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MILD SOLUTION OF THE PARABOLIC EQUATION

DRIVEN BY A σ-FINITE STOCHASTIC MEASURE

O. O. VERTSIMAKHA AND V. M. RADCHENKO

Abstract. Stochastic parabolic equation driven by a σ-finite stochastic measure
in the interval [0, T ] × R is studied. The only condition imposed on the stochastic
integrator is its σ-additivity in probability on bounded Borel sets. The existence,
uniqueness, and Hölder continuity of a mild solution are proved. These results gen-

eralize those known earlier for usual stochastic measures.

Introduction

The following stochastic equation:

(1)

{
Lu(t, x) dt+ f

(
t, x, u(t, x)

)
dt+ σ(t, x) dμσ(x) = 0 ,

u(0, x) = u0(x),

is considered in this paper, where (t, x) ∈ [0, T ] × R, μσ is a σ-finite stochastic mea-
sure defined for bounded Borel subsets of R and L is the parabolic differential operator
(necessary definitions and conditions are given below in Sections 1 and 2).

The only condition imposed on the stochastic integrator μσ is its σ-additivity in prob-
ability for bounded Borel subsets of R. We prove the existence of a mild solution of
equation (1) above (see definition (2) below) and Hölder continuity of its trajectories.

Stochastic parabolic equations have been considered by many authors (see, for examp-
le, [1, 2]). Detailed studies are known for equations and systems driven by various types
of stochastic processes. The results are presented in [3] for the Wiener process, in [4]
for the infinite dimensional Wiener process, in [5] for martingale measures, and in [6]
for α-stable processes. Certain assumptions are imposed on the stochastic integrator in
all those papers, namely either the existence of certain moments, or martingale prop-
erty, or independence of increments. We consider a more general integrator under the
assumption that the stochastic term does not depend on an unknown function. The sto-
chastic integrator below is defined on the set of values of the spatial variable. Analogous
equations driven by dμ(t) are considered in [7] and [8].

Equations of type (1) driven by a usual stochastic measure μ are considered in [9].
The reasoning below is based on the results and methods presented in [9]. Similar results
for the heat equation are obtained in [10]. In [9] and [10], μ is such that μ(R) is an
almost surely finite random variable and moreover every measurable bounded function
is integrable on R with respect to μ. This assumption essentially restricts the set of
possible stochastic integrators. Here we generalize the results obtained in [9] and [10] to
the equations driven by σ-finite random functions of sets.
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The paper is constructed as follows. Section 1 contains some preliminary definitions
and results about usual and σ-finite stochastic measures. The definition of a solution of
problem (1) is given in Section 2. Necessary assumptions to be imposed on elements of
the equations are also collected in Section 2. The main result of the paper concerning the
solutions of equation (1) is stated and proved in Section 3. Some auxiliary propositions
used in our proofs are discussed in Section 4.

1. Preliminary definitions and results

Let L0 = L0(Ω,F ,P) be the set of all real valued random variables defined on a com-
plete probability space (Ω,F ,P). The convergence in the space L0 is understood in the
sense of the convergence in probability. Also let X be an arbitrary set and let B be some
σ-algebra of subsets in X.

Definition 1.1. An arbitrary σ-additive mapping μ : B → L0 is called a stochastic
measure.

Below is an example of a stochastic measure, namely

μ(A) =

∫ T

0

1A(s) dX(s),

where X(s) is either a square integrable martingale or a fractional Brownian motion
with Hurst index H > 1/2. Other examples of stochastic measures and conditions under
which the increments of a stochastic process with independent increments generate a
stochastic measure can be found in Sections 7 and 8 of [11].

The theory of integration of real valued functions with respect to a stochastic measure
is developed in [11, 12]. In particular, every bounded measurable function is integrable
with respect to any μ (see [11, 12]). Also, an analogue of the Lebesgue dominated con-
vergence theorem is valid (see [11, Proposition 7.1.1] or [12, Corollary 1.2]).

Stochastic measures are an analogue of finite measures in the sense that μ(A) is an
almost surely finite random variable. In order to generalize the notion of a σ-finite real
measure, we adopt the following definition from [12, Section 2].

Definition 1.2. A random function of sets μσ is called a σ-finite stochastic measure if
there exists a representation

(1) X =

∞⋃
j=1

Xj , Xj ∈ B, Xj ⊂ Xj+1,

such that μσ is a random measure on B ∩ Xj for all j ≥ 1.

Such a measure μσ is not defined on the whole σ-algebra B. Rather, it is defined on
the class of sets

⋃
j≥1(B∩Xj). Obviously, a usual stochastic measure is a particular case

of a σ-finite stochastic measure with Xj = X.

Definition 1.3. A measurable function g : X → R is called integrable with respect to
a σ-finite stochastic measure μσ if g is integrable with respect to μσ on every set Xj

involved in representation (see equation (1) in this section) and the limit

(2) p lim
j→∞

∫
A∩Xj

g dμσ

exists in probability for every A ∈ B. In such a case we define
∫
A
g dμσ as the limit in (2).
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Example. Let B be the Borel σ-algebra in [0,+∞), Xj = [0, j], X(s), s ≥ 0, be a
martingale, and let EX2(j) < +∞ for all j. Then

μσ(A ∩ Xj) =

∫
Xj

1A(s) dX(s)

is a σ-finite stochastic measure. If a measurable function g : [0,+∞) → R is such that

E

∫
[0,+∞)

g2(s) d〈X,X〉(s) < +∞,

then g is integrable on [0,+∞) with respect to μσ. The corresponding limit in (2) exists
in the square mean sense.

