FUNCTIONAL LAW OF THE ITERATED LOGARITHM TYPE FOR A SKEW BROWNIAN MOTION

UDC 519.21

I. H. KRYKUN

Abstract. The functional law of the iterated logarithm is proved for a skew Brownian motion.

1. Introduction

The functional law of the iterated logarithm for the Wiener process was proved in a well-known paper by Strassen [13. A modification of this result for more general normalizing functions was proposed by Bulinskiĭ [1]. A functional law of the iterated logarithm for solutions of Itô stochastic differential equations with a jump process was obtained by Makhno [11].

The skew Brownian process studied in this paper was introduced by Itô and McKean 9] in terms of elliptic differential operators of the first order according to the Feller classification of one-dimensional diffusion processes. The skew Brownian motion has been studied by many authors since then. Among those authors are, to mention a few, Harrison and Shepp [8] and Le Gall [10], who considered this process as a solution of a stochastic equation with local time. In [10], as well as in [4] and [7], some interrelations were proposed between the solutions of stochastic equations with local time and solutions of Itô's equations.

The functional law of the iterated logarithm for a skew Brownian motion is studied in this paper. In doing so, we follow the approach of the paper [4].

The paper is organized as follows. Notation and the main results are given in Section2. An auxiliary Theorem 2 is proved in Section 3. Section 4 is devoted to the proof of some lemmas and Theorem 1 .

2. Main Results

Consider a skew Brownian motion as a solution of the following stochastic differential equation with local time:

$$
\begin{equation*}
\xi(t)=x+\beta L^{\xi}(t, 0)+w(t), \quad t \in[0,1] . \tag{1}
\end{equation*}
$$

[^0]If $|\beta| \leq 1$, then equation (11) has a strong solution [8]. This means that there exists a continuous semimartingale $\left(\xi(t), \Im_{t}\right)$ on the probability space $\left(\Omega, \Im, \Im_{t}, \mathrm{P}\right)$ equipped with a flow of σ-algebras $\Im_{t}, t \in[0,1]$, where a standard one-dimensional Wiener process $\left(w(t), \Im_{t}\right)$ leaves, such that the symmetric local time

$$
\begin{equation*}
L^{\xi}(t, 0)=\lim _{\delta \rightarrow 0} \frac{1}{2 \delta} \int_{0}^{t} I_{(-\delta, \delta)}(\xi(s)) d s \tag{2}
\end{equation*}
$$

exists almost surely and equation (11) is satisfied almost surely.
In relation (2) and throughout this paper, $I_{A}(x)$ denotes the indicator of a set A. Let \mathbf{R} be the real line and let $\mathcal{B}(\mathbf{R})$ be the Borel σ-algebra in \mathbf{R}. The space of continuous functions f on $[0,1]$ assuming values in \mathbf{R} is denoted by $C[0,1]$. Let $\mathcal{B}(C[0,1])$ be the Borel σ-algebra of $C[0,1]$ and let the norm in $C[0,1]$ be given by $\|x\|=\sup _{t \in[0,1]}|x(t)|$. In what follows we use the standard notation \dot{f} for the density of an absolutely continuous function f, namely

$$
f(t)=f(a)+\int_{a}^{t} \dot{f}(s) d s
$$

Further, let

$$
H^{2}[0,1]=\left\{f: f(t) \text { is absolutely continuous and such that } \int_{0}^{1}|\dot{f}(t)|^{2} d t<\infty\right\}
$$

Recall the following property of absolutely continuous functions (throughout this paper, the symbol $\operatorname{Leb}(A)$ denotes the Lebesgue measure of a set A):

$$
\begin{equation*}
\operatorname{Leb}(t \in[0,1]: f(t)=0, \dot{f}(t) \neq 0)=0 \tag{3}
\end{equation*}
$$

We put

$$
\operatorname{sgn} x= \begin{cases}-1, & \text { for } x<0 \\ 0, & \text { for } x=0 \\ 1, & \text { for } x>0\end{cases}
$$

Let $(X, \mathcal{B}(X))$ be a metric space equipped with a metric ρ, where $\mathcal{B}(X)$ is the Borel σ-algebra in the space X. Let $I(x): X \rightarrow[0, \infty]$ be a lower semicontinuous functional such that $\{x: I(x) \leq a\}$ is a compact set for all $a>0$.

We say that a family of probability measures $\left\{\mu_{\varepsilon}\right\}, \varepsilon>0$, defined on X satisfies the large deviation principle with a normalizing coefficient $k(\varepsilon)$ such that $\lim _{\varepsilon \rightarrow 0} k(\varepsilon)=+\infty$ and with an action functional $I(x)$ if
a) for every open set $G \in \mathcal{B}(X)$,

$$
\liminf _{\varepsilon \rightarrow 0} \frac{1}{k(\varepsilon)} \ln \mu_{\varepsilon}(G) \geq-\inf \{I(x), x \in G\}
$$

b) for every closed set $F \in \mathcal{B}(X)$,

$$
\limsup _{\varepsilon \rightarrow 0} \frac{1}{k(\varepsilon)} \ln \mu_{\varepsilon}(F) \leq-\inf \{I(x), x \in F\} .
$$

Next we formulate the contraction principle (see [2, Theorem 5.3.1]). Let measures $\left\{\mu_{\varepsilon}\right\}$ on X be generated by some random elements $\left\{X_{\varepsilon}\right\}$. Assume that the family $\left\{\mu_{\varepsilon}\right\}$ satisfies the large deviation principle with an action functional $I(x)$. Further, let $F(x)$ be a continuous mapping acting from X to X^{\prime}. Then the family of measures $\left\{\mu_{\varepsilon}^{\prime}\right\}$ on X^{\prime} generated by the random elements $\left\{F\left(X_{\varepsilon}\right)\right\}$ satisfy the large deviation principle with the action functional

$$
I^{\prime}(x)=\inf _{y: F(y)=x}\{I(y)\}
$$

Now we introduce the class Φ of increasing functions $\phi(T)$ such that

$$
\lim _{T \rightarrow \infty} \phi(T)=\infty, \quad \lim _{T \rightarrow \infty} \frac{\phi(T)}{\sqrt{T}}=0
$$

Throughout the paper we use the notation $\psi(T)=\phi(T) \sqrt{T}$.
Consider the functional

$$
J^{*}(\phi, h, c)=\sum_{k=1}^{\infty} \exp \left\{\frac{-h \phi^{2}\left(c^{k}\right)}{2}\right\}, \quad c>1
$$

Note that if $J^{*}\left(\phi, h, c_{0}\right)<\infty$ for some number $c_{0}>1$, then $J^{*}(\phi, h, c)<\infty$ for all $c>1$.

Given $\phi \in \Phi$, let

$$
\begin{equation*}
G^{2}(\phi)=\inf \left\{h>0: J^{*}(\phi, h, c)<\infty\right\} . \tag{4}
\end{equation*}
$$

We agree that $G^{2}(\phi)=\infty$ if there is no $h<\infty$ such that $J^{*}(\phi, h, c)<\infty$. In what follows, the numbers G, G^{2}, or $G^{2}(\cdot)$ are always defined according to relation (4).

Put

$$
Y(f)= \begin{cases}\frac{1}{2} \int_{0}^{1}|\dot{f}(t)|^{2} d t, & \text { if } f \in H^{2}[0,1], f(0)=0 \tag{5}\\ +\infty, & \text { otherwise }\end{cases}
$$

and

$$
\mathcal{F}_{D}=\left\{h \in C[0,1]: h(0)=0 ; Y(h) \leq \frac{D^{2}}{2}\right\} .
$$

If $D^{2}=\infty$, then $\mathcal{F}_{\infty}=\{h \in C[0,1]: h(0)=0\}$.
For an arbitrary $T>0$, consider the following stochastic process:

$$
\begin{equation*}
\xi_{T}(t)=\frac{\xi(T t)-x}{\sqrt{T} \phi(T)}=\frac{\beta L^{\xi}(t T, 0)+w(t T)}{\sqrt{T} \phi(T)} . \tag{6}
\end{equation*}
$$

The following is the main result of the paper.
Theorem 1. Let $|\beta|<1, \phi \in \Phi$, and let G be defined by (4). Then the set of cluster points of the family $\left\{\xi_{T}(t)\right\}$ for the almost sure convergence as $T \rightarrow \infty$ coincides in $C[0,1]$ with \mathcal{F}_{G}.

3. Auxiliary results

The solution of equation (1) is closely related to the solution of the Itô stochastic differential equation. Put

$$
\kappa(x)= \begin{cases}(1-\beta) x, & x \leq 0 \tag{7}\\ (1+\beta) x, & x \geq 0\end{cases}
$$

and let

$$
\varphi(x)= \begin{cases}\frac{x}{1-\beta}, & x \leq 0, \\ \frac{x}{1+\beta}, & x \geq 0\end{cases}
$$

be the inverse function to $\kappa(x)$.
Consider the following Itô stochastic differential equation:

$$
\begin{equation*}
\eta(t)=\varphi(x)+\int_{0}^{t} \frac{d w(s)}{1+\beta \operatorname{sgn} \eta(s)}, \quad t \in[0,1] . \tag{8}
\end{equation*}
$$

Note that the diffusion coefficient of this equation is a discontinuous function of bounded variation for which a unique strong solution of equation (8) exists according to a result from (12].

It is known that

$$
\begin{equation*}
\eta(t)=\varphi(\xi(t)) \quad \text { or } \quad \xi(t)=\kappa(\eta(t)) \tag{9}
\end{equation*}
$$

(see [4]).
Now we consider the processes

$$
\eta_{T}(t)=\frac{\eta(T t)-\varphi(x)}{\sqrt{T} \phi(T)}=\frac{1}{\sqrt{T} \phi(T)} \int_{0}^{T t} \frac{d w(s)}{1+\beta \operatorname{sgn} \eta(s)}, \quad t \in[0,1] .
$$

Let

$$
\begin{equation*}
L(f(s), \dot{f}(s))=(1+\beta \operatorname{sgn} f(s))^{2} \dot{f}^{2}(s) \tag{10}
\end{equation*}
$$

and introduce the functional $J(f)$ as follows:

$$
J(f)= \begin{cases}\frac{1}{2} \int_{0}^{1} L(f(t), \dot{f}(t)) d t, & \text { if } f \in H^{2}[0,1], f(0)=0 \\ +\infty, & \text { otherwise }\end{cases}
$$

Further, let

$$
\mathcal{K}_{D}=\left\{f \in C[0,1]: f(0)=0 ; J(f) \leq \frac{D^{2}}{2}\right\} .
$$

If $D^{2}=\infty$, then $\mathcal{K}_{\infty}=\{f \in C[0,1]: f(0)=0\}$ and

$$
\begin{equation*}
L(f(s), \dot{f}(s))=\left(\frac{d \kappa(f(s))}{d s}\right)^{2} \tag{11}
\end{equation*}
$$

Remark 1. It follows from relation (11) that $Y(\kappa(f))=J(f)$, whence $\kappa(f) \in \mathcal{F}_{D}$ in view of $f \in \mathcal{K}_{D}$.

