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CONSISTENCY OF THE ORTHOGONAL REGRESSION ESTIMATOR

IN AN IMPLICIT LINEAR MODEL WITH ERRORS IN VARIABLES

UDC 519.21

O. O. DASHKOV AND A. G. KUKUSH

Abstract. An implicit linear regression model with errors in variables is studied
for which the true points belong to a certain hyperplane in Euclidean space and the
joint covariance matrix of errors is proportional to the unit matrix. The orthogonal
regression estimator for this hyperplane is considered. Some sufficient conditions for
the consistency as well as for the strong consistency are given. Some applications
to the explicit multiple regression model with a free term and errors in variables are

shown.

1. Introduction

The multiple functional linear regression model with a free term and errors in variables
is described by the following equalities:

(1)

{
yi = b0 + x�ξi + εi,

xi = ξi + δi.

Here ξi ∈ R
m−1 are unknown non-random vectors, εi and δi are random errors, and b0 ∈

R and x ∈ R
m−1 are regression parameters that need to be estimated from observations

(yi, xi), i = 1, . . . , n. Similar models of observations occur often in econometrics and in
signal processing. Here and in what follows all vectors are column vectors.

This model is reduced usually to a linear regression without free term and then the least
square estimator is considered for the reduced model (total least squares estimator). In
particular, this estimator is studied in the papers [1–3,5], where some sufficient conditions
for the weak as well as for strong consistency are obtained for the total least squares
estimator under various assumptions concerning the model of observations. The least
restrictive conditions for the case considered in the current paper are obtained in [7].

In order to cancel the free term in the model (1) one introduces an additional regressor
which is constant and equal to unity and is observed without errors. Such an approach
has a drawback, since the regressors in the resulting model are unequal. To avoid this
problem, we consider an implicit linear model for observations in the Euclidean space Rm,
m ≥ 2, where the hidden variables belong to a certain hyperplane and this hyperplane
needs to be estimated.

The most frequently used estimator for such an implicit model is the orthogonal re-
gression estimator. The orthogonal regression estimator defines a hyperplane with the
least sum of distances from observations. Since all variables are equally treated in this
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case, one can apply some geometrical intuition and reasoning when studying properties
of the estimator.

Using all benefits of an implicit model, we are able to find sufficient conditions for the
consistency as well as for the strong consistency of the orthogonal regression estimator.
These conditions are imposed on eigenvalues of the sample covariance matrix of hidden
variables. Note that the conditions do not follow from the corresponding conditions for
consistency in [7] in the case of the reduced model without free term.

The paper is organized as follows. We describe the implicit linear model in Section 2
for observations in the Euclidean space. In Section 2, the orthogonal regression estima-
tor is introduced and the assumptions concerning the errors of observations are stated.
Sections 3 and 4 contain sufficient conditions for the consistency and strong consistency,
respectively, of the orthogonal regression estimator. These results are used in Section 5
for the total least squares estimator for the multiple linear regression with a free term
and errors in variables. In Section 6, the multiple model with a free term is reduced to a
model without free term. We also compare our results with known theorems concerning
the total least squares estimators in Section 6. In Section 7, we briefly discuss a possible
direction for further investigations.

Throughout this paper the bar above a letter, say ū, means the averaging of the first
n members of a sequence u of numbers, vectors, or matrices.

A number in brackets written as an upper index, say η̄(n), denotes the index of a
member of an averaged sequence η̄. If this index is absent for a member of an averaged
sequence, then the index of this member equals n.

2. The estimator and assumptions concerning the model

Consider the following implicit regression linear model of observations in the Euclidean
space R

m, m ≥ 2:

(2)

{
zi = ηi + γi,

(ηi, τ ) = d.

Here zi denote the observed vectors in R
m, ηi are hidden variables that belong to the

hyperplane

(3) Γτd = {u ∈ R
m : (u, τ ) = d},

τ is the unit vector being normal to the hyperplane, d ∈ R, and γi are random errors of
observations. Using the observations zi, i = 1, . . . , n, we need to estimate the hyperpla-
ne (3).