Integrals of real valued functions with respect to a σ-finite stochastic measure are
considered in detail in Section 2 of [12]. In particular, the following results are proved
in [12].

Theorem 1.1 ([12, Lemma 2.2, Theorem 2.2]). 1. Let a function g be integrable with
respect to μσ. Then the function of sets

η(A) =

∫
A

g dμσ, A ∈ B,

is a stochastic measure.
2. A measurable function h : X → R is integrable with respect to a stochastic measure

η if and only if gh is integrable with respect to μσ. Moreover

∀A ∈ B :

∫
A

h dη =

∫
A

gh dμσ.

Theorem 1.2 ([12, Theorem 2.1]). Let a function g : X → R be integrable with respect
to μσ, let a function h : X → R be measurable, and let |h(x)| ≤ |g(x)| for all x. Then h
is integrable with respect to μσ.

Theorem 1.3 ([12, Theorem 2.4]). Let g be integrable with respect to μσ in the sense of
Definition 1.3 with a given representation (see (1) in this section). Then g is integrable
with respect to μσ with any other representation (see (1) in this section) such that μσ sat-
isfies Definition 1.2. Moreover the integrals

∫
A
g dμσ for two representations are almost

surely equal for every A ∈ B.

2. Setting of the problem

In what follows let X = R, let B be the Borel σ-algebra of subsets of R, and let μσ be
a σ-finite stochastic measure satisfying Definition 1.2 with Xj = [−j, j]. Thus μσ(A) is
defined for all bounded Borel sets A ⊂ R.

Consider the differential operator

(1) Lu(t, x) = a(t, x)
∂2u(t, x)

∂x2
+ b(t, x)

∂u(t, x)

∂x
+ c(t, x)u(t, x)− ∂u(t, x)

∂t
,

where the functions a, b, and c are defined in the cylinder

S = [0, T ]× R = {(t, x) : t ∈ [0, T ], x ∈ R}.

Our aim is to study a mild solution of equation (1) in the Introduction. In other
words, we study a function

u(t, x) = u(t, x, ω) : [0, T ]× R× Ω → R
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for which

(2)

u(t, x) =

∫
R

p(t, x; 0, y)u0(y) dy +

∫ t

0

ds

∫
R

p(t, x; s, y)f
(
s, y, u(s, y)

)
dy

+

∫
R

dμσ(y)

∫ t

0

p(t, x; s, y)σ(s, y) ds

almost surely for every pair (t, x) ∈ (0, T ]× R.
Here p(t, x; s, y) denotes the fundamental solution of the operator L.
The following conditions are used throughout the paper.

Au0
u0(y) = u0(y, ω) : R × Ω → R is measurable and bounded, |u0(y, ω)| ≤ Cu0

(ω).
Also, u0(y) is Hölder continuous with respect to the argument y ∈ R, that is,

|u0(y1)− u0(y2)| ≤ Lu0
(ω) |y1 − y2|β(u0) , β(u0) ≥ 1/2.

Af f(s, y, z) : [0, T ]×R×R → R is measurable and bounded, |f(s, y, z)| ≤ Cf . Also,
f(s, y, z) satisfies the Lipschitz condition with respect to the arguments y ∈ R

and z ∈ R, that is,

|f(s, y1, z1)− f(s, y2, z2)| ≤ Lf (|y1 − y2|+ |z1 − z2|) .
Aσ σ(s, y) : [0, T ]× R → R is measurable and such that

σθ(s, y) = σ(s, y)e−θy2

is bounded for all θ > 0, that is, |σθ(s, y)| ≤ Cσ,θ. Also σθ(s, y) is Hölder
continuous with respect to the argument y ∈ R, that is,

|σθ(s, y1)− σθ(s, y2)| ≤ Lσ,θ |y1 − y2|β(σ,θ) , β(σ, θ) > 1/2.

AL The functions a(t, x), b(t, x), and c(t, x) in equation (1) in Section 2 are contin-
uous and bounded in S and such that, for some LL > 0 and α > 0,∣∣a(t, x)− a

(
t0, x0

)∣∣ ≤ LL
(∣∣x− x0

∣∣α +
∣∣t− t0

∣∣α) ,∣∣b(t, x)− b
(
t, x0

)∣∣ ≤ LL
∣∣x− x0

∣∣α , and∣∣c(t, x)− c
(
t, x0

)∣∣ ≤ LL
∣∣x− x0

∣∣α
everywhere in S. Moreover the operator L is uniformly parabolic in the cylin-
der S, that is, there are positive constants λ0 and λ1 such that λ0 ≤ a(t, x) ≤ λ1

for all pairs (t, x) ∈ S.
Ap The fundamental solution of the operator L is homogeneous with respect to

spatial arguments, that is,

p(t, x; s, y) = p(t, x− y; s, 0).

