Asymptotic properties of -estimators of parameters of a nonlinear regression model with a random noise whose spectrum is singular
Authors:
A. V. Ivanov and I. V. Orlovskyi
Translated by:
S. Kvasko
Original publication:
Teoriya Imovirnostei ta Matematichna Statistika, tom 93 (2015).
Journal:
Theor. Probability and Math. Statist. 93 (2016), 33-49
MSC (2010):
Primary 62J02; Secondary 62J99
DOI:
https://doi.org/10.1090/tpms/993
Published electronically:
February 7, 2017
MathSciNet review:
3553438
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: Time continuous nonlinear regression model with a noise being a nonlinearly transformed Gaussian stationary process with a singular spectrum is considered in the paper. Sufficient conditions for the asymptotic normality of the -estimator are found for the vector parameter in this model.
- 1. Peter J. Huber, Robust regression: asymptotics, conjectures and Monte Carlo, Ann. Statist. 1 (1973), 799–821. MR 0356373
- 2. Peter J. Huber, Robust statistics, John Wiley & Sons, Inc., New York, 1981. Wiley Series in Probability and Mathematical Statistics. MR 606374
- 3. Frank R. Hampel, Elvezio M. Ronchetti, Peter J. Rousseeuw, and Werner A. Stahel, Robust statistics, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1986. The approach based on influence functions. MR 829458
- 4. Hira L. Koul, 𝑀-estimators in linear models with long range dependent errors, Statist. Probab. Lett. 14 (1992), no. 2, 153–164. MR 1173413, https://doi.org/10.1016/0167-7152(92)90079-K
- 5. Hira L. Koul, Asymptotics of 𝑀-estimators in non-linear regression with long-range dependent errors, Athens Conference on Applied Probability and Time Series Analysis, Vol. II (1995), Lect. Notes Stat., vol. 115, Springer, New York, 1996, pp. 272–290. MR 1466752, https://doi.org/10.1007/978-1-4612-2412-9_20
- 6. Hira L. Koul and Kanchan Mukherjee, Regression quantiles and related processes under long range dependent errors, J. Multivariate Anal. 51 (1994), no. 2, 318–337. MR 1321301, https://doi.org/10.1006/jmva.1994.1065
- 7. Liudas Giraitis, Hira L. Koul, and Donatas Surgailis, Asymptotic normality of regression estimators with long memory errors, Statist. Probab. Lett. 29 (1996), no. 4, 317–335. MR 1409327, https://doi.org/10.1016/0167-7152(95)00188-3
- 8. Hira L. Koul and Donatas Surgailis, Asymptotic expansion of 𝑀-estimators with long-memory errors, Ann. Statist. 25 (1997), no. 2, 818–850. MR 1439325, https://doi.org/10.1214/aos/1031833675
- 9. Hira L. Koul and Donatas Surgailis, Second-order behavior of 𝑀-estimators in linear regression with long-memory errors, J. Statist. Plann. Inference 91 (2000), no. 2, 399–412. Prague Workshop on Perspectives in Modern Statistical Inference: Parametrics, Semi-parametrics, Non-parametrics (1998). MR 1814792, https://doi.org/10.1016/S0378-3758(00)00190-7
- 10. H. L. Koul and D. Surgailis, Robust estimators in regression models with long memory errors, Theory and applications of long-range dependence, Birkhäuser Boston, Boston, MA, 2003, pp. 339–353. MR 1957498
- 11. Liudas Giraitis, Hira L. Koul, and Donatas Surgailis, Asymptotic normality of regression estimators with long memory errors, Statist. Probab. Lett. 29 (1996), no. 4, 317–335. MR 1409327, https://doi.org/10.1016/0167-7152(95)00188-3
- 12. Hira L. Koul, Richard T. Baillie, and Donatas Surgailis, Regression model fitting with a long memory covariate process, Econometric Theory 20 (2004), no. 3, 485–512. MR 2061725, https://doi.org/10.1017/S0266466604203036
- 13. A. V. Ivanov and N. N. Leonenko, Asymptotic behavior of 𝑀-estimators in continuous-time non-linear regression with long-range dependent errors, Random Oper. Stochastic Equations 10 (2002), no. 3, 201–222. MR 1923424, https://doi.org/10.1515/rose.2002.10.3.201
- 14. A. Ivanov and N. Leonenko, Robust estimators in non-linear regression models with long-range dependence, Optimal design and related areas in optimization and statistics, Springer Optim. Appl., vol. 28, Springer, New York, 2009, pp. 193–221. MR 2513352, https://doi.org/10.1007/978-0-387-79936-0_9
- 15. Alexander V. Ivanov, Asymptotic properties of 𝐿_{𝑝}-estimators, Theory Stoch. Process. 14 (2008), no. 1, 60–68. MR 2479706
- 16.
A. V. Ivanov and I. V. Orlovsky, L
-estimates in nonlinear regression with long-range dependence, Theory Stoch. Process. 7(23) (2002), no. 3-4, 38-49.
- 17.