Lemma 1. Let $|\beta|<1$ and let the measures $\left\{\nu^{T}\right\}$ be generated by the processes $\left\{\eta_{T}(t)\right\}$. Then the family of measures $\left\{\nu^{T}\right\}$ satisfies the large deviation principle in the space $(C[0,1], \mathcal{B}(C[0,1]))$ with the normalizing coefficient $\phi^{2}(T)$ and action functional $J(\phi)$.

Proof. Using relation (3), the proof follows from [6, Theorem B] with $\varepsilon=1 / \phi(T)$, since the infimum in Theorem B is attained at either $\rho=0$ or $\rho=1$ (note that the infimum itself equals 0).

Lemma is proved.
Consider the sequence of functions $z_{k}(t)=\eta_{c^{k}}(t)$, that is,

$$
z_{k}(t)=\frac{1}{\psi\left(c^{k}\right)} \int_{0}^{c^{k} t} \frac{d w(s)}{1+\beta \operatorname{sgn} \eta(s)}
$$

Put

$$
u(t)=\int_{0}^{t} \frac{d w(s)}{1+\beta \operatorname{sgn} \eta(s)}
$$

Then

$$
\begin{equation*}
z_{k}(t)=\frac{u\left(c^{k} t\right)}{\psi\left(c^{k}\right)} . \tag{12}
\end{equation*}
$$

Theorem 2. Let $|\beta|<1, \phi \in \Phi$, and let G be defined by equality (4). Then the set of cluster points of the family $\left\{\eta_{T}(t)\right\}$ with respect to the almost sure convergence as $T \rightarrow \infty$ coincides with \mathcal{K}_{G} in $C[0,1]$.
Proof. The proof consists of the following three standard steps.

Step 1. First we prove that, for $G^{2}(\phi)<\infty$, for all $c>1$, and for an arbitrary $\varepsilon>0$, there exists a number k_{0} such that

$$
\rho\left(z_{k}, \mathcal{K}_{G}\right)<\varepsilon
$$

almost surely for all $k>k_{0}$. Note that $\{f: J(f) \leq a\}$ is a compact set in $C[0,1]$ whatever a number $a<\infty$.

Put $N_{\varepsilon}=\left\{f: \rho\left(f, \mathcal{K}_{G}\right) \geq \varepsilon\right\}$. Then there exists $\delta>0$ such that

$$
\inf _{f \in N_{\varepsilon}} J(f) \geq \frac{G^{2}(\phi)}{2}+\delta
$$

By Lemma the family $\left\{\eta_{T}(t)\right\}$ satisfies the large deviation principle. Using property b) of the large deviation principle we get

$$
\mathrm{P}\left\{z_{k} \in N_{\varepsilon}\right\} \leq \exp \left\{-\phi^{2}\left(c^{k}\right)\left(\frac{G^{2}(\phi)}{2}+\delta\right)\right\}
$$

for sufficiently large k. Then the definition of $G^{2}(\phi)$ and Borel-Cantelli lemma complete the proof of Step 1.

Step 2 . We prove that every limit point of the family $\left\{\eta_{T}(t)\right\}$ almost surely belongs to \mathcal{K}_{G} if $G^{2}(\phi)<\infty$. This result is proved in Step 1 for $\{T\}=\left\{c^{k}\right\}$. Now let $T \in\left[c^{k}, c^{k+1}\right]$. Since the function $\psi(T)$ is non-decreasing with respect to T, we write

$$
\begin{equation*}
\frac{1}{\psi(T)}=\frac{\alpha(T, k)}{\psi\left(c^{k}\right)}+\frac{\beta(T, k)}{\psi\left(c^{k+1}\right)}, \tag{13}
\end{equation*}
$$

where $\alpha(T, k) \geq 0, \beta(T, k) \geq 0$, and $\alpha(T, k)+\beta(T, k)=1$. Put

$$
\widehat{\eta}_{T, k}(t)=\alpha(T, k) z_{k}(t)+\beta(T, k) z_{k+1}(t) .
$$

The desired result follows from the following bound: for every $\varepsilon>0$, there exist two numbers $c_{\varepsilon}>1$ and k_{0} such that

$$
\begin{equation*}
\sup _{t \in[0,1], T \in\left[c^{k}, c^{k+1}\right]}\left|\eta_{T}(t)-\widehat{\eta}_{T, k}(t)\right|<\varepsilon \tag{14}
\end{equation*}
$$

almost surely for all $k>k_{0}$ and $c \in\left(1, c_{\varepsilon}\right)$.
It follows from the definition of the family $\left\{\eta_{T}(t)\right\}$ and equality (13) that

$$
\eta_{T}(t)=z_{k}\left(t \frac{T}{c^{k}}\right) \frac{\psi\left(c^{k}\right)}{\psi(T)}=\alpha(T, k) z_{k}\left(t \frac{T}{c^{k}}\right)+\beta(T, k) z_{k+1}\left(t \frac{T}{c^{k+1}}\right)
$$

Note that $z_{k}, z_{k+1} \in\left\{f: \rho\left(f, \mathcal{K}_{G}\right)<\delta\right\}$ for sufficiently large k and for all δ.
Then

$$
\left|\eta_{T}(t)-\widehat{\eta}_{T, k}(t)\right| \leq \alpha(T, k)\left|z_{k}(t)-z_{k}\left(t \frac{T}{c^{k}}\right)\right|+\beta(T, k)\left|z_{k+1}(t)-z_{k+1}\left(t \frac{T}{c^{k+1}}\right)\right|
$$

and

$$
\begin{aligned}
& \sup _{t \in[0,1], T \in\left[c^{k}, c^{k+1}\right]}\left|\eta_{T}(t)-\widehat{\eta}_{T, k}(t)\right| \\
& \quad \leq \sup _{t \in[0,1], s \in[t, c t \wedge 1]}\left|z_{k}(t)-z_{k}(s)\right|+\sup _{t \in[0,1], s \in[t / c, t]}\left|z_{k+1}(t)-z_{k+1}(s)\right| .
\end{aligned}
$$

This implies that

$$
\begin{align*}
& \mathrm{P}\left\{\sup _{t \in[0,1], T \in\left[c^{k}, c^{k+1}\right]}\left|\eta_{T}(t)-\widehat{\eta}_{T, k}(t)\right| \geq \varepsilon\right\} \\
& \quad \leq \mathrm{P}\left\{\sup _{t \in[0,1], s \in[t, c t \wedge 1]}\left|z_{k}(t)-z_{k}(s)\right| \geq \frac{\varepsilon}{2}\right\} \tag{15}\\
& \quad+\mathrm{P}\left\{\sup _{t \in[0,1], s \in[t / c, t]}\left|z_{k+1}(t)-z_{k+1}(s)\right| \geq \frac{\varepsilon}{2}\right\} .
\end{align*}
$$

To estimate the probabilities on the right hand side of (15) we apply Lemma 2 of [1]: there exists a constant C such that

$$
\mathrm{P}\left(\sup _{a \leq t, s \leq b ;|t-s| \leq h}|w(s)-w(t)|>x \sqrt{h}\right) \leq \frac{C(b-a)}{h x} \exp \left\{-\frac{x^{2}}{4}\right\}
$$

for all $0 \leq a<b<\infty, h \leq b-a$, and for an arbitrary $x>0$.
Thus we get, for another Wiener process $\widetilde{w}(t)=w\left(c^{k} t\right) / \sqrt{c^{k}}$, that

$$
\begin{aligned}
& \mathrm{P}\left\{\sup _{t \in[0,1], s \in[t, c t \wedge 1]}\left|z_{k}(t)-z_{k}(s)\right| \geq \frac{\varepsilon}{2}\right\} \\
& \quad=\mathrm{P}\left\{\sup _{t \in[0,1], s \in[t, c t \wedge 1]}\left|\int_{t}^{s} \frac{d \widetilde{w}(u)}{1+\beta \operatorname{sgn} \eta\left(c^{k} u\right)}\right| \geq \frac{\phi\left(c^{k}\right) \varepsilon}{2}\right\} .
\end{aligned}
$$

Next we make a random change of time. Consider the function

$$
\tau(u)=\int_{0}^{u} \frac{d s}{\left(1+\beta \operatorname{sgn} \eta\left(c^{k} s\right)\right)^{2}}
$$

Let $\gamma(u)$ be the inverse function to $\tau(u)$. It is clear that $\gamma(u)$ and $\tau(u)$ are increasing functions and that $\gamma(0)=\tau(0)=0$. Moreover, the derivatives

$$
\tau^{\prime}(u)=\frac{1}{\left(1+\beta \operatorname{sgn} \eta\left(c^{k} u\right)\right)^{2}}, \quad \gamma^{\prime}(u)=\frac{1}{\tau^{\prime}(\gamma(u))}=\left(1+\beta \operatorname{sgn} \eta\left(c^{k} \gamma(u)\right)\right)^{2}
$$

exist almost surely. Letting $P_{1}=(1-|\beta|)^{2}$ and $P_{2}=(1+|\beta|)^{2}$, we prove that

$$
P_{1} u \leq \gamma(u) \leq P_{2} u, \quad \frac{u}{P_{2}} \leq \tau(u) \leq \frac{u}{P_{1}} .
$$

According to the change of time made above, we get, for yet another Wiener process $\hat{w}(t)$, that

$$
\int_{t}^{s} \frac{d \widetilde{w}(u)}{1+\beta \operatorname{sgn} \eta\left(c^{k} u\right)}=\hat{w}(\gamma(s))-\hat{w}(\gamma(t)) .
$$