Note that condition Ap is equivalent to the following one: the functions a, b, and c on
the right hand side of equation (1) in Section 2 do not depend on the spatial variable x.

If condition AL holds, then Theorem 1 of [13, Section 4] yields the following bounds:

|p(t, x; s, y)| ≤ M(t− s)−
1
2 exp

{
−λ|x− y|2

t− s

}
,(3) ∣∣∣∣∂p(t, x; s, y)∂x

∣∣∣∣ ≤ M(t− s)−1 exp

{
−λ|x− y|2

t− s

}
,(4) ∣∣∣∣∂p(t, x; s, y)∂t

∣∣∣∣ ≤ M(t− s)−
3
2 exp

{
−λ|x− y|2

t− s

}
,(5)

where λ and M are some positive constants.
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Throughout below the symbols C, C1, C2, C3 denote positive constants whose precise
values do not matter for our reasoning.

3. Main result

Theorem 3.1. Let conditions Au0
, Af , Aσ, and AL hold and a function e−θy2

be inte-
grable on R with respect to μσ for all θ > 0. Then

1. Equation (2) in Section 2 possesses a solution u(t, x). If v(t, x) is another solution
of (2), then u(t, x) = v(t, x) almost surely for all (t, x) ∈ S.

Assume, in addition, that condition Ap holds. Then
2. For all fixed t ∈ [0, T ], K > 0, and γ1 < 1/2, there exists a version of the stochastic

process u(t, x), x ∈ [−K,K], being Hölder continuous of order γ1.
3. For all fixed δ > 0, K > 0, γ1 < 1/2, and γ2 < 1/4, there exists a version ũ(t, x)

of the random function u(t, x) such that

|ũ(t1, x1)− ũ(t2, x2)| ≤ Cũ(ω)(|t1 − t2|γ2 + |x1 − x2|γ1), t ∈ [δ, T ], x ∈ [−K,K]

for some Cũ(ω) > 0.

Proof. We will apply Lemmas 4.1 and 4.2 whose proof is given in Section 4. In what
follows we consider versions (16) for all integrals with respect to stochastic measures.

First we rewrite equation (2) in Section 2 in the following form:

(6)

u(t, x) =

∫
R

p(t, x; 0, y)u0(y) dy +

∫ t

0

ds

∫
R

p(t, x; s, y)f
(
s, y, u(s, y)

)
dy

+

∫
R

dηθ(y)

∫ t

0

pθ(t, x; s, y)σθ(s, y) ds,

where σθ is defined in condition Aσ,

pθ(t, x; s, y) = e2θy
2

p(t, x; s, y), 0 < θ <
λ

2T
,

and λ is such that inequalities (3)–(5) hold. The stochastic measure ηθ is defined by the
following equality:

ηθ(A) =

∫
A

e−θy2

dμσ(y), A ∈ B.

The integrals with respect to ηθ in (6) and with respect to μσ in equation (2) in Section
2 coincide in accordance with Theorem 1.1.

Using (3)–(5) for a fixed K and some M = MK,θ and λ = λθ > 0 we obtain the
following bounds:

|pθ(t, x; s, y)| ≤ MK,θ(t− s)−
1
2 exp

{
−λθ|x− y|2

t− s

}
,(7) ∣∣∣∣∂pθ(t, x; s, y)∂x

∣∣∣∣ ≤ MK,θ(t− s)−1 exp

{
−λθ|x− y|2

t− s

}
,(8) ∣∣∣∣∂pθ(t, x; s, y)∂t

∣∣∣∣ ≤ MK,θ(t− s)−
3
2 exp

{
−λθ|x− y|2

t− s

}
(9)
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for all |x| ≤ K. Let us prove, for example, bound (7). For 0 < ε < (λ − 2Tθ)/T , we
derive from (3) that

|pθ(t, x; s, y)| ≤ exp{2θy2}M(t− s)−
1
2 exp

{
−λ|x− y|2

t− s

}
= M(t− s)−

1
2 exp

{
− (λ− 2Tθ − Tε)|x− y|2

t− s

}
× exp

{
2θy2 − (2Tθ + Tε)|x− y|2

t− s

}
,

2θy2 − (2Tθ + Tε)|x− y|2
t− s

t−s≤T
≤ 2θ

(
y2 − (x− y)2

)
− ε(x− y)2.(10)

Put λθ = λ− 2Tθ − Tε. Then

(11)

max
y∈R

(
2θ
(
y2 − (x− y)2

)
− ε(x− y)2

)
= x2

(
4θ2

ε
+ 2θ

)
|x|≤K

≤ K2

(
4θ2

ε
+ 2θ

)
=: M1.

One can choose MK,θ = M exp{M1}. It is obvious that bounds (8) and (9) hold with
the same constants λθ and MK,θ.

Proof of statement 1 of Theorem 3.1. We apply the fixed-point iteration similarly to
the reasoning in [10]. Put u(0)(t, x) = 0 and

(12)

u(n+1)(t, x) =

∫
R

p(t, x; 0, y)u0(y) dy +

∫ t

0

ds

∫
R

p(t, x; s, y)f
(
s, y, u(n)(s, y)

)
dy

+

∫
R

dηθ(y)

∫ t

0

pθ(t, x; s, y)σθ(s, y) ds, n ≥ 0.