Below we list the assumptions concerning model (2).

(i) The vectors γi, i ≥ 1, are jointly independent and have zero mean.
(ii) The vectors γi, i ≥ 1, have identical covariance matrix cov(γi) = σ2Im, where

σ2 > 0 is unknown.

For given sets ui, i = 1, . . . , n, and vi, i = 1, . . . , n, of vectors of the space R
m, we

consider the sample covariance matrix

Suv =
1

n

n∑
i=1

(ui − ū)(vi − v̄)�, ū =
1

n

n∑
i=1

ui, v̄ =
1

n

n∑
i=1

vi.

The orthogonal regression estimator of parameters τ and d in model (2) is defined by the

pair τ̂ and d̂ for which the goal function

Q(τ, d) =
n∑

i=1

ρ2(zi,Γτd), ‖τ‖ = 1, d ∈ R,
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attains its minimum, where ρ (z,Γ) denotes the distance between the point z and hyper-
plane Γ.

It is shown in [6] that the orthogonal regression estimator τ̂ is a normalized eigenvector
of the function Szz corresponding to the minimal eigenvalue λmin(Szz) and that

d̂ = (z̄, τ̂).

Given a symmetric matrix Sηη, we write its eigenvalues with their multiplicities in the
ascending order:

λmin(Sηη) ≤ λ2(Sηη) ≤ · · · ≤ λmax(Sηη).

In what follows, Σ means σ2Im = cov(γi).

3. Sufficient conditions for consistency of the orthogonal

regression estimator

Theorem 1. Assume that conditions (i) and (ii) hold for models (2)–(3). We further
assume that, for some 1 ≤ r ≤ 2,

sup
i≥1

E ‖γi‖2r < ∞,

λmax

(
S
(n)
ηη

)
nλ2

2

(
S
(n)
ηη

) → 0, n → ∞,

n1−1/rλ2

(
S(n)
ηη

)
→ ∞, n → ∞.

Then the estimator τ̂ is consistent, that is,

min
{
‖τ̂ − τ‖, ‖τ̂ + τ‖

} P−→ 0

as n → ∞.

Proof. Since the orthogonal regression estimator is equivariant with respect to orthogonal
transformations (this property of the estimator is discussed in [6]), we assume that τ =
(1, 0, . . . , 0)� without loss of generality. In this case,

S(n)
ηη =

(
0 01×(m−1)

0(m−1)×1 An

)
,

where An is a square matrix of order m − 1, since the vectors ηi − η̄(n) belong to a
hyperplane being perpendicular to the vector τ . Moreover,

λmin(An) = λ2

(
S(n)
ηη

)
.

Then

(4) Szz τ̂ = λmin(Szz)τ̂ , Szz = Sηη + Sηγ + Sγη + Sγγ .

Since Szz is a symmetric matrix,

(5) λmin(Szz) ≤ (Szzτ, τ ) = (Sγγτ, τ ) = σ2 +
(
(Sγγ − Σ)τ, τ

)
.

On the other hand,

λmin(Szz) = (Szz τ̂ , τ̂ ) = (Sηη τ̂ , τ̂) + (Sηγ τ̂ , τ̂) + (Sγη τ̂ , τ̂) + (Sγγ τ̂ , τ̂).

Further, the matrix Sηη is non-negative definite and ‖τ̂‖ = 1, whence

(6) λmin(Szz)− σ2 ≥ −(‖Sηγ‖+ ‖Sγη‖+ ‖Sγγ − Σ‖).
It follows from (5) and (6) that

(7)
∣∣λmin(Szz)− σ2

∣∣ ≤ ‖Sηγ‖+ ‖Sγη‖+ ‖Sγγ − Σ‖.
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We rewrite the first equality in (4) as follows:

(8) Sηη τ̂ =
((

λmin(Szz)− σ2
)
Im − Sηγ − Sγη − (Sγγ − Σ)

)
τ̂ .