Further,

$$
\begin{aligned}
& \mathrm{P}\left\{\sup _{t \in[0,1], s \in[t, c t \wedge 1]}\left|\int_{t}^{s} \frac{d \widetilde{w}(u)}{1+\beta \operatorname{sgn} \eta\left(c^{k} u\right)}\right| \geq \frac{\phi\left(c^{k}\right) \varepsilon}{2}\right\} \\
&=\mathrm{P}\left\{\sup _{t \in[0,1], s \in[t, c t \wedge 1]}|\hat{w}(\gamma(s))-\hat{w}(\gamma(t))| \geq \frac{\phi\left(c^{k}\right) \varepsilon}{2}\right\} \\
&=\mathrm{P}\left\{\sup _{\gamma(t) \in[\gamma(0), \gamma(1)], \gamma(s) \in[\gamma(t), \gamma(c t \wedge 1)]}|\hat{w}(\gamma(s))-\hat{w}(\gamma(t))| \geq \frac{\phi\left(c^{k}\right) \varepsilon}{2}\right\} \\
& \leq \mathrm{P}\left\{\sup _{u, v \in\left[0, P_{2}\right],|v-u| \leq P_{2} \frac{c-1}{c}}|\hat{w}(v)-\hat{w}(u)| \geq \frac{\phi\left(c^{k}\right) \varepsilon}{2}\right\} .
\end{aligned}
$$

In view of the result of 11 mentioned above,

$$
\begin{aligned}
& \mathrm{P}\left\{\sup _{t \in[0,1], s \in[t, c t \wedge 1]}\left|z_{k}(t)-z_{k}(s)\right| \geq \frac{\varepsilon}{2}\right\} \\
& \quad \leq \mathrm{P}\left\{\sup _{u, v \in\left[0, P_{2}\right], v-u \left\lvert\, \leq P_{2} \frac{c-1}{c}\right.}|\hat{w}(v)-\hat{w}(u)| \geq \frac{\phi\left(c^{k}\right) \varepsilon \sqrt{c} \sqrt{P_{2}(c-1)}}{2 \sqrt{P_{2}(c-1)} \sqrt{c}}\right\} \\
& \quad \leq \frac{2 C P_{2} \sqrt{c}}{\phi\left(c^{k}\right) \varepsilon \sqrt{P_{2}(c-1)}} \exp \left\{-\frac{\phi^{2}\left(c^{k}\right) \varepsilon^{2} c}{16 P_{2}(c-1)}\right\} .
\end{aligned}
$$

Here we used the property

$$
|v-u| \leq \gamma(c t \wedge 1)-\gamma(t)=\int_{t}^{c t \wedge 1} \gamma^{\prime}(x) d x \leq(1+|\beta|)^{2} \int_{t}^{c t \wedge 1} d x \leq P_{2} \frac{c-1}{c}
$$

since $c t \wedge 1-t \leq(c-1) / c$ under the assumptions of the theorem.
Choosing

$$
c_{\varepsilon}=1+\frac{\varepsilon^{2}}{8(1+|\beta|)^{2} G^{2}(\phi)}
$$

we get

$$
\exp \left\{-\frac{\phi^{2}\left(c^{k}\right) \varepsilon^{2} c}{16 P_{2}(c-1)}\right\} \leq \exp \left\{-\frac{\phi^{2}\left(c^{k}\right)}{2} G^{2}(\phi)\right\}
$$

for $c \in\left(1, c_{\varepsilon}\right)$. Next, for every positive constant C_{1}, there exists a positive integer k_{0} such that

$$
\frac{2 C P_{2} \sqrt{c}}{\phi\left(c^{k}\right) \varepsilon \sqrt{P_{2}(c-1)}} \leq C_{1}
$$

for all $k \geq k_{0}$. Thus

$$
\begin{equation*}
\mathrm{P}\left\{\sup _{t \in[0,1], s \in[t, c t \wedge 1]}\left|z_{k}(t)-z_{k}(s)\right| \geq \frac{\varepsilon}{2}\right\} \leq C_{1} \exp \left\{-\frac{\phi^{2}\left(c^{k}\right)}{2} G^{2}(\phi)\right\} . \tag{16}
\end{equation*}
$$

In a similar way we prove that, for any positive constant C_{2}, there exists a positive integer k_{0} such that

$$
\begin{equation*}
\mathrm{P}\left\{\sup _{t \in[0,1], s \in[t / c, t]}\left|z_{k+1}(t)-z_{k+1}(s)\right| \geq \frac{\varepsilon}{2}\right\} \leq C_{2} \exp \left\{-\frac{\phi^{2}\left(c^{k}\right)}{2} G^{2}(\phi)\right\} \tag{17}
\end{equation*}
$$

for all $k \geq k_{0}$. Hence (4), (15)-(17), and Borel-Cantelli imply (14).
Step 3. To complete the proof of Theorem 2 it is sufficient to prove that if $G^{2}(\phi) \leq \infty$, then every function $f \in \mathcal{K}_{G}$ such that $2 J(f)=h^{2}<G^{2}(\phi)$ is a limit point of the sequence $\left\{z_{k}(t)\right\}$. Therefore it is sufficient to prove that, for every function $f: 2 J(f)=h^{2}$, there exists a number $c>1$ such that the random events

$$
B_{k}=\left\{\omega: \sup _{t \in[0,1]}\left|z_{k}(t)-f(t)\right|<\delta\right\}
$$

occur infinitely often for every $\delta>0$. This means that

$$
\begin{equation*}
\mathrm{P}\left\{\limsup _{k \rightarrow \infty} B_{k}\right\}=1 \tag{18}
\end{equation*}
$$

We use the Borel-Cantelli-Lévy lemma [5] to prove relation (18). Introduce the family of σ-algebras $\Im_{j}=\sigma\left\{\eta(s), s \leq c^{j}\right\}$. Put

$$
A_{k}=\left\{\omega: \sup _{t \in[0,1 / c]}\left|z_{k}(t)-f(t)\right|<\delta\right\}
$$

and

$$
D_{k}=\left\{\omega: \sup _{t \in[1 / c, 1]}\left|z_{k}(t)-f(t)\right|<\delta\right\}
$$

Note that $B_{k}=A_{k} \cap D_{k}$ and $D_{k} \prec \Im_{k}$. Since

$$
z_{k}(t)=z_{k-1}(t c) \frac{\psi\left(c^{k-1}\right)}{\psi\left(c^{k}\right)}
$$

$z_{k}(t) \prec \Im_{k-1}$ for $t \in[0,1 / c]$. Then $A_{k} \prec \Im_{k-1}$ and

$$
\begin{equation*}
\mathrm{P}\left(B_{k} \mid \Im_{k-1}\right)=I\left(A_{k}\right) \mathrm{P}\left(D_{k} \mid \Im_{k-1}\right) . \tag{19}
\end{equation*}
$$

It follows from the Borel-Cantelli-Lévy lemma that relation (18) holds if

$$
\begin{equation*}
\sum_{k} I\left(A_{k}\right) \mathrm{P}\left(D_{k} \mid \Im_{k-1}\right)=\infty \tag{20}
\end{equation*}
$$

We construct a partition of the interval $[1 / c, 1]$ consisting of smaller intervals of length Δ as follows: let Δ be a sufficiently small positive number such that $n(\Delta)=\frac{c-1}{c \Delta}$ is a positive integer number. Then the members of the partition of the interval $[1 / c, 1]$ are

$$
\Delta_{i}=\left[d_{i}, d_{i+1}\right], \quad d_{i}=\frac{1}{c}+i \Delta, \quad i=0, \ldots, n(\Delta)-1
$$

In what follows we construct all the partitions of the interval $[1 / c, 1]$ in the way described above.

Now we consider the set

$$
\begin{aligned}
\bar{D}_{k}= & \left\{\sup _{t \in[1 / c, 1]}\left|z_{k}(t)-f(t)\right| \geq \delta\right\} \\
\subset & \left\{\sup _{i} \sup _{t \in \Delta_{i}}\left|z_{k}(t)-z_{k}\left(d_{i}\right)\right| \geq \frac{\delta}{3}\right\} \cup\left\{\sup _{i}\left|z_{k}\left(d_{i}\right)-f\left(d_{i}\right)\right| \geq \frac{\delta}{3}\right\} \\
& \cup\left\{\sup _{i} \sup _{t \in \Delta_{i}}\left|f\left(d_{i}\right)-f(t)\right| \geq \frac{\delta}{3}\right\} .
\end{aligned}
$$

By the Cauchy-Bunyakovskiĭ inequality,

$$
\left|f(t)-f\left(d_{i}\right)\right|^{2}=\left|\int_{d_{i}}^{t} \dot{f}(s) d s\right|^{2} \leq\left(t-d_{i}\right) \int_{s}^{t}|\dot{f}(s)|^{2} d s \leq \Delta h^{2}
$$

If $\Delta<\Delta_{*}=\delta^{2} /\left(9 h^{2}\right)$, then

$$
\left\{\sup _{i} \sup _{t \in \Delta_{i}}\left|f\left(d_{i}\right)-f(t)\right| \geq \frac{\delta}{3}\right\}
$$

is an empty set. For such a number Δ,

$$
\begin{align*}
& \mathrm{P}\left(D_{k} \mid \Im_{k-1}\right) \geq \mathrm{P}\left\{\left.\sup _{i}\left|u\left(c^{k} d_{i}\right)-f\left(d_{i}\right) \psi\left(c^{k}\right)\right|<\frac{\delta}{3} \psi\left(c^{k}\right) \right\rvert\, \Im_{k-1}\right\} \\
&-\mathrm{P}\left\{\left.\sup _{i} \sup _{t \in \Delta_{i}}\left|z_{k}(t)-z_{k}\left(d_{i}\right)\right| \geq \frac{\delta}{3} \right\rvert\, \Im_{k-1}\right\} . \tag{21}
\end{align*}
$$

Now we make use of several auxiliary results stated below. Lemma 2 (see Section (4) implies that there exists a constant $c>1$ such that

$$
\begin{equation*}
I_{A_{k}}(\omega)=1 \tag{22}
\end{equation*}
$$

almost surely for all sufficiently large k.
Now Lemma 3 (see Section (4) implies that, for a fixed $c>1$ and all $\delta>0$ and $Q>0$, there exists a partition of the interval $[1 / c, 1]$ consisting of smaller intervals of length $\Delta_{* *}$ such that

$$
\begin{equation*}
\mathrm{P}\left\{\left.\sup _{i} \sup _{t \in \Delta_{i}}\left|z_{k}(t)-z_{k}\left(d_{i}\right)\right| \geq \frac{\delta}{3} \right\rvert\, \Im_{k-1}\right\} \leq 2 n\left(\Delta_{* *}\right) \exp \left\{-\phi^{2}\left(c^{k}\right) Q\right\} \tag{23}
\end{equation*}
$$

almost surely. Lemma 8 (see Section (4) implies that

$$
\begin{gather*}
\mathrm{P}\left\{\left.\sup _{i}\left|u\left(c^{k} d_{i}\right)-f\left(d_{i}\right) \psi\left(c^{k}\right)\right|<\frac{\delta}{3} \psi\left(c^{k}\right) \right\rvert\, \Im_{k-1}\right\} \\
\geq \frac{1}{2} \exp \left\{-\phi^{2}\left(c^{k}\right)\left(\frac{G^{2}(\phi)}{2}-q\right)\right\} \tag{24}
\end{gather*}
$$

almost surely for the constant c defined in Lemma 2 and for an arbitrary $q>0$ if k is sufficiently large.