Then

(13)
∣∣∣u(n+1)(t, x)− u(n)(t, x)

∣∣∣ Af

≤ Lf

∫ t

0

ds

∫
R

p(t, x; s, y)
∣∣∣u(n)(s, y)− u(n−1)(s, y)

∣∣∣ dy
for all ω ∈ Ω and n ≥ 2.

The assumptions of the theorem and equality
∫
R
e−z2/b2dz = Cb imply that∫

R

|p(t, x; s, y)| dy ≤ M

∫
R

(t− s)−
1
2 e−

λ|x−y|2
t−s dy = C.(14)

Hence ∣∣∣u(2)(t, x)− u(1)(t, x)
∣∣∣ ≤ 2Cf

∫ t

0

ds

∫
R

|p(t, x; s, y)| dy ≤ 2Ct.

Considering

gn(t) = sup
x∈R

∣∣∣u(n+1)(t, x)− u(n)(t, x)
∣∣∣ , n ≥ 1 ,

we derive from (13) that

gn(t) ≤ Lf

∫ t

0

gn−1(s) ds.

Using the induction,

(15) gn(t) ≤ 2CfL
n
f

tn+1

(n+ 1)!
,
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whence we conclude that the sequence
∑∞

n=1 gn(t) converges uniformly in [0, T ]. Put

u(t, x) := lim
n→∞

u(n)(t, x).

Passing to the limit in (12) as n → ∞ we prove (2).
Now we prove that a solution is unique. If u(t, x) and v(t, x) are two different solutions

of equation (2) in Section 2, then

u(t, x)− v(t, x) =

∫ t

0

ds

∫
R

p(t, x; s, y)
[
f
(
s, y, u(s, y)

)
− f

(
s, y, v(s, y)

)]
dy.

Based on condition Af , one can repeat the same reasoning for

g(t) = sup
x∈R

|u(t, x)− v(t, x)| .

Then we obtain

g(t) ≤ 2CfL
n
f

tn+1

(n+ 1)!
≤ 2CfL

n
f

Tn+1

(n+ 1)!
.

Passing to the limit as n → ∞ we conclude that g = 0, whence the uniqueness of a
solution follows.

Proof of statement 2 of Theorem 3.1. We apply the Hölder property with respect to
the variable x on bounded subsets of R. Using the induction, we prove that for any n ≥ 0
there exists Lu(n)(t) > 0 such that∣∣∣u(n)(t, x1)− u(n)(t, x2)

∣∣∣ ≤ Lu(n)(t) |x1 − x2|γ1 .

We have Lu(0) = 0.
With the help of equality (12), Lemma 4.1, the change of the variable y → y+x2−x1

in the integrals with respect to y containing the variable x2, and taking into account the
initial conditions we get∣∣∣u(n+1)(t, x1)− u(n+1)(t, x2)

∣∣∣
≤
∫
R

p(t, x1; 0, y) |u0(y)− u0(y + x2 − x1)| dy

+

∫ t

0

ds

∫
R

p(t, x1; s, y)
∣∣∣f (s, y, u(n)(s, y)

)
− f

(
s, y + x2 − x1, u

(n)(s, y + x2 − x1)
)∣∣∣ dy

+ C |x1 − x2|γ1

≤ Lu0
|x1 − x2|β(u0)

+

∫ t

0

ds

∫
R

p(t− s, x1 − y)Lf (|x1 − x2|+ Lu(n)(s) |x1 − x2|γ1) dy

+ C |x1 − x2|γ1 .

Thus

Lu(n+1)(t) ≤ L+ L

∫ t

0

Lu(n)(s) ds

for some constant L. Statement 2 is proved. By induction, we find an upper bound

Lu(n)(t) ≤ LeLt ≤ LeLT

and this proves the Hölder continuity with respect to the variable x. Note that the
constant L does not depend on t.
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Proof of statement 3 of Theorem 3.1. We follow the lines of the proof of Proposition 3
in [9] and use Lemma 4.2. �

Remark 3.1. If μσ in Theorem 3.1 is an ordinary stochastic measure, then the function

e−θy2

, as a bounded function, is integrable with respect to μσ. This implies the inte-

grability of the function |y|τe−θy2

. Therefore Theorem of the paper [9] is a particular
case of Theorem 3.1. In addition, the result of Theorem of [9] remains valid without the
assumption that |y|τ is integrable with respect to a stochastic measure.

4. Auxiliary results

Consider the Besov space Bα
22([c, d]), 0 < α < 1. A function g belongs to the space

Bα
22([c, d]) if its norm in the Besov space,

‖g‖Bα
22([c,d])

= ‖g‖L2([c,d]) +

(∫ d−c

0

(
w2(g, r)

)2
r−2α−1 dr

)1/2

,

is finite, where

w2(g, r) = sup
0≤h≤r

(∫ d−h

c

|g(v + h)− g(v)|2 dv

)1/2

.

For an arbitrary j ∈ Z, let

Δ
(j)
kn =

(
j + (k − 1)2−n, j + k2−n

]
, n ≥ 0, 1 ≤ k ≤ 2n.