Let

Bn =

(
0 01×(m−1)

0(m−1)×1 A−1
n

)

and let P2 be the matrix of the orthogonal projector to the hyperplane {τ}⊥. Then

S(n)
ηη Bn = BnS

(n)
ηη =

(
0 0
0 Im−1

)
= P2.

Multiplying from the left on both sides of equality (8) by Bn, we obtain

P2τ̂ = Bn

((
λmin(Szz)− σ2

)
Im − Sηγ − Sγη −

(
Sγγ − σ2Im

))
τ̂ .

Taking into account inequality (7) we conclude that

(9) ‖P2τ̂‖ ≤ 2‖Bn‖ ·
(
‖Sηγ‖F + ‖Sγη‖F + ‖Sγγ − σ2Im‖F

)
,

since the operator norm of a matrix does not exceed its Frobenius norm. Here and in
what follows, ‖A‖F denotes the Frobenius norm of a matrix defined as the square root
of the sum of squares of all matrix entries. Recall that the operator norm of a matrix is
defined as the norm of the corresponding operator in an Euclidean space.

Since ‖τ̂‖ = 1, we have ‖P2τ̂‖2 + (τ̂ , τ )2 = 1 and hence

(10) min
(
‖τ̂ − τ‖ , ‖τ̂ + τ‖

)
=

√(
1−

√
1− ‖P2τ̂‖2

)2

+ ‖P2τ̂‖2.

Therefore we only need to prove the convergence P2τ̂
P−→ 0, n → ∞. In turn, this follows

from the convergence ‖Bn‖ ·
∥∥S(n)

γη

∥∥
F

P−→ 0 and

‖Bn‖ ·
∥∥∥S(n)

γγ − Σ
∥∥∥
F

P−→ 0, n → ∞,

in view of inequality (9).
Since Bn is a block diagonal matrix and since A−1

n is a symmetric matrix,

(11) ‖Bn‖ = max
(
0,
∥∥A−1

n

∥∥) = λmax

(
A−1

n

)
=

1

λ2

(
S
(n)
ηη

) .
To estimate ‖Sγη‖F , we apply the Rosenthal inequality for 2r ≥ 2 (written in a special
form suggested in [7]):

(12)

E
∥∥∥S(n)

γη

∥∥∥2r
F

=
1

n2r
E

∥∥∥∥∥
n∑

i=1

γi(ηi − η̄)�

∥∥∥∥∥
2r

F

≤ α

n2r

n∑
i=1

E ‖γi‖2r ‖ηi − η̄‖2r + β

n2r

(
n∑

i=1

E ‖γi‖2 ‖ηi − η̄‖2
)r

.
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Further,

E ‖γi‖2r ≤ sup
j≥1

E ‖γj‖2r ,
(
E ‖γi‖2

)r

≤ sup
j≥1

E ‖γj‖2r , i ≥ 1,

n∑
i=1

‖ηi − η̄‖2 = tr

(
n∑

i=1

(ηi − η̄)(ηi − η̄)�

)
= n · tr

(
S(n)
ηη

)
≤ nmλmax

(
S(n)
ηη

)
,

n∑
i=1

‖ηi − η̄‖2r ≤
(

n∑
i=1

‖ηi − η̄‖2
)r

≤ nrmrλmax

(
S(n)
ηη

)r

.

Thus

(13) E ‖Sγη‖2rF =
O
(
λmax

(
S
(n)
ηη

)r )
nr

, n → ∞.

Then (11), (13), and assumptions of the theorem imply that

(14) ‖Bn‖ ·
∥∥∥S(n)

γη

∥∥∥
F

P−→ 0, n → ∞.

Now we estimate

(15) E ‖Sγγ − Σ‖rF ≤
((

E
∥∥∥γγ� − Σ

∥∥∥r
F

)1/r

+
(
E
∥∥∥γ̄ γ�

∥∥∥r
F

)1/r
)r

.