Now we turn back to the proof of the theorem. We pick up a number $c>1$ such that equality (22) holds. Then we choose

$$
Q=\frac{G^{2}(\phi)}{2}-q+1
$$

in inequality (23), where the constant q is the same as in (24), and a partition of the interval $[1 / c, 1]$ with $\Delta<\min \left(\Delta_{*}, \Delta_{* *}\right)$. If the number k is sufficiently large, namely, if

$$
8 n(\Delta) \leq \exp \left\{\phi^{2}\left(c^{k}\right)\right\}
$$

then

$$
\begin{aligned}
\mathrm{P}\left\{\left.\sup _{i} \sup _{t \in \Delta_{i}}\left|z_{k}(t)-z_{k}\left(d_{i}\right)\right| \geq \frac{\delta}{3} \right\rvert\, \Im_{k-1}\right\} & \leq 2 n(\Delta) \exp \left\{-\phi^{2}\left(c^{k}\right)\left(\frac{G^{2}(\phi)}{2}-q+1\right)\right\} \\
& \leq \frac{2 n(\Delta)}{\exp \left\{\phi^{2}\left(c^{k}\right)\right\}} \exp \left\{-\phi^{2}\left(c^{k}\right)\left(\frac{G^{2}(\phi)}{2}-q\right)\right\} \\
& \leq \frac{1}{4} \exp \left\{-\phi^{2}\left(c^{k}\right)\left(\frac{G^{2}(\phi)}{2}-q\right)\right\}
\end{aligned}
$$

almost surely, whence

$$
\mathrm{P}\left(D_{k} \mid \Im_{k-1}\right) \geq \frac{1}{4} \exp \left\{-\phi^{2}\left(c^{k}\right)\left(\frac{G^{2}(\phi)}{2}-q\right)\right\}
$$

almost surely by (24) and (21) for sufficiently large k and some $q>0$.
Taking into account equalities (22) and (19) together with the definition of $G^{2}(\phi)$ we obtain (20). The proof of Step 3 is complete and thus Theorem 2 is proved.

4. Proof of Theorem 1 and further auxiliary results

We start with the auxiliary results.
Lemma 2. For all $\delta>0$ and all $h<\infty$, there exist a constant $c>1$ and a positive integer number k_{0} such that

$$
\begin{equation*}
\sup _{t \in[0,1 / c]}\left|z_{k}(t)-g(t)\right|<\delta \tag{25}
\end{equation*}
$$

almost surely for all $k>k_{0}$ and $g \in K_{h}$.

Proof. According to Step 1 in the proof of Theorem 2, for all $c>1$ and an arbitrary $\delta>0$ there exists a number k_{0} such that

$$
\begin{equation*}
\inf _{g \in K_{h}} \sup _{t \in[0,1 / c]}\left|z_{k}(t)-g(t)\right|<\frac{\delta}{3} \tag{26}
\end{equation*}
$$

almost surely for all $k>k_{0}$.
On the other hand, for every $g \in K_{h}$,

$$
|g(t)|^{2}=\left|\int_{0}^{t} \dot{g}(s) d s\right|^{2} \leq 2 t h^{2}
$$

Let $c>\max \left(1,18 h^{2} / \delta^{2}\right)$; then

$$
\begin{equation*}
\sup _{t \in[0,1 / c]}|g(t)|<\frac{\delta}{3} . \tag{27}
\end{equation*}
$$

We deduce from (26) and (27) that

$$
\sup _{t \in[0,1 / c]}\left|z_{k}(t)\right|<\frac{2 \delta}{3}
$$

almost surely. The latter inequality together with (27) proves (25), which completes the proof of Lemma 2

The following result uses the partition of the interval $[1 / c, 1]$ consisting of smaller intervals of length Δ described above.

Lemma 3. Let $c>1$ be fixed. Then, for all $\delta>0$ and an arbitrary $Q>0$, there exists a partition of the interval $[1 / c, 1]$ consisting of smaller intervals of length Δ such that

$$
\begin{equation*}
\mathrm{P}\left\{\sup _{i} \sup _{t \in \Delta_{i}}\left|z_{k}(t)-z_{k}\left(d_{i}\right)\right| \geq \delta \mid \Im_{k-1}\right\} \leq 2 n(\Delta) \exp \left\{-\phi^{2}\left(c^{k}\right) Q\right\} \tag{28}
\end{equation*}
$$

almost surely.
Proof. Consider the σ-algebras $\mathcal{G}_{c^{k} d_{i}}=\sigma\left\{\eta(s), s \leq c^{k} d_{i}\right\}$. Then

$$
\mathrm{P}\left\{\sup _{t \in \Delta_{i}}\left|z_{k}(t)-z_{k}\left(d_{i}\right)\right| \geq \delta \mid \mathcal{G}_{c^{k} d_{i}}\right\} \leq 2 \exp \left\{-\phi^{2}\left(c^{k}\right) Q\right\}
$$

almost surely. The latter bound is proved similarly to the proof of Theorem 5 in 3, p. 172].

Since $\Im_{k-1} \subseteq \mathcal{G}_{c^{k} d_{i}}$ for $i=0,1, \ldots, n(\Delta)-1$,

$$
\mathrm{P}\left\{\sup _{t \in \Delta_{i}}\left|z_{k}(t)-z_{k}\left(d_{i}\right)\right| \geq \delta \mid \Im_{k-1}\right\} \leq 2 \exp \left\{-\phi^{2}\left(c^{k}\right) Q\right\}
$$

almost surely.
This implies inequality (28) and completes the proof of Lemma 3 .
Lemma 4. Let $h(x)$ be a positive increasing function for $x \geq 0$. Then

$$
\mathrm{E} \zeta I_{(|\xi|>a)} \leq \frac{1}{h(a)} \mathrm{E} \zeta h(|\xi|)
$$

for $\zeta \geq 0$ and $a>0$.

Proof. We have

$$
\begin{aligned}
\mathrm{E} \zeta I_{(|\xi|>a)} & =\int_{(\omega:|\xi|>a)} \zeta \mathrm{P}(d \omega)=\int_{(\omega: h(|\xi|)>h(a))} \zeta \mathrm{P}(d \omega) \\
& \leq \int_{(\omega: h(|\xi|)>h(a))} \zeta \frac{h(|\xi|)}{h(a)} \mathrm{P}(d \omega) \leq \frac{1}{h(a)} \int_{\Omega} \zeta h(|\xi|) \mathrm{P}(d \omega) \leq \frac{1}{h(a)} \mathrm{E} \zeta h(|\xi|) .
\end{aligned}
$$

Lemma 4 is proved.
Put

$$
M_{k}(f ; x)=\frac{1}{\phi^{2}\left(c^{k}\right)} \ln \left\{\mathrm{E}\left\{\left.\exp \left[\frac{\phi\left(c^{k}\right)}{\sqrt{c^{k}}} \int_{c^{k-1}}^{c^{k}} \frac{f\left(\frac{s}{c^{k}}\right)}{1+\beta \operatorname{sgn} \eta(s)} d w(s)\right] \right\rvert\, \eta\left(c^{k-1}\right)=x\right\}\right\} .
$$

Lemma 5. Let $|\beta|<1$ and let $c>1$ be fixed. Then

$$
M_{k}(f ; x) \leq \frac{1}{2(1-|\beta|)^{2}} \int_{1 / c}^{1} f^{2}(s) d s
$$

almost surely for $f \in C[0,1]$.
Proof. Since

$$
\begin{aligned}
& \frac{\phi\left(c^{k}\right)}{\sqrt{c^{k}}} \int_{c^{k-1}}^{c^{k}} \frac{f\left(\frac{s}{c^{k}}\right)}{1+\beta \operatorname{sgn} \eta(s)} d w(s) \\
& \quad=\frac{\phi\left(c^{k}\right)}{\sqrt{c^{k}}} \int_{c^{k-1}}^{c^{k}} \frac{f\left(\frac{s}{c^{k}}\right)}{1+\beta \operatorname{sgn} \eta(s)} d w(s) \mp \frac{\phi^{2}\left(c^{k}\right)}{2 c^{k}} \int_{c^{k-1}}^{c^{k}} \frac{f^{2}\left(\frac{s}{c^{k}}\right)}{(1+\beta \operatorname{sgn} \eta(s))^{2}} d s
\end{aligned}
$$

and

$$
\frac{1}{(1+\beta \operatorname{sgn} \eta(s))^{2}} \leq \frac{1}{(1-|\beta|)^{2}}
$$

the Girsanov theorem implies

$$
\begin{aligned}
M_{k}(f ; x) & \leq \frac{1}{\phi^{2}\left(c^{k}\right)} \ln \left\{\exp \left\{\frac{\phi^{2}\left(c^{k}\right)}{2(1-|\beta|)^{2} c^{k}} \int_{c^{k-1}}^{c^{k}} f^{2}\left(\frac{s}{c^{k}}\right) d s\right\}\right\} \\
& =\frac{1}{2(1-|\beta|)^{2} c^{k}} \int_{c^{k-1}}^{c^{k}} f^{2}\left(\frac{s}{c^{k}}\right) d s=\frac{1}{2(1-|\beta|)^{2}} \int_{1 / c}^{1} f^{2}(s) d s
\end{aligned}
$$

almost surely. Lemma 5 is proved.
Put

$$
\begin{gathered}
C_{k}=\left\{\sup _{i}\left|u\left(c^{k} d_{i}\right)-f\left(d_{i}\right) \psi\left(c^{k}\right)\right|<\frac{\delta}{3} \psi\left(c^{k}\right)\right\} \\
C_{k}(i)=\left\{\left|u\left(c^{k} d_{i}\right)-f\left(d_{i}\right) \psi\left(c^{k}\right)\right|<\frac{\delta}{3} \psi\left(c^{k}\right)\right\}, \quad i=0,1, \ldots, n(\Delta)-1 ; \\
J_{c}(f)=\frac{1}{2} \int_{1 / c}^{1}(1+\beta \operatorname{sgn} f(s))^{2} \dot{f}^{2}(s) d s
\end{gathered}
$$