A. V. Ivanov and I. V. Orlovskyi, Consistency of
-estimators in nonlinear regression models with continuous time, Naukovi visti NTUU ``KPI'' 4(42) (2005), 140-147. (Ukrainian)
- 18.
A. V. Ivanov and I. V. Orlovskyi, The uniqueness of
-estimators of parameters in nonlinear regression models, Naukovi Visti NTUU ``KPI'' 4(66) (2009), 135-141. (Ukrainian)
- 19. Ī. M. Savich, Consistency of quantile estimators in regression models with long-range dependent noise, Teor. Ĭmovīr. Mat. Stat. 82 (2010), 128–136 (Ukrainian, with English, Russian and Ukrainian summaries); English transl., Theory Probab. Math. Statist. 82 (2011), 129–138. MR 2790488, https://doi.org/10.1090/S0094-9000-2011-00832-0
- 20. Igor V. Orlovsky, 𝑀-estimates in nonlinear regression with weak dependence, Theory Stoch. Process. 9 (2003), no. 1-2, 108–122. MR 2080017
- 21. Alexander Ivanov and Igor V. Orlovsky, Consistency of 𝑀-estimates in general nonlinear regression models, Theory Stoch. Process. 13 (2007), no. 1-2, 86–97. MR 2343813
- 22.
I. V. Orlovsky, Asymptotic properties of
-estimators of parameters in nonlinear regression models, Abstract of candidate thesis (Physics and Mathematics), Kyiv National Taras Shevchenko University, Kyiv, 2007. (Ukrainian)
- 23. Alexander V. Ivanov, Nikolai Leonenko, María D. Ruiz-Medina, and Irina N. Savich, Limit theorems for weighted nonlinear transformations of Gaussian stationary processes with singular spectra, Ann. Probab. 41 (2013), no. 2, 1088–1114. MR 3077537, https://doi.org/10.1214/12-AOP775
- 24. Yu. V. Goncharenko and S. I. Lyashko, Brouwer's Theorem, ``KIĬ'', Kiev, 2000. (Russian)
- 25. V. V. Anh, V. P. Knopova, and N. N. Leonenko, Continuous-time stochastic processes with cyclical long-range dependence, Aust. N. Z. J. Stat. 46 (2004), no. 2, 275–296. MR 2076396, https://doi.org/10.1111/j.1467-842X.2004.00329.x
- 26. A. V. Ivanov, N. N. Leonenko, M. D. Ruiz-Medina, and B. M. Zhurakovsky, Estimation of harmonic component in regression with cyclically dependent errors, Statistics 49 (2015), no. 1, 156–186. MR 3304373, https://doi.org/10.1080/02331888.2013.864656
- 27. Ulf Grenander, On the estimation of regression coefficients in the case of an autocorrelated disturbance, Ann. Math. Statistics 25 (1954), 252–272. MR 62402, https://doi.org/10.1214/aoms/1177728784
- 28. Il′dar Abdullovich Ibragimov and Y. A. Rozanov, Gaussian random processes, Applications of Mathematics, vol. 9, Springer-Verlag, New York-Berlin, 1978. Translated from the Russian by A. B. Aries. MR 543837
- 29. Patrick Billingsley, Convergence of probability measures, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0233396
- 30.
A. V. Ivanov and I. M. Savych, The
-admissibility of a spectral density for long range dependent random noise in nonlinear regression models, Naukovi visti NTUU ``KPI'' 1 (2009), 143-148. (Ukrainian)
- 31. N. N. Leonenko and A. V. Ivanov, Statistical Analysis of Random Fields, ``Vyshcha Shkola'', Kiev, 1986; English transl., Kluwer Academic Publishers Group, Dordrecht, 1989.
- 32. R. N. Bhattacharya and R. Ranga Rao, Normal Approximation and Asymptotic Expansions, John Wiley & Sons, New York-London-Sydney, 1976.
- 33. J. H. Wilkinson, The Algebraic Eigen Value Problem, Clarendon Press, Oxford, 1962.
Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2010): 62J02, 62J99
Retrieve articles in all journals with MSC (2010): 62J02, 62J99
Additional Information
A. V. Ivanov
Affiliation:
Department of Mathematical Analysis and Probability Theory, National Technical University of Ukraine “KPI”, Peremogy Avenue, 37, Kyiv 03056, Ukraine
Email:
alexntuu@gmail.com
I. V. Orlovskyi
Affiliation:
Department of Mathematical Analysis and Probability Theory, National Technical University of Ukraine “KPI”, Peremogy Avenue, 37, Kyiv 03056, Ukraine
Email:
i.v.orlovsky@gmail.com
DOI:
https://doi.org/10.1090/tpms/993
Keywords:
Asymptotic uniqueness of an estimator,
asymptotic normality,
$M$-estimators,
nonlinear regression models,
singular spectrum
Received by editor(s):
August 5, 2015
Published electronically:
February 7, 2017
Additional Notes:
The paper was prepared following the talk at the International Conference “Probability, Reliability and Stochastic Optimization (PRESTO-2015)” held in Kyiv, Ukraine, April 7–10, 2015
Article copyright:
© Copyright 2017
American Mathematical Society