely. Hence

1 _ 2 (ck (6+p)N m___ (+N)y
50) <o = () 200 ({55 + e~ (o pae) €

= exp{¢2 (ck) Je(f)
P-—m? [@+pN-(+N?* m+P-—m’
. e e s e o
l2_m2
=ex 2 (F) ———
= {6 ) {0}
X exp {—¢2 (ck) Jo(f) [(6+ZZ1__2|Z)BZ|\)]2_ N + Kl} } E6
12 —m? .
=ex 2 (F) ———
— e {6 (&) Lo ) B0 E0
for

- 20 [T ]

Sinvce K; > 0, the expression in the square brackets on the right hand side of the definition
of b () is positive for some N > 0. For such a number N

lim bg(8) = 0.
k—o0
Similarly,
2 2k L —m? P
Ji(0) < ex ) ——J. br(0)ED,
where
lim by (8) = 0.
k—o00
Now Lemma [7 holds with by (8) = bi(8) + by (6) for some N. O

Lemma 8. Let f € K¢ be an arbitrary function such that 2J(f) = h?> < G?. Then there
are numbers ¢ > 1 and v > 0 such that

P(CrlSk-1) > %GXP {—¢2 ) <%2 - U)}

almost surely for sufficiently large k.

Proof. Let 8 < Si_1 be an arbitrary positive bounded random variable. Then

Eflc, (w) = EbOpi(l,m)Ic, (w)
ck e sgn ik s
xexp{_lqb( )/ 1+ Bsgn f( )f( )dw(s)

Ve Joor T+ Bsgnn(s)

ma? (cF) [ (14 Bsgn f(2))?
Tk /ck v (14 Bsgnn(s ))2
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s o {5 [ 210 - 2]

x E epkt(la m)ICk (OJ)

O (h) [ L4 Bsenf() (s
xexp{—l vk /Ck—l 1+ Bsgnn(s) f(c—’f) dw(s)

ot [ (s (3))' 7 (3)
> e {4° )0 | (73T ~ =21 )
x EOpi(l,m)Ie, ()1, , (@)
com{ (25 |7 I (2 gy
o) [ s G (5) >}

m pl
2 o0 {8 () 10 | e~ a2y~ I

x E opk(la m)ICk (w)ILk,p (w)

In the above reasoning we used the inequalities 1 > I, (w) and

exp{—a}l(ja|<p) > exp{—b}(|q|<p)-

Since Ic, (w)IL, ) (w) > 1= Ia\c, (W) — Io\L, ,(5)(w), we obtain

Y m B pl 3 ol
Eflc, (w) ZGXP{¢ (C )Jc(f) <(1+|5|)2 (1—18])2 (1—|B|)2)}

X Eepk(l, m) (1 — IQ\Ck (OJ) — IQ\LA-,,p@) (w)) .
Then equality ([B0) implies that

Efpr(l,m) = E{OE{pr(l,m) | Sx_1}}

=E {HE {exp V)zgf) /:_1 (l2 — m2) (+Bsenf)” f)j f2ds

(1+ Bsgnn)

)

It is clear that

1+8)?
ﬂ—m?>ﬂ( -
(1—18])?
Considering the left hand side of property Ao, we conclude that
1+8])?
2! —m >0,
(1—18[)?
whence
2 —m?>0.
Hence
9k 12 _ m2
Efpr(l,m) > —J EO.
pultom) = exp {6 () s o)
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We continue the proof by using the latter bound and applying Lemmas [6] and [}

Eflc, (w) > exp {¢2 (¢F) Te() ((1 +WILBI)2 - <1p l—+|ﬂ6|l>2)}

2 ( k 12 —m? ) .
xexp{¢ (c)ch(f)} 1—;ak(z)—bk(5) Eo

= X {‘¢2 () 7:09) <m<21_+l|252m n l—+|ﬂ6|l>2) } =0

Then we use property As:

(37) €01, () 2 exp { ~* (&) (1) (1+ =5z ) P EO.

0 (i) = () =

G —h* (1—18))°
32 I

It is clear that

Choose
6 <

The latter inequality implies that

(39) Je(f) (1 " ﬁ) <<

where v = (G2 — h?). Now Lemma [ follows from inequalities ([B7) and (38). O
The Lipschitz property of the function x (see definition (7)) yields the following result.
Lemma 9. Assume that
PJ lim sup |fn(t) —g(t)|=0p=1
n=90 ¢[0,1]

for all one-dimensional functions {f,} and g. Then

n=90 ¢e[0,1]

P{ lim sup [ (fn(t)) = £(g(t))| = 0} =1,

where the function k is defined by ().

Proof of Theorem [Il Using Theorem [2] we prove that, for an arbitrary function f € Kg,
there exists a subsequence {7}, } such that

P{ lim sup |nr, (t) — f(t)| = O} =1.

Tm—00 ¢¢[0,1]

Then Lemma [0 and relations ([)—(@)) complete the proof of Theorem [ O
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