Let Z be an arbitrary set and let a function g(z, v) : Z × [j, j + 1] → R be continuous
with respect to the second argument for all z ∈ Z. Put

gn(z, v) = g(z, j)1{j}(v) +
∑

1≤k≤2n

g
(
z, j + (k − 1)2−n

)
1
Δ

(j)
kn

(v).

Then

ζ(z) =

∫
[j,j+1]

g(z, v) dμ(v), z ∈ Z,

has a version

(16)

ζ̃(z) =

∫
[j,j+1]

g0(z, v) dμ(v)

+
∑
n≥1

(∫
[j,j+1]

gn(z, v) dμ(v)−
∫
[j,j+1]

gn−1(z, v) dμ(v)

)

such that

(17)

∣∣ζ̃(z)∣∣ ≤ ∣∣g(z, j)μ([j, j + 1])
∣∣

+ C‖g(z, ·)‖Bα
22([j,j+1])

{∑
n≥1

2−n(1−2α)
∑

1≤k≤2n

∣∣∣μ(Δ(j)
kn

)∣∣∣2} 1
2

for all ω ∈ Ω and z ∈ Z. This follows from Lemma 3 in [14] and Theorem 1.2 in [15].
The following result is an analogue of Lemma 1 of [9]. Note, however, that we do not

impose the restriction that the function pθ is homogeneous with respect to the spatial
variables.
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Lemma 4.1. Let conditions Aσ, AL, and Ap hold. Given arbitrary t ∈ [0, T ], K > 0,
and γ1 < 1/2, the stochastic process

ϑθ(x) =

∫
R

dηθ(y)

∫ t

0

pθ(t, x; s, y)σθ(s, y) ds, |x| ≤ K,

has a Hölder continuous version of order γ1.

Proof. We consider version (16) for all stochastic integrals. Now we follow the lines of
the proof of an analogous result in [9].

For fixed t and x1 ≤ x2, consider

q(z, y) =

∫ t

0

pθ(t, x1; s, y)σθ(s, y) ds−
∫ t

0

pθ(t, x2; s, y)σθ(s, y) ds,

z = (t, x1, x2), y ∈ R.

Our current aim is to estimate the norm of the function q(z, ·) in the Besov space in the
interval [j, j + 1]. We have

q(z, y + h)− q(z, y) =

∫ t

0

(
pθ(t, x1; s, y)− pθ(t, x2; s, y)

)(
σθ(s, y + h)− σθ(s, y)

)
ds

+

∫ t

0

(
pθ(t, x1; s, y + h)− pθ(t, x1; s, y)− pθ(t, x2; s, y + h)

+ pθ(t, x2; s, y)
)
σθ(s, y + h) ds

=: I1 + I2.

First we assume that |y| ≤ K + 1. Similarly to the corresponding reasoning in [9] we
apply the bound∫ t

0

1

r
e−

b
r dr =

∣∣∣ b
r
= z

∣∣∣ = ∫ ∞

b/t

1

z
e−z dz ≤ 1{t>b}

∫ 1

b/t

1

z
dz +

∫ ∞

1

e−z dz ≤
∣∣∣∣ln T

b

∣∣∣∣+ 1

and conclude that

(18)

∫ t

0

∣∣pθ(t, x1; s, y)− pθ(t, x2; s, y)
∣∣ ds ≤ ∫ t

0

(
C

t− s

∫ x2

x1

e−
λθ|x−y|2

t−s dx

)
ds

=
∣∣∣t− s = r

∣∣∣ = ∫ x2

x1

dx

∫ t

0

1

r
e−

λθ|x−y|2
r dr

≤
∫ x2

x1

(∣∣∣∣ln T

λθ|x− y|2

∣∣∣∣+ 1

)
dx ≤ C1|x1 − x2|+ C2

∫ x2

x1

∣∣ln |x− y|
∣∣ dx

≤ C1|x1 − x2|+ C3

∫ |x1−x2|/2

0

| ln z| dz

= C1|x1 − x2|+ C3(z − z ln z)
∣∣∣|x1−x2|/2

0
≤ C|x1 − x2|γ ,

where 0 < γ < 1 is arbitrary and the constant C depends on γ, λ, K, and T . Here we used
the fact that if |x1−x2| < 1 is fixed and either x1 or x2 belongs to the interval [y−1, y+1],
then the value of the integral

∫ x2

x1

∣∣ln|x − y|
∣∣ dx is maximal if x1 and x2 are symmetric

around y. Otherwise [x1, x2] ⊂ [−K,K] and |y| ≤ K + 1, whence the integral does not
exceed |ln(2K + 1)| · |x1 − x2|. We also used the inequality|x1 − x2|1−γ ln |x1 − x2| ≤
C for x1, x2 ∈ {x ∈ R : |x| ≤ K} and for all γ < 1. This inequality follows from
|x1 − x2|1−γ ln |x1 − x2| → 0 as |x1 − x2| → 0.
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If |y| > K+1, then |x− y| ≥ 1 in (18) and the corresponding integral does not exceed∫ t

0

(
C

t− s

∫ x2

x1

e−
λθ
t−s dx

)
ds = C|x1 − x2|.