For $|\beta|<1$, we choose the constants l, m, and p such that
$A_{1} .0<m<\frac{(1-|\beta|)^{2}}{(1+|\beta|)^{2}}$.
A_{2}. If $\beta \neq 0$, then $\sqrt{m} \frac{1-|\beta|}{1+|\beta|}<l<\sqrt{\frac{m-m^{2}}{4|\beta|}}(1-|\beta|)$; otherwise $l=m$.
$A_{3} . p=\frac{(1-|\beta|)^{2}}{l}\left(\frac{l^{2}-m^{2}+m}{(1+|\beta|)^{2}}+1\right)$.

Put

$$
\begin{equation*}
K_{1}=\frac{l^{2}-m^{2}+m}{(1+|\beta|)^{2}}-\frac{l^{2}}{(1-|\beta|)^{2}} \tag{29}
\end{equation*}
$$

Remark 2. It is not hard to check that the following properties hold:

1. Condition A_{1} implies that $0<m<1$, that is, the expression under the square root in condition A_{2} is positive.
2. Condition A_{2} implies that $K_{1}>0$.
3. The set of numbers l satisfying the inequality in condition A_{2} is nonempty, since this inequality is equivalent to

$$
\frac{1}{1+|\beta|}<\sqrt{\frac{1-m}{4|\beta|}}
$$

the latter inequality holds by condition A_{1}.
For the constants l, m, and p put

$$
\begin{align*}
\rho_{k}(l, m)=\exp \{l & l \frac{\phi\left(c^{k}\right)}{\sqrt{c^{k}}} \int_{c^{k-1}}^{c^{k}} \frac{1+\beta \operatorname{sgn} f\left(\frac{s}{c^{k}}\right)}{1+\beta \operatorname{sgn} \eta(s)} \dot{f}\left(\frac{s}{c^{k}}\right) d w(s) \\
& \left.-m \frac{\phi^{2}\left(c^{k}\right)}{2 c^{k}} \int_{c^{k-1}}^{c^{k}} \frac{\left(1+\beta \operatorname{sgn} f\left(\frac{s}{c^{k}}\right)\right)^{2}}{(1+\beta \operatorname{sgn} \eta(s))^{2}} \dot{f}^{2}\left(\frac{s}{c^{k}}\right) d s\right\} \tag{30}
\end{align*}
$$

and

$$
\begin{aligned}
L_{k, p}(\delta)=\{ & \left\{\int_{c^{k-1}}^{c^{k}} \frac{1+\beta \operatorname{sgn} f\left(\frac{s}{c^{k}}\right)}{1+\beta \operatorname{sgn} \eta(s)} \dot{f}\left(\frac{s}{c^{k}}\right) d w(s)\right. \\
& \left.\quad-p \frac{\phi\left(c^{k}\right)}{2 \sqrt{c^{k}}(1-|\beta|)^{2}} \int_{c^{k-1}}^{c^{k}}\left(1+\beta \operatorname{sgn} f\left(\frac{s}{c^{k}}\right)\right)^{2} \dot{f}^{2}\left(\frac{s}{c^{k}}\right) d s \right\rvert\, \\
& \left.\leq \frac{\delta \psi\left(c^{k}\right)}{(1-|\beta|)^{2}} J_{c}(f)\right\}
\end{aligned}
$$

Lemma 6. Let $|\beta|<1$. Then, for the constants l and m chosen above, there exists a constant $c>1$ such that

$$
\mathrm{P}\left\{\rho_{k}(l, m) I_{\Omega \backslash C_{k}(i)}(\omega) \mid \Im_{k-1}\right\} \leq \exp \left\{\phi^{2}\left(c^{k}\right) \frac{l^{2}-m^{2}}{(1+|\beta|)^{2}} J_{c}(f)\right\} a_{k}(i)
$$

almost surely, where the numbers $a_{k}(i)$ do not depend on θ and Δ and are such that

$$
\lim _{k \rightarrow \infty} a_{k}(i)=0, \quad i=0,1, \ldots, n(\Delta)-1
$$

Proof. Let $\theta \prec \Im_{k-1}$ be an arbitrary positive bounded random variable. We apply Lemma 4 to the function

$$
h(x)=\exp \left\{\frac{\phi\left(c^{k}\right) N}{\sqrt{c^{k}}} x\right\}
$$

with some constant N to be specified later. Then

$$
\begin{aligned}
& \mathrm{E} \theta \rho_{k}(l, m) I_{\Omega \backslash C_{k}(i)}(\omega) \\
& \leq \mathrm{E} \theta \rho_{k}(l, m) \exp \left\{\frac{N \phi\left(c^{k}\right)}{\sqrt{c^{k}}}\left|u\left(c^{k} d_{i}\right)-f\left(d_{i}\right) \psi\left(c^{k}\right)\right|-\frac{\delta}{3} N \phi^{2}\left(c^{k}\right)\right\} \\
& \leq \mathrm{E} \theta \rho_{k}(l, m) \exp \left\{\frac{N \phi\left(c^{k}\right)}{\sqrt{c^{k}}}\left(u\left(c^{k} d_{i}\right)-f\left(d_{i}\right) \psi\left(c^{k}\right)\right)-\frac{\delta}{3} N \phi^{2}\left(c^{k}\right)\right\} \\
&+\mathrm{E} \theta \rho_{k}(l, m) \exp \left\{-\frac{N \phi\left(c^{k}\right)}{\sqrt{c^{k}}}\left(u\left(c^{k} d_{i}\right)-f\left(d_{i}\right) \psi\left(c^{k}\right)\right)-\frac{\delta}{3} N \phi^{2}\left(c^{k}\right)\right\} \\
&= J_{k}^{1}(i)+J_{k}^{2}(i) .
\end{aligned}
$$

First we consider the term $J_{k}^{1}(i)$. Using equality (30) together with

$$
\frac{1}{\left(1+\beta \operatorname{sgn} \eta\left(s c^{k}\right)\right)^{2}} \geq \frac{1}{(1+|\beta|)^{2}}
$$

we get

$$
\begin{aligned}
J_{k}^{1}(i)= & \exp \left\{-\phi^{2}\left(c^{k}\right)\left[N f\left(d_{i}\right)+N \frac{\delta}{3}+\frac{m}{2} \int_{1 / c}^{1} \frac{(1+\beta \operatorname{sgn} f(s))^{2}}{\left(1+\beta \operatorname{sgn} \eta\left(s c^{k}\right)\right)^{2}} \dot{f}^{2}(s) d s\right]\right\} \\
& \times \mathrm{E} \theta \exp \left\{\frac{\phi\left(c^{k}\right)}{\sqrt{c^{k}}}\left(N u\left(c^{k} d_{i}\right)+\int_{c^{k-1}}^{c^{k}} l \frac{\left(1+\beta \operatorname{sgn} f\left(\frac{s}{c^{k}}\right)\right) \dot{f}\left(\frac{s}{c^{k}}\right)}{1+\beta \operatorname{sgn} \eta(s)} d w(s)\right)\right\} \\
\leq & \exp \left\{-\phi^{2}\left(c^{k}\right)\left[N f\left(d_{i}\right)+N \frac{\delta}{3}+\frac{m}{(1+|\beta|)^{2}} J_{c}(f)\right]\right\} \\
& \times \mathrm{E}\left\{\theta \mathrm { E } \left\{\operatorname { e x p } \left[\frac { \phi (c ^ { k }) } { \sqrt { c ^ { k } } } \left(N u\left(c^{k-1}\right)\right.\right.\right.\right. \\
& +\int_{c^{k-1}}^{c^{k}}\left(\frac{l\left(1+\beta \operatorname{sgn} f\left(\frac{s}{c^{k}}\right)\right) \dot{f}\left(\frac{s}{c^{k}}\right)}{1+\beta \operatorname{sgn} \eta(s)}\right. \\
& \left.\left.\left.\left.\left.+\frac{N I_{\left[c^{k-1}, c^{k} d_{i}\right]}\left(\frac{s}{c^{k}}\right)}{1+\beta \operatorname{sgn} \eta(s)}\right) d w(s)\right)\right] \mid \Im_{k-1}\right\}\right\}
\end{aligned}
$$

The Markov property of the process $\eta(t)$ implies that

$$
\begin{aligned}
& \mathrm{E}\left\{\left.\exp \left[\frac{\phi\left(c^{k}\right)}{\sqrt{c^{k}}} \int_{c^{k-1}}^{c^{k}} \frac{l\left(1+\beta \operatorname{sgn} f\left(\frac{s}{c^{k}}\right)\right) \dot{f}\left(\frac{s}{c^{k}}\right)+N I_{\left[c^{k-1}, c^{k} d_{i}\right]}\left(\frac{s}{c^{k}}\right)}{1+\beta \operatorname{sgn} \eta(s)} d w(s)\right] \right\rvert\, \Im_{k-1}\right\} \\
& \quad=\exp \left\{\phi^{2}\left(c^{k}\right) M_{k}\left(l(1+\beta \operatorname{sgn} f) \dot{f}+N I_{\left[c^{k-1}, c^{k} d_{i}\right]}(\cdot) ; \eta\left(c^{k-1}\right)\right)\right\} .
\end{aligned}
$$