By assumptions of Theorem 1, the sequence
{
E
∥∥γiγ�

i − Σ
∥∥r, i ≥ 1

}
is bounded and

the random matrices
{
γiγ

�
i − Σ, i ≥ 1

}
are jointly independent. Hence one can use the

Rosenthal inequality for 1 ≤ r ≤ 2 (again in a special form as in [7]):

(16)

E
∥∥∥γγ� − Σ

∥∥∥r
F
=

1

nr
E

∥∥∥∥∥
n∑

i=1

(
γiγ

�
i − Σ

)∥∥∥∥∥
r

F

≤ α

nr

n∑
i=1

E
∥∥γiγ�

i − Σ
∥∥r
F
= O

(
n1−r

)
.

In addition,

(17)

E
∥∥∥γ̄ γ�

∥∥∥r
F
= E

∥∥∥γ̄(n)
∥∥∥2r =

1

n2r
E

∥∥∥∥∥
n∑

i=1

γi

∥∥∥∥∥
2r

≤ α

n2r

n∑
i=1

E ‖γi‖2r +
β

n2r

(∑
E ‖γi‖2

)r

= O
(
n−r

)
.

Therefore inequality (15) implies that ‖Bn‖·
∥∥S(n)

γγ −Σ
∥∥ P−→ 0, n → ∞, and this completes

the proof of the theorem. �

Theorem 2. Let all assumptions of Theorem 1 hold and let the sequence η̄(n), n ≥ 1,

be bounded. Then the orthogonal regression estimator
(
τ̂ ; d̂

)
is consistent, that is,

(18) min
{
‖τ̂ − τ‖+

∣∣d̂− d
∣∣, ‖τ̂ + τ‖+

∣∣d̂+ d
∣∣} P−→ 0

as n → ∞.

Remark. The convergence in (18) is explained by the property that the pair τ = τ0,
d = d0 determines the same hyperplane as the pair τ = −τ0, d = −d0.
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Proof. By the properties of the orthogonal regression estimator, d̂ = (τ̂ ; z̄), whence d =
(τ ; η̄). Thus

‖τ̂ − τ‖+ |d̂− d| = ‖τ̂ − τ‖+ |(τ̂ , z̄)− (τ, η̄)| = ‖τ̂ − τ‖+ |(τ̂ , γ̄)− (τ̂ − τ, η̄)|
≤ ‖τ̂ − τ‖ (‖η̄‖+ 1) + ‖γ̄‖ · ‖τ̂‖ .

Similarly we prove that

‖τ̂ + τ‖+
∣∣d̂+ d

∣∣ ≤ ‖τ̂ + τ‖ (‖η̄‖+ 1) + ‖γ̄‖ · ‖τ̂‖ .

Therefore

(19)
min

{
‖τ̂ − τ‖+

∣∣d̂− d
∣∣, ‖τ̂ + τ‖+

∣∣d̂+ d
∣∣}

≤ min{‖τ̂ + τ‖, ‖τ̂ − τ‖} (‖η̄‖+ 1) + ‖γ̄‖ · ‖τ̂‖ .

In view of assumptions of Theorem 2, we get

min{‖τ̂ + τ‖, ‖τ̂ − τ‖} P−→ 0, n → ∞.

Taking into account that ‖τ̂‖ = 1,
∥∥η̄(n)∥∥ = O(1) as n → ∞, and that γ̄(n) P−→ 0, n → ∞,

we derive the result of the theorem from (19) by the law of large numbers. �

Remark. The presence of an extra assumption in Theorem 2 saying that the sequence
η̄(n), n ≥ 1, is bounded can be explained as follows. Even if the normal vector to the
necessary hyperplane is estimated quite precisely, the distance to this hyperplane is not
always estimated with the accuracy needed.

4. Sufficient conditions for the strong consistency of the orthogonal

regression estimator

Theorem 3. Assume that conditions (i) and (ii) hold. We further assume that, for
some r ≥ 2 and n0 ≥ 1,

sup
i≥1

E ‖γi‖2r < ∞,

∞∑
n=n0

⎛
⎝λmax

(
S
(n)
ηη

)
nλ2

2

(
S
(n)
ηη

)
⎞
⎠

r

< ∞,

∞∑
n=n0

⎛
⎝ 1
√
nλ2

(
S
(n)
ηη

)
⎞
⎠

r

< ∞.

