Riemann integral of a random function and the parabolic equation with a general stochastic measure
Author:
V. Radchenko
Original publication:
Teoriya Imovirnostei ta Matematichna Statistika, tom 87 (2012).
Journal:
Theor. Probability and Math. Statist. 87 (2013), 185-198
MSC (2000):
Primary 60H05, 60H15
DOI:
https://doi.org/10.1090/S0094-9000-2014-00912-6
Published electronically:
March 21, 2014
MathSciNet review:
3241455
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: For a stochastic parabolic equation driven by a general stochastic measure, the weak solution is obtained. The integral of a random function in the equation is considered as a limit in probability of Riemann integral sums. Basic properties of such integrals are studied in this paper.
- 1. Sergio Albeverio, Jiang-Lun Wu, and Tu-Sheng Zhang, Parabolic SPDEs driven by Poisson white noise, Stochastic Process. Appl. 74 (1998), no. 1, 21–36. MR 1624076, https://doi.org/10.1016/S0304-4149(97)00112-9
- 2. Guillermo P. Curbera and Olvido Delgado, Optimal domains for 𝐿⁰-valued operators via stochastic measures, Positivity 11 (2007), no. 3, 399–416. MR 2336205, https://doi.org/10.1007/s11117-007-2071-0
- 3. Robert C. Dalang, Extending the martingale measure stochastic integral with applications to spatially homogeneous s.p.d.e.’s, Electron. J. Probab. 4 (1999), no. 6, 29 pp.}, issn=1083-6489, review=\MR{1684157}, doi=10.1214/EJP.v4-43,.
- 4. Giuseppe Da Prato and Jerzy Zabczyk, Stochastic equations in infinite dimensions, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1992. MR 1207136
- 5. A. M. Il′in, A. S. Kalashnikov, and O. A. Oleĭnik, Second-order linear equations of parabolic type, Tr. Semin. im. I. G. Petrovskogo 21 (2001), 9–193, 341 (Russian, with Russian summary); English transl., J. Math. Sci. (New York) 108 (2002), no. 4, 435–542. MR 1875963, https://doi.org/10.1023/A:1013156322602
- 6. Peter Kotelenez, Stochastic ordinary and stochastic partial differential equations, Stochastic Modelling and Applied Probability, vol. 58, Springer, New York, 2008. Transition from microscopic to macroscopic equations. MR 2370567
- 7. Stanisław Kwapień and Wojbor A. Woyczyński, Random series and stochastic integrals: single and multiple, Probability and its Applications, Birkhäuser Boston, Inc., Boston, MA, 1992. MR 1167198
- 8. Jean Mémin, Yulia Mishura, and Esko Valkeila, Inequalities for the moments of Wiener integrals with respect to a fractional Brownian motion, Statist. Probab. Lett. 51 (2001), no. 2, 197–206. MR 1822771, https://doi.org/10.1016/S0167-7152(00)00157-7
- 9. S. M. Nikolsky, A course of mathematical analysis. Vol. 1, Mir Publishers, Moscow, 1977. Translated from the second Russian edition by V. M. Volosov. MR 0466435
- 10. Szymon Peszat and Jerzy Zabczyk, Stochastic evolution equations with a spatially homogeneous Wiener process, Stochastic Process. Appl. 72 (1997), no. 2, 187–204. MR 1486552, https://doi.org/10.1016/S0304-4149(97)00089-6
- 11. S. Peszat and J. Zabczyk, Stochastic partial differential equations with Lévy noise, Encyclopedia of Mathematics and its Applications, vol. 113, Cambridge University Press, Cambridge, 2007. An evolution equation approach. MR 2356959
- 12. V. Radchenko, Integrals with Respect to General Stochastic Measures, Institute of Mathematics, Kyiv, 1999. (Russian)
- 13. V. N. Radchenko, The heat equation and the wave equation with general stochastic measures, Ukraïn. Mat. Zh. 60 (2008), no. 12, 1675–1685 (Russian, with Ukrainian summary); English transl., Ukrainian Math. J. 60 (2008), no. 12, 1968–1981. MR 2523115, https://doi.org/10.1007/s11253-009-0184-2
- 14. Vadym Radchenko, Mild solution of the heat equation with a general stochastic measure, Studia Math. 194 (2009), no. 3, 231–251. MR 2539554, https://doi.org/10.4064/sm194-3-2
- 15. Stefan Rolewicz, Metric linear spaces, PWN-Polish Scientific Publishers, Warsaw, 1972. Monografie Matematyczne, Tom. 56. [Mathematical Monographs, Vol. 56]. MR 0438074
- 16. C. Ryll-Nardzewski and W. A. Woyczyński, Bounded multiplier convergence in measure of random vector series, Proc. Amer. Math. Soc. 53 (1975), no. 1, 96–98. MR 385960, https://doi.org/10.1090/S0002-9939-1975-0385960-5
- 17. Michel Talagrand, Les mesures vectorielles à valeurs dans 𝐿⁰ sont bornées, Ann. Sci. École Norm. Sup. (4) 14 (1981), no. 4, 445–452 (1982) (French). MR 654206
- 18. Philippe Turpin, Convexités dans les espaces vectoriels topologiques généraux, Dissertationes Math. (Rozprawy Mat.) 131 (1976), 221 (French). MR 0423044
- 19. J. B. Walsh, An introduction to stochastic partial differential equations, Lect. Not. Math. 1180 (1984), 236-434.
Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2000): 60H05, 60H15
Retrieve articles in all journals with MSC (2000): 60H05, 60H15
Additional Information
V. Radchenko
Affiliation:
Department of Mathematical Analysis, Kyiv National Taras Shevchenko University, Kyiv 01601, Ukraine
Email:
vradchenko@univ.kiev.ua
DOI:
https://doi.org/10.1090/S0094-9000-2014-00912-6
Keywords:
Stochastic measure,
Riemann integral,
stochastic parabolic equation,
weak solution
Received by editor(s):
December 22, 2011
Published electronically:
March 21, 2014
Additional Notes:
This research was supported by Alexander von Humboldt Foundation, grant no. UKR/1074615. The author wishes to thank Professor M. Zähle for fruitful discussions, and the hospitality of Jena University is gratefully acknowledged
Article copyright:
© Copyright 2014
American Mathematical Society