This implies the bounds

|I1| ≤
∫ t

0

(
|pθ(t, x1; s, y)− pθ(t, x2; s, y)|

)(
|σθ(s, y + h)− σθ(s, y)|

)
ds

≤ Chβ(σ,θ)|x1 − x2|γ ,
(19)

|I2| ≤ C|x1 − x2|γ .(20)

Now we estimate those terms in I2 that contain x1. The terms with x2 are considered
similarly. We have∣∣∣∣∫ t

0

(
pθ(t, x1; s, y + h)− pθ(t, x1; s, y)

)
σθ(s, y + h) ds

∣∣∣∣
≤ Cσ,θ

∫ t

0

∣∣∣e2θ(y+h)2p(t, x1; s, y + h)− e2θy
2

p(t, x1; s, y)
∣∣∣ ds

≤ C

∫ t

0

e2θ(y+h)2
∣∣p(t, x1; s, y + h)− p(t, x1; s, y)

∣∣ ds
+ C

∫ t

0

∣∣∣e2θ(y+h)2 − e2θy
2
∣∣∣ |p(t, x1; s, y)| ds

=: CJ1 + CJ2,

J1
Ap
=

∫ t

0

e2θ(y+h)2
∣∣p(t, x1 − h; s, y)− p(t, x1; s, y)

∣∣ ds
=

∫ t

0

ds

∣∣∣∣∫ x1

x1−h

e2θ(y+h)2 ∂p(t, x; s, y)

∂x
dx

∣∣∣∣
(4)

≤ C

∫ t

0

ds

t− s

∫ x1

x1−h

e2θ(y+h)2e−
λ|x−y|2

t−s dx.

Similarly to (10)–(11) we obtain for 0 ≤ h ≤ 1 that

e2θ(y+h)2e−
λ|x−y|2

t−s ≤ M̃K,θ exp

{
−λθ|x− y|2

t− s

}
.

Also if 0 < β < λθ/T , then

J2 =

∫ t

0

∣∣∣e2θ((y+h)2−y2) − 1
∣∣∣ |pθ(t, x1; s, y)| ds

|ez−1|≤|z|e|z|,h≤1

≤ 2θh

∫ t

0

e2θ(2|y|+1)(2|y|+ 1)|pθ(t, x1; s, y)| ds

= 2θh

∫ t

0

e2θ(2|y|+1)−βy2

(2|y|+ 1)
∣∣∣eβy2

pθ(t, x1; s, y)
∣∣∣ ds.

Here e2θ(2|y|+1)−βy2

(2|y|+1) is a bounded function and thus one can obtain an inequality

similar to (7) for pβ,θ = eβy
2

pθ, whence
∫ t

0
pβ,θ ds ≤ C

∫ t

0
(t − s)−1/2 ds = C. Hence

|J2| ≤ Ch.
For γ < 1,

(21) |I2| ≤ Chγ .
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Now we estimate the modulus of continuity,

(
w2(q, r)

)2 ≤ 2 sup
0≤h≤r

∫ j+1−h

j

I21 dy + 2 sup
0≤h≤r

∫ j+1−h

j

I22 dy.

According to relations (19),

sup
0≤h≤r

∫ j+1−h

j

I21 dy ≤ C|x1 − x2|2γ sup
0≤h≤r

h2β(σ,θ)(1− h) ≤ Cr2β(σ,θ)|x1 − x2|2γ .

Reasoning similarly to the case of the integral I2, we obtain from bounds (20) and (21)
that

sup
0≤h≤r

∫ j+1−h

j

I22 dy ≤ C|x1 − x2|2γ

and

sup
0≤h≤r

∫ j+1−h

j

I22 dy ≤ Cr2γ .

The latter two inequalities for the integral
∫ j+1−h

j
I22 dy imply that, for some number

0 < δ < 1,

sup
0≤h≤r

∫ j+1−h

j

I22 dy ≤ Cr2γ(1−δ)|x1 − x2|2γδ.

Therefore,

(
w2(q, r)

)2 ≤ Cr2β(σ,θ)|x1 − x2|2γ + Cr2γ(1−δ)|x1 − x2|2γδ

≤ C|x1 − x2|2γδ
(
r2β(σ,θ) + r2γ(1−δ)

)
.

Note that the integral involved in the definition of the norm in the Besov space is finite
if and only if

2γ(1− δ) > 2α ⇔ γδ < γ − α.

Now the Hölder order is such that γδ → 1/2− as γ → 1− and α → 1/2+. This means
that, given 0 < γ1 < 1/2, there exists α > 1/2 such that

‖q(z, ·)‖Bα
22([j,j+1]) ≤ C|x1 − x2|γ1 .