Then the estimator τ̂ is strictly consistent, that is,

min{‖τ̂ − τ‖, ‖τ̂ + τ‖} → 0 a.s.

as n → ∞.

Proof. It follows from (11) and (13) that

E
∞∑

n=n0

‖Bn‖2r ·
∥∥∥S(n)

γη

∥∥∥2r
F

=

∞∑
n=n0

E
∥∥∥S(n)

γη

∥∥∥2r
F

· ‖Bn‖2r < ∞,

whence ‖Bn‖ ·
∥∥S(n)

γη

∥∥
F

→ 0 almost surely as n → ∞. Considering (9) and (10), it

remains to prove the convergence ‖Bn‖ ·
∥∥S(n)

γγ − Σ
∥∥ → 0 almost surely as n → ∞. For
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this, again apply the Rosenthal inequality for r ≥ 2:

E

∥∥∥∥γγ�(n)
− Σ

∥∥∥∥
r

F

=
1

nr
E

∥∥∥∥∥
n∑

i=1

(
γiγ

�
i − Σ

)∥∥∥∥∥
r

F

≤ α

nr

n∑
i=1

E
∥∥γiγ�

i − Σ
∥∥r
F
+

β

nr

(∑
E
∥∥γiγ�

i − Σ
∥∥2
F

)r/2

= O
(
n−r/2

)
.

Then (15) and (17) together with assumptions of Theorem 3 imply that

E
∞∑

n=n0

‖Bn‖r ‖Sγγ − Σ‖rF =

∞∑
n=n0

E ‖Sγγ − Σ‖rF ‖Bn‖r < ∞.

Therefore ‖Bn‖ · ‖Sγγ − Σ‖F → 0 almost surely as n → ∞ and this proves the theorem.
�

The following result is proved similarly to Theorem 2.

Theorem 4. Let all assumptions of Theorem 3 hold and let the sequence η̄(n), n ≥ 1, be

bounded. Then the orthogonal regression estimator
(
τ̂ ; d̂

)
is strictly consistent, that is,

min
{
‖τ̂ − τ‖+

∣∣d̂− d
∣∣, ‖τ̂ + τ‖+

∣∣d̂+ d
∣∣} → 0 a.s.

as n → ∞.

5. An application to the multiple linear model

The results of the previous sections can be used to study model (1). To transform this
model to the form of implicit model (2), we put

zi =

(
yi
xi

)
, ηi =

(
b0 + x�ξi

ξi

)
, γi =

(
εi
δi

)
, i = 1, . . . , n,(20)

τ =

⎛
⎝ 1√

1 + ‖x‖2
;

−x�√
1 + ‖x‖2

⎞
⎠

�

, d =
b0√

1 + ‖x‖2
.(21)

Then we apply Theorems 1–4 to the transformed model (2) in order to derive some
corollaries for model (1). First we describe the corresponding conditions. As far as
model (1) is concerned, we keep assumptions (i) and (ii) where γi is given by (20).

Using the estimators τ̂ and d̂ we construct estimators x̂ and b̂ of the regression param-
eters x and b0. Let τ̂1 denote the first coordinate of the vector τ̂ , while P τ̂ denotes the
remaining part of the vector τ̂ without the first coordinate. The corresponding notation
is introduced for the vector τ , as well. If τ̂1 	= 0, then we set

(22) x̂ =
−1

τ̂1
P τ̂ , b̂ =

d̂

τ̂1
.

Otherwise both estimators are equal to zero.
Now we are ready to state the results.

Theorem 5. Let assumptions (i) and (ii) hold for model (1). Further, we assume that,
for some 1 ≤ r ≤ 2,

sup
i≥1

E ‖γi‖2r < ∞,(23)

λmax(Sξξ)

nλ2
min(Sξξ)

→ 0, n → ∞,(24)

n1−1/rλmin(Sξξ) → ∞, n → ∞.(25)
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Then x̂
P−→ x as n → ∞.

