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ON EXTREME VALUES

OF SOME REGENERATIVE PROCESSES

UDC 519.21

O. K. ZAKUSYLO AND I. K. MATSAK

Abstract. A general limit theorem is proved for extreme values of regenerative
processes. Some applications of this result are given for birth and death processes
that determine the length of the queue in a queueing system.

1. Introduction

Consider an m-channel queueing system whose input is a Poisson flow of customers
with intensity λ and whose service time ξ has an exponential distribution

P(ξ < x) = 1− exp(−μx).

Using the commonly accepted notation, we consider a queueing system of type (M/M/m)
(see [1–3]).

Assume that the system is empty at the moment S0 = 0 and let S1 denote the moment
when the system becomes free of service after the first busy period. Similarly, Sk denotes
the moment when the system becomes free of service after the kth busy period.

Denote by Q(t) the length in the queueing system at the moment t and let

Q̄n = Q̄(Sn) = max
1≤k≤n

Yk,

where

Q̄(t) = sup
0≤s<t

Q(s), Yk = sup
Sk−1≤s<Sk

Q(s).

Several authors [4–8] deal with the problem of finding constants an > 0 and bn > 0
such that

(1) lim
n→∞

P
(
bn(Q̄n − an) < x

)
= G(x),

where G(x) is a nondegenerate distribution function.
For example, the classical theory of extreme values for independent identically dis-

tributed random variables implies the following asymptotic relation for a queueing system
M/M/m:

(2) lim
n→∞

P(bnQ̄n < x) = exp
(
−x−1

)
, x ≥ 0,

(see [9, 10]) with λ = mμ and bn = m! (nmm)−1 (also see [4, 7]).
It turns out that equalities (1) and (2) are not valid in many important cases (for

example, if λ < mμ). In other words, a nondegenerate limit distribution does not exist
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for linear normalizations of Q̄n. A similar situation is observed for birth and death
processes [7].

Some authors (see, for example, [5]) make attempts to find lower and upper bounds
for the distribution of random variables bn(Q̄n − an). Other approximations based on
relation (2) are proposed in [7].

A survey of research in this topic can be found in [8].
This paper is organized as follows. A general result is proved in Section 2 for extreme

values of regenerative processes. In doing so we change the setting of the problem a bit.
Namely, we consider extreme values on nonrandom intervals in contrast to the case of Q̄n

where the supremum of the process Q(t) is evaluated over the random interval (0, Sn).
But the main difference is that we use nonlinear normalizations.

In Sections 3 and 4 we provide some applications of the general result to the birth and
death processes and to the process Q(t) describing the length of the queue in a queueing
system.

2. A limit theorem for regenerative processes

We recall the definition of a regenerative process (see, for example, the corresponding
definition in [11, Part II, Chapter 2]).

Definition 2.1. A cycle of duration T is understood as an ordered pair L = (T, ξ(t))
where T is a nonnegative random variable and ξ(t) is a stochastic process defined on the
interval [0, T ),

P(T = 0) < 1, P(T < ∞) = 1.

The random variable T and stochastic process ξ(t) are dependent in the general case.
Let Li = (Ti, ξi(t)), i ≥ 1, be an infinite sequence of independent cycles identically

distributed with L. We introduce the stochastic process X(t), t ≥ 0, by

X(t) = ξi(t− Si−1) for t ∈ [Si−1, Si),

where Si = T1 + · · ·+ Ti, i ≥ 1, S0 = 0.
Then the processX(t) is called regenerative, the points Si are moments of regeneration,

and the interval [Si−1, Si) is the ith period of regeneration.

Put

(3) Z(t) = sup
0≤s<t

X(s), Zk = sup
Sk−1≤s<Sk

X(s).

We suppose that the stochastic processes ξi(t) are separable to avoid the problem of
measurability of Z(t) and Zk.

It is clear that Zk are independent identically distributed random variables. We also
assume that

q(u) = P(Zk ≥ u) > 0 for all u ∈ R, and

q(u) ↓ 0 as u ↑ ∞.

The latter condition means that Zk is a finite random variable almost surely.

Theorem 1. Let aT = ETk < ∞, x > 0, and t∗ = x/q(u). Then

(4) lim
u→∞

P(Z(t∗) ≥ u) = 1− exp

(
− x

aT

)
.

Proof of Theorem 1. We start with an auxiliary result.
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Let ζ and ε be random variables such that

P(ζ ≥ 0) = 1, P(ζ = 0) < 1.

P(ε = 1) = q, P(ε = 0) = 1− q, 0 < q < 1.

In general, the random variables ζ and ε are dependent.
Consider a sequence (ζn, εn) of independent copies of the pair (ζ, ε). Define the random

variable ν by
ν = min(n ≥ 1: εn = 1).

The random variable ν is geometrically distributed [12, p. 61]:

(5) P(ν = n) = q(1− q)n−1, n ≥ 1,

and

E ν =
1

q
, Var ν =

1− q

q2
.

Put

(6) Sν =

ν∑
i=1

ζi.

Lemma 1. If E ζ = a < ∞ and x > 0 are fixed, Sν is defined in (6), and

q = P(ε = 1) → 0,

then

(7) lim
q→0

P(qSν < x) = 1− exp
(
−x

a

)
.

Proof of Lemma 1. It is well known (and can easily be checked on your own) that the
geometrically distributed random variable ν with parameter q is such that

lim
q→0

P(qν < x) = 1− exp(−x).

