Skip to Main Content
Remote Access Theory of Probability and Mathematical Statistics

Theory of Probability and Mathematical Statistics

ISSN 1547-7363(online) ISSN 0094-9000(print)

 
 

 

Minimax interpolation of harmonizable sequences


Authors: M. P. Moklyachuk and V. I. Ostapenko
Translated by: S. Kvasko
Journal: Theor. Probability and Math. Statist. 92 (2016), 135-146
MSC (2010): Primary 60G10, 60G25, 60G35; Secondary 62M20, 93E10, 93E11
DOI: https://doi.org/10.1090/tpms/988
Published electronically: August 10, 2016
MathSciNet review: 3553431
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The problem of estimation of the functional $A_N \xi =\sum _{j = 0}^{N} a_j \xi _j$ that depends on unknown values $\xi _j$, $j=0,1,\dots ,N$, of a harmonizable symmetric $\alpha$-stable random sequence $\xi _n$, $n\in \mathbb Z$, by using observations of the sequence at the points $n\in \mathbb Z\setminus \{0,1,\dots ,N\}$ is studied under one of the conditions, either a condition of spectral certainty or a condition of spectral uncertainty. Expressions for calculating the value of the error and spectral characteristic of the optimal linear estimator of the functional are obtained under the condition of spectral certainty in the case where the spectral density of a sequence is known. In the case of spectral uncertainty where the spectral density of a sequence is not known but a class of admissible spectral densities is given, we propose relations to determine the least favorable spectral density and the minimax spectral characteristic.


References [Enhancements On Off] (What's this?)