Theorem 6. Assume that all assumptions of Theorem 5 hold and that the sequence ξ̄(n),

n ≥ 1, is bounded. Then b̂
P−→ b0 as n → ∞.

Theorem 7. Let conditions (i) and (ii) hold for model (1). We further assume that,
for some r ≥ 2 and n0 ≥ 1,

sup
i≥1

E ‖γi‖2r < ∞,

∞∑
n=n0

(
λmax(Sξξ)

nλ2
min(Sξξ)

)r

< ∞,(26)

∞∑
n=n0

(
1√

nλmin(Sξξ)

)r

< ∞.(27)

Then x̂ → x almost surely as n → ∞.

Theorem 8. Let assumptions of Theorem 7 hold and let the sequence ξ̄(n), n ≥ 1, be

bounded. Then b̂ → b0 almost surely as n → ∞.

To prove Theorems 5–8, we first discuss the assumptions imposed on the eigenvalues
of the matrix Sξξ. Since

Sηη =

(
x�Sξξx x�Sξξ

Sξξx Sξξ

)
=

(
1 x�

0 Im−1

)(
0 0
0 Sξξ

)(
1 0
x Im−1

)
,

the Courant–Fisher principle of the minimax characterization of eigenvalues of a sym-
metric matrix (see [4]) implies that λmin(Sξξ) ≤ const ·λ2(Sηη). Further,

λmax(Sηη) ≤ tr(Sηη) ≤
(
1 + ‖x‖2

)
tr(Sξξ) ≤ m

(
1 + ‖x‖2

)
λmax(Sξξ).

This proves that if assumptions of one of Theorems 5–8 are satisfied, then so are the
assumptions of the corresponding theorem among Theorems 1–4 for the transformed
model (2).

Considering the estimators in (22), we see that if the estimators τ̂ and d̂ are changed

by the opposite ones, then the expressions for x̂ and b̂ are not changed. Since

x =
−Pτ

τ1
, b0 =

d

τ1
, τ1 	= 0,

the convergence min{‖τ̂ − τ‖, ‖τ̂ + τ‖} → 0 as n → ∞ (either in probability or almost
surely) implies the corresponding convergence x̂ → x as n → ∞. Similarly we show that
the result of every of the Theorems 1–4 for implicit model (2) implies the result of the
corresponding theorem among Theorems 5–8 for model (1).

Therefore, Theorems 5–8 are corollaries of Theorems 1–4, indeed.

6. A comparison with known results on consistency

Our current aim is to compare Theorems 5–8 with known results on the consistency
of total least squares estimators in the case where our theorems are applied for the
transformed regression model without free term

(28)

{
bi = x�

0 a
0
i + b̃i,

ai = a0i + ãi,
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which is obtained from model (1) by using the substitutions

(29)
ai =

(
1
xi

)
, a0i =

(
1
ξi

)
, ãi =

(
0
δi

)
, bi = yi, x0 =

(
b0
x

)
,

b̃i = εi, i = 1, . . . , n.

Put c̃i =
(
ã�i ; b̃i

)�
. Then assumptions (i) and (ii) concerning model (1) are rewritten

as follows in the case under consideration:

(iii) The vectors c̃i, i ≥ 1, are jointly independent and have zero mean.
(iv) The vectors c̃i, i ≥ 1, have an identical covariance matrix

cov(c̃i) = σ2 · diag (0, 1, 1, . . . , 1)
where σ2 > 0 is unknown.

The total least squares estimator x̂TLS of the parameter x0 in model (28) is a solution
of the optimization problem

min
(Δai∈Rm,Δbi∈R)

n∑
i=1

(
‖Δai‖2 + |Δbi|2

)

if there exists a vector x ∈ R
m such that

bi −Δbi = x� (ai −Δai) , i = 1, . . . , n.

