Riemann integral of a random function and the parabolic equation with a general stochastic measure
Author:
V. Radchenko
Journal:
Theor. Probability and Math. Statist. 87 (2013), 185-198
MSC (2000):
Primary 60H05, 60H15
DOI:
https://doi.org/10.1090/S0094-9000-2014-00912-6
Published electronically:
March 21, 2014
MathSciNet review:
3241455
Full-text PDF Free Access
Abstract |
References |
Similar Articles |
Additional Information
Abstract: For a stochastic parabolic equation driven by a general stochastic measure, the weak solution is obtained. The integral of a random function in the equation is considered as a limit in probability of Riemann integral sums. Basic properties of such integrals are studied in this paper.
References
- Sergio Albeverio, Jiang-Lun Wu, and Tu-Sheng Zhang, Parabolic SPDEs driven by Poisson white noise, Stochastic Process. Appl. 74 (1998), no. 1, 21â36. MR 1624076, DOI https://doi.org/10.1016/S0304-4149%2897%2900112-9
- Guillermo P. Curbera and Olvido Delgado, Optimal domains for $L^0$-valued operators via stochastic measures, Positivity 11 (2007), no. 3, 399â416. MR 2336205, DOI https://doi.org/10.1007/s11117-007-2071-0
- Robert C. Dalang, Extending the martingale measure stochastic integral with applications to spatially homogeneous s.p.d.e.âs, Electron. J. Probab. 4 (1999), no. 6, 29. MR 1684157, DOI https://doi.org/10.1214/EJP.v4-43
- Giuseppe Da Prato and Jerzy Zabczyk, Stochastic equations in infinite dimensions, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1992. MR 1207136
- A. M. IlâČin, A. S. Kalashnikov, and O. A. OleÄnik, Second-order linear equations of parabolic type, Tr. Semin. im. I. G. Petrovskogo 21 (2001), 9â193, 341 (Russian, with Russian summary); English transl., J. Math. Sci. (New York) 108 (2002), no. 4, 435â542. MR 1875963, DOI https://doi.org/10.1023/A%3A1013156322602
- Peter Kotelenez, Stochastic ordinary and stochastic partial differential equations, Stochastic Modelling and Applied Probability, vol. 58, Springer, New York, 2008. Transition from microscopic to macroscopic equations. MR 2370567
- StanisĆaw KwapieĆ and Wojbor A. WoyczyĆski, Random series and stochastic integrals: single and multiple, Probability and its Applications, BirkhĂ€user Boston, Inc., Boston, MA, 1992. MR 1167198
- Jean MĂ©min, Yulia Mishura, and Esko Valkeila, Inequalities for the moments of Wiener integrals with respect to a fractional Brownian motion, Statist. Probab. Lett. 51 (2001), no. 2, 197â206. MR 1822771, DOI https://doi.org/10.1016/S0167-7152%2800%2900157-7
- S. M. Nikolsky, A course of mathematical analysis. Vol. 2, Mir Publishers, Moscow, 1977. Translated from the Russian by V. M. Volosov. MR 0466436
- Szymon Peszat and Jerzy Zabczyk, Stochastic evolution equations with a spatially homogeneous Wiener process, Stochastic Process. Appl. 72 (1997), no. 2, 187â204. MR 1486552, DOI https://doi.org/10.1016/S0304-4149%2897%2900089-6
- S. Peszat and J. Zabczyk, Stochastic partial differential equations with Lévy noise, Encyclopedia of Mathematics and its Applications, vol. 113, Cambridge University Press, Cambridge, 2007. An evolution equation approach. MR 2356959
- V. Radchenko, Integrals with Respect to General Stochastic Measures, Institute of Mathematics, Kyiv, 1999. (Russian)
- V. N. Radchenko, The heat equation and the wave equation with general stochastic measures, UkraĂŻn. Mat. Zh. 60 (2008), no. 12, 1675â1685 (Russian, with Ukrainian summary); English transl., Ukrainian Math. J. 60 (2008), no. 12, 1968â1981. MR 2523115, DOI https://doi.org/10.1007/s11253-009-0184-2
- Vadym Radchenko, Mild solution of the heat equation with a general stochastic measure, Studia Math. 194 (2009), no. 3, 231â251. MR 2539554, DOI https://doi.org/10.4064/sm194-3-2
- Stefan Rolewicz, Metric linear spaces, PWN-Polish Scientific Publishers, Warsaw, 1972. Monografie Matematyczne, Tom. 56. [Mathematical Monographs, Vol. 56]. MR 0438074
- C. Ryll-Nardzewski and W. A. WoyczyĆski, Bounded multiplier convergence in measure of random vector series, Proc. Amer. Math. Soc. 53 (1975), no. 1, 96â98. MR 385960, DOI https://doi.org/10.1090/S0002-9939-1975-0385960-5
- Michel Talagrand, Les mesures vectorielles Ă valeurs dans $L^{0}$ sont bornĂ©es, Ann. Sci. Ăcole Norm. Sup. (4) 14 (1981), no. 4, 445â452 (1982) (French). MR 654206
- Philippe Turpin, Convexités dans les espaces vectoriels topologiques généraux, Dissertationes Math. (Rozprawy Mat.) 131 (1976), 221 (French). MR 423044
- J. B. Walsh, An introduction to stochastic partial differential equations, Lect. Not. Math. 1180 (1984), 236â434.