References
  • Stamatis Cambanis, Complex symmetric stable variables and processes, Contributions to statistics, North-Holland, Amsterdam, 1983, pp. 63–79. MR 730448
  • Stamatis Cambanis and A. Reza Soltani, Prediction of stable processes: spectral and moving average representations, Z. Wahrsch. Verw. Gebiete 66 (1984), no. 4, 593–612. MR 753815, DOI 10.1007/BF00531892
  • Ī. Ī. Dubovets′ka, O. Yu. Masyutka, and M. P. Moklyachuk, Interpolation of periodically correlated stochastic sequences, Teor. Ĭmovīr. Mat. Stat. 84 (2011), 43–56 (Ukrainian, with English, Russian and Ukrainian summaries); English transl., Theory Probab. Math. Statist. 84 (2012), 43–56. MR 2857415, DOI 10.1090/S0094-9000-2012-00862-4
  • I. I. Dubovets’ka and M. P. Moklyachuk, On minimax estimation problems for periodically correlated stochastic processes, Contemporary Math. Statist. 2 (2014), no. 1, 1–24.
  • Jürgen Franke, Minimax-robust prediction of discrete time series, Z. Wahrsch. Verw. Gebiete 68 (1985), no. 3, 337–364. MR 771471, DOI 10.1007/BF00532645
  • I. I. Golichenko and M. P. Moklyachuk, Estimators for Functionals of Periodically Correlated Stochastic Processes, “Interservis”, Kyiv, 2014. (Ukrainian)
  • Ulf Grenander, A prediction problem in game theory, Ark. Mat. 3 (1957), 371–379. MR 90486, DOI 10.1007/BF02589429
  • E. J. Hannan, Multiple time series, John Wiley and Sons, Inc., New York-London-Sydney, 1970. MR 0279952
  • Yuzo Hosoya, Harmonizable stable processes, Z. Wahrsch. Verw. Gebiete 60 (1982), no. 4, 517–533. MR 665743, DOI 10.1007/BF00535714
  • A. D. Ioffe and V. M. Tihomirov, Theory of extremal problems, Studies in Mathematics and its Applications, vol. 6, North-Holland Publishing Co., Amsterdam-New York, 1979. Translated from the Russian by Karol Makowski. MR 528295
  • S. A. Kassam and H. V. Poor, Robust techniques for signal processing: A survey, Proc. IEEE 73 (1985), 433–481.
  • A. N. Kolmogorov, Selected works. Vol. II, Mathematics and its Applications (Soviet Series), vol. 26, Kluwer Academic Publishers Group, Dordrecht, 1992. Probability theory and mathematical statistics; With a preface by P. S. Aleksandrov; Translated from the Russian by G. Lindquist; Translation edited by A. N. Shiryayev [A. N. Shiryaev]. MR 1153022
  • M. G. Kreĭn and A. A. Nudel′man, The Markov moment problem and extremal problems, Translations of Mathematical Monographs, Vol. 50, American Mathematical Society, Providence, R.I., 1977. Ideas and problems of P. L. Čebyšev and A. A. Markov and their further development; Translated from the Russian by D. Louvish. MR 0458081
  • M. M. Luz and M. P. Moklyachuk, Interpolation for functionals of random sequences with stationary increments constructed from observations with the noise, Appl. Stat. Actuar. Finance Math. 2 (2012), 131–148. (Ukrainian)
  • M. M. Luz and M. P. Moklyachuk, Interpolation of functionals of stochastic sequences with stationary increments, Theory Probab. Math. Statist. 87 (2013), 117–133. Translation of Teor. Ǐmovīr. Mat. Stat. No. 87 (2012), 105–119. MR 3241450, DOI 10.1090/S0094-9000-2014-00908-4
  • Maksym Luz and Mikhail Moklyachuk, Minimax interpolation problem for random processes with stationary increments, Stat. Optim. Inf. Comput. 3 (2015), no. 1, 30–41. MR 3352740, DOI 10.19139/105
  • M. P. Moklyachuk, Robust procedures in time series analysis, Theory Stoch. Process. 6 (2000), no. 3–4, 127–147.
  • M. P. Moklyachuk, Game theory and convex optimization methods in robust estimation problems, Theory Stoch. Process. 7 (2001), no. 1–2, 253–264.
  • M. P. Moklyachuk, Robust Estimators for Functionals of Stochastic Processes, “Kyiv University”, Kyiv, 2008. (Ukrainian)
  • M. P. Moklyachuk, Nonsmooth Analysis and Optimization, “Kyiv University”, Kyiv, 2008. (Ukrainian)
  • M. P. Moklyachuk and I. I. Dubovets’ka, Minimax interpolation of periodically correlated processes, Nauk. Visnyk Uzhgorod Univ. Ser. Mat. Inform. 23 (2012), no. 2, 51–62. (Ukrainian)
  • M. P. Moklyachuk and O. Yu. Masyutka, Interpolation of multidimensional stationary sequences, Teor. Ĭmovir. Mat. Stat. 73 (2005), 112–119; English transl in. Theory Probab. Math. Stat. 73 (2006), 125–133.
  • Mikhail Moklyachuk and Aleksandr Masyutka, Robust estimation problems for stochastic processes, Theory Stoch. Process. 12 (2006), no. 3-4, 88–113. MR 2316568
  • M. Moklyachuk and O. Masyutka, Minimax-Robust Estimation Technique for Stationary Stochastic Processes, LAP LAMBERT Academic Publishing, 2012.
  • Mohsen Pourahmadi, On minimality and interpolation of harmonizable stable processes, SIAM J. Appl. Math. 44 (1984), no. 5, 1023–1030. MR 759712, DOI 10.1137/0144072
  • Ivan Singer, Best approximation in normed linear spaces by elements of linear subspaces, Die Grundlehren der mathematischen Wissenschaften, Band 171, Publishing House of the Academy of the Socialist Republic of Romania, Bucharest; Springer-Verlag, New York-Berlin, 1970. Translated from the Romanian by Radu Georgescu. MR 0270044
  • K. S. Vastola and H. V. Poor, An analysis of the effects of spectral uncertainty on Wiener filtering, Automatica 28 (1983), 289–293.
  • Aleksander Weron, Harmonizable stable processes on groups: spectral, ergodic and interpolation properties, Z. Wahrsch. Verw. Gebiete 68 (1985), no. 4, 473–491. MR 772194, DOI 10.1007/BF00535340
  • Norbert Wiener, Extrapolation, Interpolation, and Smoothing of Stationary Time Series. With Engineering Applications, The Technology Press of the Massachusetts Institute of Technology, Cambridge, Mass; John Wiley & Sons, Inc., New York, N. Y.; Chapman & Hall, Ltd., London, 1949. MR 0031213
  • A. M. Yaglom, Correlation theory of stationary and related random functions. Vol. I, Springer Series in Statistics, Springer-Verlag, New York, 1987. Basic results. MR 893393
  • A. M. Yaglom, Correlation theory of stationary and related random functions. Vol. II, Springer Series in Statistics, Springer-Verlag, New York, 1987. Supplementary notes and references. MR 915557

Similar Articles

Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2010): 60G10, 60G25, 60G35, 62M20, 93E10, 93E11

Retrieve articles in all journals with MSC (2010): 60G10, 60G25, 60G35, 62M20, 93E10, 93E11


Additional Information

M. P. Moklyachuk
Affiliation: Department of Probability Theory, Statistics, and Actuarial Mathematics, Faculty for Mechanics and Mathematics, Kyiv National Taras Shevchenko University, Volodymyrs’ka Street, 64/13, 01601, Kyiv, Ukraine
Email: mmp@univ.kiev.ua

V. I. Ostapenko
Affiliation: Department of Probability Theory, Statistics, and Actuarial Mathematics, Faculty for Mechanics and Mathematics, Kyiv National Taras Shevchenko University, Volodymyrs’ka Street, 64/13, 01601, Kyiv, Ukraine
Email: vt.ostapenko@gmail.com

Keywords: Harmonizable sequence, robust estimator, least favorable spectral density, minimax spectral characteristic
Received by editor(s): May 15, 2015
Published electronically: August 10, 2016
Article copyright: © Copyright 2016 American Mathematical Society