The least restrictive sufficient conditions for the consistency as well as for the strong
consistency of the total least squares estimator for model (28) are given in the paper [7]
under assumptions (iii) and (iv). For convenience, we provide the statements of the
corresponding two theorems from [7] with A0 : =[a01, a

0
2, . . . , a

0
n]

�.

Theorem 9. Let conditions (iii) and (iv) hold for model (28). Further assume that, for
some 1 ≤ r ≤ 2,

sup
i≥1

E ‖c̃i‖2r < ∞,(30)

n−1/rλmin

(
A�

0 A0

)
→ ∞, n → ∞.(31)

Then x̂TLS
P−→ x0 as n → ∞.

Theorem 10. Let conditions (iii) and (iv) hold for model (28). Further assume that,
for some r ≥ 2 and n0 ≥ 1,

sup
i≥1

E ‖c̃i‖2r < ∞,

∞∑
n=n0

( √
n

λmin(A�
0 A0)

)r

< ∞.(32)

Then x̂TLS → x0 almost surely as n → ∞.

Since Theorems 9 and 10 provide the consistency for estimators of both parameters b0
and x, we compare these results with our Theorems 6 and 8. Note that assumptions (23)
and (30) are the same, while conditions (31) and (32) follow from (25) and (27), respec-
tively, if λmin(Sξξ) is changed by 1

nλmin

(
A�

0 A0

)
. First we consider the matrix A�

0 A0. In
view of notation (29), we get

A0 =

(
1 1 . . . 1
ξ1 ξ2 . . . ξn

)�
.
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Then

1

n
A�

0 A0 =
1

n

n∑
i=1

a0i a
0
i
�
=

(
1 ξ̄�

ξ̄ ξξ�

)
.

To compare the numbers λmin(Sξξ) and
1
nλmin

(
A�

0 A0

)
we use properties of symmetric

non-negative definite matrices. For such a matrix A ∈ R
m×m, denote

(33) det(A− λIm) = (−1)mλm + · · ·+ b(A)λ2 − c(A)λ+ det(A).

Then c(A) is equal to the sum of the cofactors of the diagonal entries of the matrix A.
Now we order the eigenvalues of the matrix A in the ascending order:

(34) 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λm.

By Vieta’s theorem

(35) det(A) = λ1λ2 . . . λm, c(A) =

m∑
j=1

λ1λ2 . . . λm

λj
.

Since the eigenvalues are non-decreasing,

(36)
1

m
λ1 =

λ1λ2 . . . λm

mλ2λ3 . . . λm
≤ det(A)

c(A)
≤ λ1λ2 . . . λm

λ2λ3 . . . λm
= λ1.

If, for every i = 2,m, we subtract the first row of the matrix A multiplied by the (i−1)th
element of the vector ξ̄ from the ith row of the matrix 1

nA
�
0 A0, then we conclude that

(37) det

(
1

n
A�

0 A0

)
= det (Sξξ) .

Using the latter result for the dimension m− 1 we obtain

(38) c

(
1

n
A�

0 A0

)
= c(Sξξ) + det

(
ξξ�

)
≥ c(Sξξ).

Taking into account (37) and (38) we derive from (36) that

(39) λmin

(
1

n
A�

0 A0

)
≤

m det
(
1
nA

�
0 A0

)
c
(
1
nA

�
0 A0

) ≤ m det(Sξξ)

c(Sξξ)
≤ mλmin(Sξξ).

This means that conditions (25) and (27) are less restrictive than conditions (31) and (32),
respectively. For the typical case where λmax(Sξξ) = O(λmin(Sξξ)) as n → ∞, condi-
tions (24) and (26) follow from conditions (25) and (27), respectively.

7. Concluding remarks

We considered a linear regression implicit model with errors in variables and found
comparatively mild conditions for the consistency of the orthogonal regression estimator.
As a corollary, we obtained results concerning the consistency of the total least squares
estimator in the multiple linear regression with a scalar response, free term, and errors in
variables. Note that these results do not follow from the corresponding results of [7]. It
is of interest to investigate the total least squares estimator further in the corresponding
multiple regression with a vector response and free term.
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