Applying Lemma 5 we obtain

$$
\begin{aligned}
J_{k}^{1}(i) \leq & \exp \left\{-\phi^{2}\left(c^{k}\right)\left[N \frac{\delta}{3}+\frac{m}{(1+|\beta|)^{2}} J_{c}(f)\right]\right\} \\
& \times \operatorname{E} \theta \exp \left\{\frac{\phi\left(c^{k}\right)}{\sqrt{c^{k}}} N\left(u\left(c^{k-1}\right)-f\left(d_{i}\right) \psi\left(c^{k}\right)\right)\right\} \\
& \times \exp \left\{\phi^{2}\left(c^{k}\right) M_{k}\left(l(1+\beta \operatorname{sgn} f) \dot{f}+N I_{\left[c^{k-1}, c^{k} d_{i}\right]}(\cdot) ; \eta\left(c^{k-1}\right)\right)\right\} \\
\leq & \exp \left\{-\phi^{2}\left(c^{k}\right)\left[N \frac{\delta}{3}+\frac{m}{(1+|\beta|)^{2}} J_{c}(f)\right]\right\} \\
& \times \operatorname{E} \theta \exp \left\{\frac{\phi\left(c^{k}\right)}{\sqrt{c^{k}}} N\left(u\left(c^{k-1}\right)-f(1 / c) \psi\left(c^{k}\right)\right)\right\} \\
& \times \exp \left\{\phi^{2}\left(c^{k}\right) N\left(f(1 / c)-f\left(d_{i}\right)\right)\right\} \\
& \times \exp \left\{\frac{\phi^{2}\left(c^{k}\right)}{2(1-|\beta|)^{2}} \int_{1 / c}^{1}\left(l(1+\beta \operatorname{sgn} f(s)) \dot{f}(s)+N I_{\left[1 / c, d_{i}\right]}(s)\right)^{2} d s\right\}
\end{aligned}
$$

By Lemma 2, there exists a constant $c>1$ such that

$$
\begin{equation*}
\exp \left\{\frac{\phi\left(c^{k}\right)}{\sqrt{c^{k}}} N\left(u\left(c^{k-1}\right)-f(1 / c) \psi\left(c^{k}\right)\right)\right\} \leq \exp \left\{\frac{\delta}{6} N \phi^{2}\left(c^{k}\right)\right\} \tag{31}
\end{equation*}
$$

almost surely for sufficiently large k. Then we estimate

$$
\begin{align*}
& \int_{1 / c}^{1}\left(l(1+\beta \operatorname{sgn} f(s)) \dot{f}(s)+N I_{\left[1 / c, d_{i}\right]}(s)\right)^{2} d s \\
& \quad \leq 2 l^{2} J_{c}(f)+2 N l \int_{1 / c}^{d_{i}}(1+\beta \operatorname{sgn} f(s)) \dot{f}(s) d s+N^{2}(1-1 / c) . \tag{32}
\end{align*}
$$

Denote the right hand side of inequality (32) by $A_{c}\left(J_{c}, N, l\right)$. Then (31) and (32) imply

$$
\begin{align*}
J_{k}^{1}(i) \leq & \exp \left\{-\phi^{2}\left(c^{k}\right)\left[N \frac{\delta}{6}+\frac{m}{(1+|\beta|)^{2}} J_{c}(f)\right]\right\} \exp \left\{\frac{\phi^{2}\left(c^{k}\right)}{2(1-|\beta|)^{2}} A_{c}\left(J_{c}, N, l\right)\right\} \\
& \times \exp \left\{\phi^{2}\left(c^{k}\right) N\left(f(1 / c)-f\left(d_{i}\right)\right)\right\} \mathrm{E} \theta \\
= & \exp \left\{-\phi^{2}\left(c^{k}\right)\left[N \frac{\delta}{6}+\frac{m}{(1+|\beta|)^{2}} J_{c}(f)-\frac{l^{2}}{(1-|\beta|)^{2}} J_{c}(f)\right.\right. \tag{33}\\
& \left.\left.-\frac{N^{2}}{2(1-|\beta|)^{2}}(1-1 / c)\right]\right\} \\
& \times \exp \left\{\phi^{2}\left(c^{k}\right) N \int_{1 / c}^{d_{i}}\left(\frac{l(1+\beta \operatorname{sgn} f(s))}{(1-|\beta|)^{2}}-1\right) \dot{f}(s) d s\right\} \mathrm{E} \theta .
\end{align*}
$$

The expression written in the parentheses in the integral in (33) does not exceed

$$
\frac{l(1+|\beta|)}{(1-|\beta|)^{2}}
$$

while

$$
\int_{1 / c}^{d_{i}} \dot{f}(s) d s \leq\left|\int_{1 / c}^{d_{i}} \frac{1+\beta \operatorname{sgn} f}{1+\beta \operatorname{sgn} f} \dot{f}(s) d s\right| \leq \frac{\sqrt{2 J_{c}(f)} \sqrt{1-1 / c}}{1-|\beta|} .
$$

Thus we deduce from inequality (33) that

$$
\begin{aligned}
& J_{k}^{1}(i) \leq \exp \left\{-\phi^{2}\left(c^{k}\right)\left[\frac{N \delta}{6}+J_{c}(f)\left(\frac{m}{(1+|\beta|)^{2}}-\frac{l^{2}}{(1-|\beta|)^{2}}\right)-\frac{N^{2}(1-1 / c)}{2(1-|\beta|)^{2}}\right.\right. \\
& \left.\left.-\frac{l N(1+|\beta|)}{(1-|\beta|)^{3}} \sqrt{2 J_{c}(f)} \sqrt{1-1 / c}\right]\right\} \mathrm{E} \theta \\
& =\exp \left\{\phi^{2}\left(c^{k}\right) \frac{l^{2}-m^{2}}{(1+|\beta|)^{2}} J_{c}(f)\right\} \\
& \times \exp \left\{-\phi^{2}\left(c^{k}\right)\left[\frac{N \delta}{6}-\frac{N^{2}(1-1 / c)}{2(1-|\beta|)^{2}}\right.\right. \\
& +J_{c}(f)\left(\frac{l^{2}-m^{2}}{(1+|\beta|)^{2}}+\frac{m}{(1+|\beta|)^{2}}-\frac{l^{2}}{(1-|\beta|)^{2}}\right) \\
& \left.\left.-\frac{l N(1+|\beta|)}{(1-|\beta|)^{3}} \sqrt{2 J_{c}(f)} \sqrt{1-1 / c}\right]\right\} \mathrm{E} \theta .
\end{aligned}
$$

Taking into account equality (29) we put

$$
\begin{aligned}
\hat{a}_{k}(i)=\exp \left\{-\phi^{2}\left(c^{k}\right)\right. & {\left[\frac{N \delta}{6}\right.} \\
& \left.\left.-\frac{N^{2}(1-1 / c)}{2(1-|\beta|)^{2}}+K_{1} J_{c}(f)-\frac{l N(1+|\beta|)}{(1-|\beta|)^{3}} \sqrt{2 J_{c}(f)} \sqrt{1-1 / c}\right]\right\} .
\end{aligned}
$$

Since $K_{1}>0$, the expression in the square brackets is positive for some $N>0$. For such a number N,

$$
\lim _{k \rightarrow \infty} \hat{a}_{k}(i)=0
$$

and

$$
\begin{equation*}
J_{k}^{1}(i) \leq \exp \left\{\phi^{2}\left(c^{k}\right) \frac{l^{2}-m^{2}}{(1+|\beta|)^{2}} J_{c}(f)\right\} \hat{a}_{k}(i) \mathrm{E} \theta \tag{34}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
J_{k}^{2}(i) \leq \exp \left\{\phi^{2}\left(c^{k}\right) \frac{l^{2}-m^{2}}{(1+|\beta|)^{2}} J_{c}(f)\right\} \check{a}_{k}(i) \mathrm{E} \theta \tag{35}
\end{equation*}
$$

where

$$
\lim _{k \rightarrow \infty} \check{a}_{k}(i)=0
$$

Now Lemma 6 follows from bounds (34) and (35) with $a_{k}(i)=\hat{a}_{k}(i)+\check{a}_{k}(i)$.
Lemma 7. Let $|\beta|<1$. Then

$$
\mathrm{P}\left\{\rho_{k}(l, m) I_{\Omega \backslash L_{k, p}(\delta)}(\omega) \mid \Im_{k-1}\right\} \leq \exp \left\{\phi^{2}\left(c^{k}\right) \frac{l^{2}-m^{2}}{(1+|\beta|)^{2}} J_{c}(f)\right\} b_{k}(\delta)
$$

almost surely for the constants l, m, and p chosen above and for all $\delta>0$, where $b_{k}(\delta)$ does not depend on θ and is such that $\lim _{k \rightarrow \infty} b_{k}(\delta)=0$.