References
- S. Albeverio, J.-L. Wua, and T.-S. Zhang, Parabolic SPDEs driven by Poisson white noise, Stochastic Process. Appl. 74 (1998), 21â36. MR 1624076 (99c:60124)
- G. P. Curbera and O. Delgado, Optimal domains for $L_0$-valued operators via stochastic measures, Positivity 11 (2007), 399â416. MR 2336205 (2008g:46063)
- R. C. Dalang, Extending martingale measure stochastic integral with applications to spatially homogeneous s.p.d.eâs, Electron. J. Probab. 4 (1999), 1â29. MR 1684157 (2000b:60132)
- G. Da Prato and J. Zabczyk, Stochastic equations in infinite dimensions, Encyclopedia Math. Appl., vol. 44, Cambridge Univ. Press, Cambridge, 1992. MR 1207136 (95g:60073)
- A. M. Ilyin, A. S. Kalashnikov, and O. A. Oleynik, Linear second-order partial differential equations of the parabolic type, J. Math. Sci. (N. Y.) 108 (2002), 435â542. MR 1875963 (2003a:35087)
- P. Kotelenez, Stochastic Ordinary and Stochastic Partial Differential Equations: Transition from Microscopic to Macroscopic Equations, Stochastic Modelling Appl. Probab., vol. 58, Springer-Verlag, BerlinâHeidelbergâNew York, 2007. MR 2370567 (2009h:60004)
- S. KwapieĆ and W. A. WoycziĆski, Random Series and Stochastic Integrals: Single and Multiple, BirkhĂ€user, Boston, 1992. MR 1167198 (94k:60074)
- J. Memin, Yu. Mishura, and E. Valkeila, Inequalities for the moments of Wiener integrals with respect to a fractional Brownian motion, Statistics and Probability Letters 27 (2001), 197â206. MR 1822771 (2002b:60096)
- S. M. Nikolsky, A Course of Mathematical Analysis, vol. 2, âMirâ, Moscow, 1977. MR 0466436 (57:6315b)
- S. Peszat and J. Zabczyk, Stochastic evolution equations with a spatially homogeneous Wiener process, Stochastic Process. Appl. 72 (1997), 187â204. MR 1486552 (99k:60166)
- S. Peszat and J. Zabczyk, Stochastic partial differential equations with Lévy noise: an evolution equation approach, Encyclopedia Math. Appl., vol. 113, Cambridge Univ. Press, Cambridge, 2007. MR 2356959 (2009b:60200)
- V. Radchenko, Integrals with Respect to General Stochastic Measures, Institute of Mathematics, Kyiv, 1999. (Russian)
- V. Radchenko, Heat equation and wave equation with general stochastic measures, Ukrain. Mat. Zh. 60 (2008), 1675â1685; English transl. in Ukrainian Math. J. 60 (2008), 1968â1981. MR 2523115 (2010d:60117)
- V. Radchenko, Mild solution of the heat equation with a general stochastic measure, Studia Math. 194 (2009), 231â251. MR 2539554 (2010j:60157)
- S. Rolewicz, Metric Linear Spaces, Monografie Matematyczne, vol. 56, PWNâPolish Scientific Publishers, Warsaw, 1972. MR 0438074 (55:10993)
- C. Ryll-Nardzewski and W. A. WoyczyĆski, Bounded multiplier convergence in measure of random vector series, Proc. Amer. Math. Soc. 53 (1975), 96â98. MR 0385960 (52:6819)
- M. Talagrand, Les mesures vectorielles Ă valeurs dans $L_0$ sont bornĂ©es, Ann. Sci. Ăcole Norm. Sup. (4) 14 (1981), 445â452. MR 654206 (83f:28007)
- Ph. Turpin, Convexités dans les espaces vectoriels topologiques généraux, Dissertationes Math. 131 (1976). MR 0423044 (54:11028)
- J. B. Walsh, An introduction to stochastic partial differential equations, Lect. Not. Math. 1180 (1984), 236â434.
Similar Articles
Retrieve articles in Theory of Probability and Mathematical Statistics
with MSC (2000):
60H05,
60H15
Retrieve articles in all journals
with MSC (2000):
60H05,
60H15
Additional Information
V. Radchenko
Affiliation:
Department of Mathematical Analysis, Kyiv National Taras Shevchenko University, Kyiv 01601, Ukraine
Email:
vradchenko@univ.kiev.ua
Keywords:
Stochastic measure,
Riemann integral,
stochastic parabolic equation,
weak solution
Received by editor(s):
December 22, 2011
Published electronically:
March 21, 2014
Additional Notes:
This research was supported by Alexander von Humboldt Foundation, grant no. UKR/1074615. The author wishes to thank Professor M. ZÀhle for fruitful discussions, and the hospitality of Jena University is gratefully acknowledged
Article copyright:
© Copyright 2014
American Mathematical Society