The same reasoning as those that led us to bound (20) proves the following two
inequalities with some constant C,

|q(z, j)| ≤ C|x1 − x2|γ , ‖q(z, ·)‖L2([j,j+1]) ≤ C|x1 − x2|γ .
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Now we are ready to prove the Hölder property of ϑθ:

|ϑθ(x1)− ϑθ(x2)| =
∣∣∣∣∫

R

g(y) dηθ(y)

∣∣∣∣ ≤∑
j∈Z

∣∣∣∣∫ j+1

j

g(y) dηθ(y)

∣∣∣∣
(17)

≤
∑
j∈Z

∣∣q(z, j) ηθ([j, j + 1])
∣∣

+ C
∑
j∈Z

‖q(z, ·)‖Bα
22([j,j+1])

⎧⎨⎩∑
n≥1

2n(1−2α)
∑

1≤k≤2n

∣∣∣ηθ (Δ(j)
kn

)∣∣∣2
⎫⎬⎭

1/2

≤ C|x2 − x1|γ1

⎡⎢⎣∑
j∈Z

|ηθ ([j, j + 1])|+
∑
j∈Z

⎧⎨⎩∑
n≥1

2n(1−2α)
∑

1≤k≤2n

∣∣∣ηθ (Δ(j)
kn

)∣∣∣2
⎫⎬⎭

1/2
⎤⎥⎦

≤ C|x2 − x1|γ1

⎡⎢⎣
⎛⎝∑

j∈Z

(|j|+ 1)2 (ηθ ([j, j + 1]))2

⎞⎠1/2⎛⎝∑
j∈Z

(|j|+ 1)−2

⎞⎠1/2

+

⎛⎝∑
n≥1

2n(1−2α)
∑
j∈Z

(|j|+ 1)2
∑

1≤k≤2n

∣∣∣ηθ (Δ(j)
kn

)∣∣∣2
⎞⎠1/2

×

⎛⎝∑
j∈Z

(|j|+ 1)−2

⎞⎠1/2
⎤⎥⎦ ,

where the sums with stochastic measures are of the form

∞∑
l=1

(∫
X

fl dηθ

)2

,

{fl(y), l ≥ 1} =
{
(|j|+ 1)1[j,j+1](y), j ∈ Z

}
,

{fl(y), l ≥ 1} =
{
(|j|+ 1)2n(1−2α)/21

Δ
(j)
kn

(y), j ∈ Z, n ≥ 1, 1 ≤ k ≤ 2n
}
.

Theorem 1.1 implies∫
A

(|y|+ 1) dηθ =

∫
A

(|y|+ 1)e−θy2

dμσ(y).

Since (|y|+1)e−θy2 ≤ Ce(−θ/2)y2

and e(−θ/2)y2

is integrable with respect to the stochastic
measure μσ, Theorems 1.1 and 1.2 imply that the function

∑∞
l=1 fl is integrable. Now

Lemma 3.1 of [10] yields

∞∑
l=1

(∫
X

fl dηθ

)2

< +∞ almost surely

and this completes the proof of the theorem. �

The following result is an analogue of Lemma 2 in [9].
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Lemma 4.2. Let conditions Af , Aσ, AL, and Ap hold. Let x ∈ R and γ2 < 1/4 be fixed.
Then the stochastic process

ϑ̂(t) =

∫
R

dηθ(y)

∫ t

0

pθ(t, x; s, y)σθ(s, y) ds, t ∈ [0, T ],

has a Hölder continuous version of order γ2.

Proof. Let x ∈ R and 0 ≤ t1 < t2 ≤ T be arbitrary fixed numbers. Put

q̂(z, y) =

∫ t2

0

pθ(t2, x; s, y)σθ(s, y) ds−
∫ t1

0

pθ(t1, x; s, y)σθ(s, y) ds, z = (t1, t2, x).

Then relation (17) holds for the version (16) of the stochastic integral

η̂(z) =

∫
[j,j+1]

q̂(z, y) dηθ(y).

Now we estimate the norm of the function q̂(z, ·) in the Besov space. First we represent
the increment q̂(z, y + h)− q̂(z, y) as follows:

q̂(z, y + h)− q̂(z, y)

=

∫ t1

0

(
pθ(t2, x; s, y + h)− pθ(t1, x; s, y + h)

)
σθ(s, y + h) ds

−
∫ t1

0

(
pθ(t2, x; s, y)− pθ(t1, x; s, y)

)
σθ(s, y) ds

+

∫ t2

t1

pθ(t2, x; s, y + h)σθ(s, y + h) ds−
∫ t2

t1

pθ(t2, x; s, y)σθ(s, y) ds

=

∫ t1

0

(
pθ(t2, x; s, y + h)− pθ(t1, x; s, y + h)

)(
σθ(s, y + h)− σθ(s, y)

)
ds

+

∫ t1

0

(
pθ(t2, x; s, y + h)− pθ(t2, x; s, y)

)
σθ(s, y) ds

−
∫ t1

0

(
pθ(t1, x; s, y + h)− pθ(t1, x; s, y)

)
σθ(s, y) ds

+

∫ t2

t1

pθ(t2, x; s, y + h)
(
σθ(s, y + h)− σθ(s, y)

)
ds

+

∫ t2

t1

(
pθ(t2, x; s, y + h)− pθ(t2, x; s, y)

)
σθ(s, y) ds

=: J11 + J12 − J13 + J21 + J22

=: J1 + J2.