Proof. Let $\theta \prec \Im_{k-1}$ be an arbitrary positive bounded random variable. We use Lemma[4 with the function

$$
h(x)=\exp \left\{\frac{\phi\left(c^{k}\right) N}{\sqrt{c^{k}}} x\right\}
$$

and with some constant $0<N<1$ to be specified later. Then

$$
\begin{aligned}
& \mathrm{E} \theta \rho_{k}(l, m) I_{\Omega \backslash L_{k, p}(\delta)}(\omega) \\
& \qquad \begin{array}{l}
\leq \mathrm{E} \theta \rho_{k}(l, m) \\
\quad \times \exp \left\{\left\lvert\, \frac{\phi\left(c^{k}\right)}{\sqrt{c^{k}}} N \int_{c^{k-1}}^{c^{k}} \frac{1+\beta \operatorname{sgn} f\left(\frac{s}{c^{k}}\right)}{1+\beta \operatorname{sgn} \eta(s)} \dot{f}\left(\frac{s}{c^{k}}\right) d w(s)\right.\right. \\
\left.\left.\quad-\frac{p \phi^{2}\left(c^{k}\right)}{2(1-|\beta|)^{2} c^{k}} N \int_{c^{k-1}}^{c^{k}}\left(1+\beta \operatorname{sgn} f\left(\frac{s}{c^{k}}\right)\right)^{2} \dot{f}^{2}\left(\frac{s}{c^{k}}\right) d s \right\rvert\,\right\} \\
\quad \times \exp \left\{-\phi^{2}\left(c^{k}\right) N \frac{\delta}{(1-|\beta|)^{2}} J_{c}(f)\right\} \\
\leq \\
\quad \mathrm{E} \theta \rho_{k}(l, m) \exp \left\{\frac{\phi\left(c^{k}\right)}{\sqrt{c^{k}}} N \int_{c^{k-1}}^{c^{k}} \frac{1+\beta \operatorname{sgn} f\left(\frac{s}{c^{k}}\right)}{1+\beta \operatorname{sgn} \eta(s)} \dot{f}\left(\frac{s}{c^{k}}\right) d w(s)\right. \\
\quad+\mathrm{E} \theta \rho_{k}(l, m) \exp \left\{-\frac{\phi\left(c^{k}\right)}{\sqrt{c^{k}}} N \int_{c^{k-1}}^{c^{k}} \frac{1+\beta \operatorname{sgn} f\left(\frac{s}{c^{k}}\right)}{1+\beta \operatorname{sgn} \eta(s)} \dot{f}\left(\frac{s}{c^{k}}\right) d w(s)\right. \\
= \\
=J_{k}^{1}(\delta)+J_{k}^{2}(\delta) .
\end{array}
\end{aligned}
$$

Substituting $\rho_{k}(l, m)$, we consider the term $J_{k}^{1}(\delta)$. We see from the Markov property of the process $\eta(t)$ that

$$
\begin{aligned}
J_{k}^{1}(\delta)= & \mathrm{E} \theta \exp \left\{\frac{\phi\left(c^{k}\right)(N+l)}{\sqrt{c^{k}}} \int_{c^{k-1}}^{c^{k}} \frac{1+\beta \operatorname{sgn} f\left(\frac{s}{c^{k}}\right)}{1+\beta \operatorname{sgn} \eta(s)} \dot{f}\left(\frac{s}{c^{k}}\right) d w(s)\right. \\
& \left.-\phi^{2}\left(c^{k}\right)\left(\frac{(\delta+p) N}{(1-|\beta|)^{2}} J_{c}(f)+\frac{m}{2} \int_{1 / c}^{1} \frac{(1+\beta \operatorname{sgn} f(s))^{2}}{\left(1+\beta \operatorname{sgn} \eta\left(s c^{k}\right)\right)^{2}} \dot{f}^{2}(s) d s\right)\right\} \\
\leq & \exp \left\{-\phi^{2}\left(c^{k}\right) J_{c}(f)\left(\frac{(\delta+p) N}{(1-|\beta|)^{2}}+\frac{m}{(1+|\beta|)^{2}}\right)\right\} \\
& \times \mathrm{E}\left\{\theta \mathrm{E}\left\{\left.\exp \left[\frac{\phi\left(c^{k}\right)(N+l)}{\sqrt{c^{k}}} \int_{c^{k-1}}^{c^{k}} \frac{1+\beta \operatorname{sgn} f\left(\frac{s}{c^{k}}\right)}{1+\beta \operatorname{sgn} \eta(s)} \dot{f}\left(\frac{s}{c^{k}}\right) d w(s)\right] \right\rvert\, \Im_{k-1}\right\}\right\} \\
= & \exp \left\{-\phi^{2}\left(c^{k}\right) J_{c}(f)\left(\frac{(\delta+p) N}{(1-|\beta|)^{2}}+\frac{m}{(1+|\beta|)^{2}}\right)\right\} \mathrm{E} \theta \\
& \times \exp \left\{\phi^{2}\left(c^{k}\right) M_{k}\left((l+N)(1+\beta \operatorname{sgn} f) \dot{f} ; \eta\left(c^{k-1}\right)\right)\right\} .
\end{aligned}
$$

By Lemma 5, we get

$$
\begin{aligned}
M_{k}\left((l+N)(1+\beta \operatorname{sgn} f) \dot{f} ; \eta\left(c^{k-1}\right)\right) & \leq \frac{(l+N)^{2}}{2(1-|\beta|)^{2}} \int_{1 / c}^{1}(1+\beta \operatorname{sgn} f)^{2} \dot{f}^{2} d s \\
& =\frac{(l+N)^{2}}{(1-|\beta|)^{2}} J_{c}(f)
\end{aligned}
$$

almost surely. Hence

$$
\begin{align*}
J_{k}^{1}(\delta) \leq & \exp \left\{-\phi^{2}\left(c^{k}\right) J_{c}(f)\left[\frac{(\delta+p) N}{(1-|\beta|)^{2}}+\frac{m}{(1+|\beta|)^{2}}-\frac{(l+N)^{2}}{(1-|\beta|)^{2}}\right]\right\} \mathrm{E} \theta \\
= & \exp \left\{\phi^{2}\left(c^{k}\right) J_{c}(f)\right. \\
& \left.\times\left(\frac{l^{2}-m^{2}}{(1+|\beta|)^{2}}-\left[\frac{(\delta+p) N-(l+N)^{2}}{(1-|\beta|)^{2}}+\frac{m+l^{2}-m^{2}}{(1+|\beta|)^{2}}\right]\right)\right\} \mathrm{E} \theta \\
= & \exp \left\{\phi^{2}\left(c^{k}\right) \frac{l^{2}-m^{2}}{(1+|\beta|)^{2}} J_{c}(f)\right\} \tag{36}\\
& \times \exp \left\{-\phi^{2}\left(c^{k}\right) J_{c}(f)\left[\frac{(\delta+p-2 l) N-N^{2}}{(1-|\beta|)^{2}}+K_{1}\right]\right\} \mathrm{E} \theta \\
= & \exp \left\{\phi^{2}\left(c^{k}\right) \frac{l^{2}-m^{2}}{(1+|\beta|)^{2}} J_{c}(f)\right\} \check{b}_{k}(\delta) \mathrm{E} \theta
\end{align*}
$$

for

$$
\check{b}_{k}(\delta)=\exp \left\{-\phi^{2}\left(c^{k}\right) J_{c}(f)\left[\frac{(\delta+p-2 l) N-N^{2}}{(1-|\beta|)^{2}}+K_{1}\right]\right\} .
$$

Since $K_{1}>0$, the expression in the square brackets on the right hand side of the definition of $\breve{b}_{k}(\delta)$ is positive for some $N>0$. For such a number N,

$$
\lim _{k \rightarrow \infty} \check{b}_{k}(\delta)=0
$$

Similarly,

$$
J_{k}^{2}(\delta) \leq \exp \left\{\phi^{2}\left(c^{k}\right) \frac{l^{2}-m^{2}}{(1+|\beta|)^{2}} J_{c}(f)\right\} \hat{b}_{k}(\delta) \mathrm{E} \theta
$$

where

$$
\lim _{k \rightarrow \infty} \hat{b}_{k}(\delta)=0
$$

Now Lemma 7 holds with $b_{k}(\delta)=\check{b}_{k}(\delta)+\hat{b}_{k}(\delta)$ for some N.
Lemma 8. Let $f \in \mathcal{K}_{G}$ be an arbitrary function such that $2 J(f)=h^{2}<G^{2}$. Then there are numbers $c>1$ and $v>0$ such that

$$
\mathrm{P}\left(C_{k} \mid \Im_{k-1}\right) \geq \frac{1}{2} \exp \left\{-\phi^{2}\left(c^{k}\right)\left(\frac{G^{2}}{2}-v\right)\right\}
$$

almost surely for sufficiently large k.
Proof. Let $\theta \prec \Im_{k-1}$ be an arbitrary positive bounded random variable. Then

$$
\begin{aligned}
& \mathrm{E} \theta I_{C_{k}}(\omega)=\mathrm{E} \theta \rho_{k}(l, m) I_{C_{k}}(\omega) \\
& \quad \times \exp \left\{-l \frac{\phi\left(c^{k}\right)}{\sqrt{c^{k}}} \int_{c^{k-1}}^{c^{k}} \frac{1+\beta \operatorname{sgn} f\left(\frac{s}{c^{k}}\right)}{1+\beta \operatorname{sgn} \eta(s)} \dot{f}\left(\frac{s}{c^{k}}\right) d w(s)\right. \\
& \\
& \left.\quad+\frac{m \phi^{2}\left(c^{k}\right)}{2 c^{k}} \int_{c^{k-1}}^{c^{k}} \frac{\left(1+\beta \operatorname{sgn} f\left(\frac{s}{c^{k}}\right)\right)^{2}}{(1+\beta \operatorname{sgn} \eta(s))^{2}} \dot{f}^{2}\left(\frac{s}{c^{k}}\right) d s\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \geq \exp \left\{\phi^{2}\left(c^{k}\right)\left[\frac{m J_{c}(f)}{(1+|\beta|)^{2}}-\frac{p l J_{c}(f)}{(1-|\beta|)^{2}}\right]\right\} \\
& \times \mathrm{E} \theta \rho_{k}(l, m) I_{C_{k}}(\omega) \\
& \quad \times \exp \left\{-l \frac{\phi\left(c^{k}\right)}{\sqrt{c^{k}}} \int_{c^{k-1}}^{c^{k}} \frac{1+\beta \operatorname{sgn} f\left(\frac{s}{c^{k}}\right)}{1+\beta \operatorname{sgn} \eta(s)} \dot{f}\left(\frac{s}{c^{k}}\right) d w(s)\right. \\
& \left.\quad+p l \frac{\phi^{2}\left(c^{k}\right)}{2(1-|\beta|)^{2} c^{k}} \int_{c^{k-1}}^{c^{k}}\left(1+\beta \operatorname{sgn} f\left(\frac{s}{c^{k}}\right)\right)^{2} \dot{f}^{2}\left(\frac{s}{c^{k}}\right) d s\right\} \\
& \geq \exp \left\{\phi^{2}\left(c^{k}\right) J_{c}(f)\left[\frac{m}{(1+|\beta|)^{2}}-\frac{p l}{(1-|\beta|)^{2}}\right]\right\} \\
& \times \operatorname{E} \theta \rho_{k}(l, m) I_{C_{k}}(\omega) I_{L_{k, p}}(\omega) \\
& \quad \times \exp \left\{-l\left(\frac{\phi\left(c^{k}\right)}{\sqrt{c^{k}}} \int_{c^{k-1}}^{c^{k}} \frac{1+\beta \operatorname{sgn} f\left(\frac{s}{c^{k}}\right)}{1+\beta \operatorname{sgn} \eta(s)} \dot{f}\left(\frac{s}{c^{k}}\right) d w(s)\right.\right. \\
& \quad-p \frac{\phi^{2}\left(c^{k}\right)}{2(1-|\beta|)^{2} c^{k}} \int_{c^{k-1}}^{c^{k}} \\
& \geq \\
& \quad \exp \left\{\phi ^ { 2 } (c ^ { k }) J _ { c } (f) \left[\frac{m}{\left.\left.\left(1+\left\lvert\, \beta \operatorname{sgn} f\left(\frac{s}{c^{k}}\right)\right.\right)^{2} \dot{f}^{2}\left(\frac{s}{c^{k}}\right) d s\right)\right\}} \begin{array}{l}
\quad \times \mathrm{E} \theta \rho_{k}(l, m) I_{C_{k}}(\omega) I_{L_{k, p}}(\omega) .
\end{array}\right.\right.
\end{aligned}
$$