Then we obtain from (7)

(22)
|J21| ≤ Chβ(σ,θ)

∫ t2

t1

(t2 − s)−1/2e−
λθ|x−y−h|2

t2−s ds ≤ Chβ(σ,θ)

∫ t2

t1

(t2 − s)−1/2 ds

= Chβ(σ,θ)(t2 − t1)
1/2
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by condition Aσ. Further,

(23)

|J22| ≤
∣∣∣∣∫ t2

t1

pθ(t2, x; s, y + h)σθ(s, y)ds

∣∣∣∣+ ∣∣∣∣∫ t2

t1

pθ(t2, x; s, y)σθ(s, y) ds

∣∣∣∣
≤ C

∫ t2

t1

(t2 − s)−1/2e−
λθ|x−y−h|2

t2−s ds+ C

∫ t2

t1

(t2 − s)−1/2e−
λθ|x−y|2

t2−s ds

≤ C(t2 − t1)
1/2.

On the other hand, applying the same reasoning as that leading to (20) we obtain

(24)

|J22| ≤ C

∫ t2

t1

∫ x

x−h

∣∣∣∣∂pθ(t2, v; s, y)∂v

∣∣∣∣ dv ds
≤ C

∫ t2

t1

∫ x

x−h

(t2 − s)−1e−
λθ|v−y|2

t2−s dv ds ≤ Chγ0 ,

where 0 < γ0 < 1 is an arbitrary number and the constant C depends on γ0.
Raising both sides of inequality (23) to the power δ0 and both sides of inequality (24)

to the power 1− δ0 with some δ0 ∈ (0, 1) and taking into account (22) we conclude that

|J2| ≤ Chβ(σ,θ)(t2 − t1)
1/2 + Ch(1−δ0)γ0(t2 − t1)

δ0/2

≤ C(t2 − t1)
δ0/2

(
hβ(σ,θ) + h(1−δ0)γ0

)
.

Passing to the limit as γ0 → 1− and 1− δ0 → 1/2+ we prove that (1− δ0)γ0 > 1/2 and
δ0 → 1/2−.

Using condition Aσ and relation (9) we get

(25)

|J11| ≤ Lσ,θh
β(σ,θ)

∫ t1

0

∫ t2

t1

∣∣∣∣∂pθ(τ, x; s, y + h)

∂τ

∣∣∣∣ dτ ds
≤ Chβ(σ,θ)

∫ t1

0

∫ t2

t1

(τ − s)−3/2e−
λθ|x−y−h|2

τ−s dτ ds

≤ Chβ(σ,θ)

∫ t1

0

∫ t2

t1

(τ − s)−3/2 dτ ds ≤ Chβ(σ,θ)(t2 − t1)
1/2.

Similarly, condition Aσ implies

(26)

|J12 − J13| =
∣∣∣∣∫ t1

0

(
pθ(t2, x; s, y + h)− pθ(t1, x; s, y + h)

)
σθ(s, y) ds

−
∫ t1

0

(
pθ(t2, x; s, y)− pθ(t1, x; s, y)

)
σθ(s, y) ds

∣∣∣∣
≤ C

∫ t1

0

∫ t2

t1

∣∣∣∣∂pθ(τ, x; s, y + h)

∂τ

∣∣∣∣ dτ ds
+ C

∫ t1

0

∫ t2

t1

∣∣∣∣∂pθ(τ, x; s, y)∂τ

∣∣∣∣ dτ ds
≤ C(t2 − t1)

1/2.

On the other hand, we repeat the same reasoning as that used to prove inequality (24)
and obtain the following bound:

(27) |J12 − J13| ≤ |J12|+ |J13| ≤ Chγ0 .
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Raising both sides of inequality (26) to the power δ0 and both sides of inequality(27) to
the power 1− δ0 and taking into account inequality (25) we derive the bound

|J1| ≤ Chβ(σ,θ)(t2 − t1)
1/2 + Ch(1−δ0)γ0(t2 − t1)

δ0/2

≤ C(t2 − t1)
δ0/2

(
hβ(σ,θ) + h(1−δ0)γ0

)
.

Therefore

|q̂(z, y + h)− q̂(z, y)| ≤ C(t2 − t1)
δ0/2

(
hβ(σ,θ) + h(1−δ0)γ0

)
,

whence (∫ 1

0

(
w2(g, r)

)2
r−2α−1 dr

)1/2

≤ C(t2 − t1)
δ0/2

(∫ 1

0

r2β(σ,θ)−2α−1dr +

∫ 1

0

r2(1−δ0)γ0−2α−1dr

)1/2

≤ C(t2 − t1)
δ0/2

for an appropriate 1/2 < α < min{(1− δ0)γ0, β(σ, θ)}.
Moreover, relations (23) and (26) yield

|q̂(z, y)| =
∣∣∣∣∫ t1

0

(
pθ(t2, x; s, y)− pθ(t1, x; s, y)

)
σθ(s, y) ds+

∫ t2

t1

pθ(t2, x; s, y)σθ(s, y) ds

∣∣∣∣
≤ C(t2 − t1)

1/2

for y ∈ R and thus

‖q̂(z, ·)‖L2([j,j+1]) ≤ C(t2 − t1)
1/2, |q̂(z, j)| ≤ C(t2 − t1)

1/2.

The rest of the proof follows the lines of that of Lemma 4.1. �

5. Concluding remarks

We proved the existence and uniqueness as well as the Hölder continuity of trajectories
for a solution of the stochastic parabolic equation driven by a σ-finite stochastic measure.
An equation with such an integrator is considered for the first time. A result of the
paper [9] is generalized and some of the conditions used in [9] are weakened.
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