In the above reasoning we used the inequalities $1 \geq I_{L_{k, p}}(\omega)$ and

$$
\exp \{-a\} I_{(|a|<b)} \geq \exp \{-b\} I_{(|a|<b)}
$$

Since $I_{C_{k}}(\omega) I_{L_{k, p}(\delta)}(\omega) \geq 1-I_{\Omega \backslash C_{k}}(\omega)-I_{\Omega \backslash L_{k, p}(\delta)}(\omega)$, we obtain

$$
\begin{aligned}
\mathrm{E} \theta I_{C_{k}}(\omega) \geq & \exp \left\{\phi^{2}\left(c^{k}\right) J_{c}(f)\left(\frac{m}{(1+|\beta|)^{2}}-\frac{p l}{(1-|\beta|)^{2}}-\frac{\delta l}{(1-|\beta|)^{2}}\right)\right\} \\
& \times \mathrm{E} \theta \rho_{k}(l, m)\left(1-I_{\Omega \backslash C_{k}}(\omega)-I_{\Omega \backslash L_{k, p}(\delta)}(\omega)\right) .
\end{aligned}
$$

Then equality (30) implies that
$\mathrm{E} \theta \rho_{k}(l, m)=\mathrm{E}\left\{\theta \mathrm{E}\left\{\rho_{k}(l, m) \mid \Im_{k-1}\right\}\right\}$

$$
=\mathrm{E}\left\{\theta \widetilde{\mathrm{E}}\left\{\exp \left[\left.\frac{\phi^{2}\left(c^{k}\right)}{2 c^{k}} \int_{c^{k-1}}^{c^{k}}\left(l^{2}-m^{2}\right) \frac{(1+\beta \operatorname{sgn} f)^{2}}{(1+\beta \operatorname{sgn} \eta)^{2}} \dot{f}^{2} d s \right\rvert\, \Im_{k-1}\right]\right\}\right\} .
$$

It is clear that

$$
l^{2}-m^{2}>l^{2} \frac{(1+|\beta|)^{2}}{(1-|\beta|)^{2}}-m
$$

Considering the left hand side of property A_{2}, we conclude that

$$
l^{2} \frac{(1+|\beta|)^{2}}{(1-|\beta|)^{2}}-m>0
$$

whence

$$
l^{2}-m^{2}>0
$$

Hence

$$
\mathrm{E} \theta \rho_{k}(l, m) \geq \exp \left\{\phi^{2}\left(c^{k}\right) \frac{l^{2}-m^{2}}{(1+|\beta|)^{2}} J_{c}(f)\right\} \mathrm{E} \theta
$$

We continue the proof by using the latter bound and applying Lemmas 6 and 7

$$
\begin{aligned}
\mathrm{E} \theta I_{C_{k}}(\omega) \geq & \exp \left\{\phi^{2}\left(c^{k}\right) J_{c}(f)\left(\frac{m}{(1+|\beta|)^{2}}-\frac{p l+\delta l}{(1-|\beta|)^{2}}\right)\right\} \\
& \times \exp \left\{\phi^{2}\left(c^{k}\right) \frac{l^{2}-m^{2}}{(1+|\beta|)^{2}} J_{c}(f)\right\}\left(1-\sum_{i=1}^{n(\Delta)} a_{k}(i)-b_{k}(\delta)\right) \mathrm{E} \theta \\
\geq & \exp \left\{-\phi^{2}\left(c^{k}\right) J_{c}(f)\left(\frac{m^{2}-l^{2}-m}{(1+|\beta|)^{2}}+\frac{p l+\delta l}{(1-|\beta|)^{2}}\right)\right\} \mathrm{E} \theta .
\end{aligned}
$$

Then we use property A_{3} :

$$
\begin{equation*}
\mathrm{E} \theta I_{C_{k}}(\omega) \geq \exp \left\{-\phi^{2}\left(c^{k}\right) J_{c}(f)\left(1+\frac{\delta l}{(1-|\beta|)^{2}}\right)\right\} \mathrm{E} \theta \tag{37}
\end{equation*}
$$

It is clear that

$$
J_{c}(f)\left(1+\frac{\delta l}{(1-|\beta|)^{2}}\right) \leq\left(1+\frac{\delta l}{(1-|\beta|)^{2}}\right) \frac{h^{2}}{2}
$$

Choose

$$
\delta<\frac{G^{2}-h^{2}}{3 h^{2}} \frac{(1-|\beta|)^{2}}{l}
$$

The latter inequality implies that

$$
\begin{equation*}
J_{c}(f)\left(1+\frac{\delta l}{(1-|\beta|)^{2}}\right) \leq \frac{G^{2}}{2}-v \tag{38}
\end{equation*}
$$

where $v=\frac{1}{3}\left(G^{2}-h^{2}\right)$. Now Lemma 8 follows from inequalities (37) and (38).
The Lipschitz property of the function κ (see definition (77) yields the following result.
Lemma 9. Assume that

$$
\mathrm{P}\left\{\lim _{n \rightarrow \infty} \sup _{t \in[0,1]}\left|f_{n}(t)-g(t)\right|=0\right\}=1
$$

for all one-dimensional functions $\left\{f_{n}\right\}$ and g. Then

$$
\mathrm{P}\left\{\lim _{n \rightarrow \infty} \sup _{t \in[0,1]}\left|\kappa\left(f_{n}(t)\right)-\kappa(g(t))\right|=0\right\}=1
$$

where the function κ is defined by (77).
Proof of Theorem [1. Using Theorem 2 we prove that, for an arbitrary function $f \in \mathcal{K}_{G}$, there exists a subsequence $\left\{T_{m}\right\}$ such that

$$
\mathrm{P}\left\{\lim _{T_{m} \rightarrow \infty} \sup _{t \in[0,1]}\left|\eta_{T_{m}}(t)-f(t)\right|=0\right\}=1
$$

Then Lemma 9 and relations (7)-(9) complete the proof of Theorem 1 .

Bibliography

1. A. V. Bulinskiŭ, A new variant of the functional law of the iterated logarithm, Teor. Veroyatnost. i Primenen. 25 (1980), no. 3, 502-512; English transl. in Theory Probab. Appl. 25 (1980), no. 3, 493-503. MR582580 (82f:60066)
2. A. D. Wentzell and M. I. Freidlin, Random Perturbations of Dynamical Systems, "Nauka", Moscow, 1979; English transl., Springer-Verlag, New York, 1984. MR722136 (85a:60064)
3. I. I. Gikhman and A. V. Skorokhod, Stochastic Differential Equations and their Applications, "Naukova Dumka", Kiev, 1982. (Russian) MR678374 (84j:60003)
4. S. Ya. Makhno, A limit theorem for stochastic equations with local time, Teor. Imovir. Mat. Stat. 64 (2001), 106-109; English transl. in Theory Probab. Math. Statist. 64 (2002), 123-127. MR 1922958 (2003h:60090)
5. A. N. Shiryaev, Probability, "Nauka", Moscow, 1980; English transl., Springer-Verlag, New York, 1996. MR 609521 (82d:60002)
6. T. S. Chiang and S. J. Sheu, Small perturbations of diffusions in inhomogeneous media, Ann. Inst. Henri Poincaré 38 (2002), no. 2, 285-318. MR1899455 (2003b:60084)
7. H. J. Engelbert and W. Schmidt, Strong Markov continuous local martingales and solutions of one-dimensional stochastic differential equations, III, Math. Nachr. 151 (1991), no. 1, 149-197. MR 1121203 (92m:60044)
8. J. M. Harrison and L. A. Shepp, On skew Brownian motion, Ann. Probab. 9 (1981), no. 2, 309-313. MR606993 (82j:60144)
9. K. Itô and H. McKean, Brownian motions on a half line, Illinois J. Math. 7 (1963), no. 2, 181-231. MR0154338 (27:4287)
10. J. F. Le Gall, One-dimensional stochastic equations involving the local times of the unknown process, Lect. Notes Math. 1095 (1983), 51-82. MR777514 (86g:60071)
11. S. Ya. Makhno, Functional iterated logarithm law for stochastic equations, Stoch. Stoch. Reports 70 (2000), 221-239. MR 1800957 (2001j:60055)
12. S. Nakao, On the pathwise uniqueness of solutions of one dimensional stochastic differential equations, Osaka J. Math. 9 (1972), no. 3, 513-518. MR0326840 (48:5182)
13. V. Strassen, An invariance principle for the law of the iterated logarithm, Z . Wahrscheinlichkeitstheorie. Verw. Geb. 3 (1964), no. 3, 211-226. MR0175194 (30:5379)

Department of Probability Theory and Mathematical Statistics, Institute for Applied Mathematics and Mechanics, National Academy of Science of Ukraine, Luxemburg Street, 74, Donetsk, 83114, Ukraine

E-mail address: ikrykun@iamm.ac.donetsk.ua

[^0]: 2000 Mathematics Subject Classification. Primary 60F10; Secondary 60F17.
 Key words and phrases. Stochastic equations, local time, large deviation principle, functional law of the iterated logarithm.