It remains to prove that

(8) lim
q→0

P

(∣∣∣∣ 1aν Sν − 1

∣∣∣∣ > δ

)
= 0

for all δ > 0. According to the Kolmogorov strong law of large numbers,

lim
n→∞

1

n

n∑
i=1

(ζi − a) = 0 a.s.,

whence

lim
n→∞

sup
m≥n

1

m

m∑
i=1

(ζi − a) = 0 a.s.

Thus, given an arbitrary δ > 0, there exists a positive integer number n0 = n0(δ) such
that

(9) P

(
sup

m≥n0

1

m

∣∣∣∣∣
m∑
i=1

(ζi − a)

∣∣∣∣∣ > δ

)
≤ δ.

Further

(10)

P

(
1

ν

∣∣∣∣∣
ν∑

i=1

(ζi − a)

∣∣∣∣∣ > δ

)
≤ P

(
1

ν

∣∣∣∣∣
ν∑

i=1

(ζi − a)

∣∣∣∣∣ > δ, ν ≥ n0

)
+ P(ν < n0)

≤ P

(
sup

m≥n0

1

m

∣∣∣∣∣
m∑
i=1

(ζi − a)

∣∣∣∣∣ > δ

)
+ P(ν < n0).
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The last term in (10) is easy to estimate. In view of equality (5),

(11) P(ν ≥ n0) = (1− q)n0−1 ≥ 1− δ or P(ν < n0) ≤ δ

for

q ≤ 1− (1− δ)1/(n0−1).

Combining together bounds (9)–(11) we prove equality (8). �

Other approaches to asymptotic equalities of type (7) and their applications in the
reliability theory can be found in [13–15].

Now we pass to the proof of equality (4). Let

εk(u) = I(Zk ≥ u),

ν(u) = min(k ≥ 1: εk(u) = 1),

where I(A) denotes the indicator of a random event A. Let

T ∗
k =

{
inf(t ≥ 0: ξk(t) ≥ u) for εk(u) = 1,

Tk otherwise.

It is clear from the definition that the random events

(Z(t) ≥ u) and

⎛⎝ν(u)∑
k=1

T ∗
k ≤ t

⎞⎠
are equivalent. Therefore

(12) P
(
Z(t∗) ≥ u

)
= P

⎛⎝ν(u)∑
k=1

T ∗
k ≤ t∗

⎞⎠ = P

⎛⎝q(u)

ν(u)∑
k=1

T ∗
k ≤ x

⎞⎠ .

It is also obvious that T ∗
k ≤ Tk and

(13)

ν(u)∑
k=1

Tk − Tν(u) ≤
ν(u)∑
k=1

T ∗
k ≤

ν(u)∑
k=1

Tk.

Under assumptions of Theorem 1,

lim
u→∞

P

⎛⎝q(u)

ν(u)∑
k=1

Tk ≤ x

⎞⎠ = 1− exp

(
− x

aT

)

according to Lemma 1. This together with relations (12) and (13) imply that equality (4)
follows if

(14) lim
u→∞

P
(
q(u)Tν(u) > δ

)
= 0

for all δ > 0. We have

(15) P
(
q(u)Tν(u) > δ

)
=

∞∑
k=1

P(ν(u) = k)P

(
Tk >

δ

q(u)

/
ν(u) = k

)
.



EXTREME VALUES OF REGENERATIVE PROCESSES 61

Further

(16)

P

(
Tk >

δ

q(u)

/
ν(u) = k

)
= P

(
Tk >

δ

q(u)

/
ε1(u) = 0, . . . , εk−1(u) = 0, εk(u) = 1

)
= P

(
Tk >

δ

q(u)

/
εk(u) = 1

)
=

1

q(u)
P

(
Tk >

δ

q(u)
, εk(u) = 1

)
≤ 1

q(u)
P

(
T1 >

δ

q(u)

)
def
= b(u).

Since ET1 = aT < ∞,
xP(T1 > x) → 0 as x → ∞,

whence b(u) → 0 as u → ∞. The latter asymptotic relation together with bounds (15)
and (16) yield equality (14). �

Considering the result of Theorem 1, the probability of attaining a high level u by
a process X(s) in the interval [0, t) can numerically be approximated in many cases as
follows:

P(Z(t) ≥ u) ≈ 1− exp

(
− tq(u)

aT

)
.

This is the case, for example, if u is sufficiently large and tq(u) is not very large.
Consider a class of regenerative processes X(t) that often appear in reliability theory

and queueing theory. This class is defined as follows: each period of regeneration consists
of two parts whose lengths as well as the trajectories of the process on these parts are
independent. The length of the first part denoted by τk is exponentially distributed,
P(τk < x) = 1− exp(−λx). The distribution of the length of the second part denoted by
ηk is arbitrary with E ηk < ∞.

We assume that X(t) ∈ (0, 1, 2, . . . ) almost surely and X(t) = 0 during the first part
(the process stays in the state 0) and X(t) ∈ (1, 2, . . . ) during the second part.

Using the language of [14], X(t) is a regenerative process of a special type. The
following result holds for such a type of process.

Corollary 1. If X(t) is a regenerative process of a special type and all assumptions of
Theorem 1 hold for this process, then

(17) lim
u→∞

P
(
Z(t∗) ≥ u

)
= 1− exp(−λp0x),

where

(18) p0 = lim
t→∞

p0(t), p0(t) = P(X(t) = 0).

Proof. Corollary 1 follows from Theorem 1. Indeed, the process X(t) can be viewed as
an alternating process with two states, 0 and (1, 2, . . . ). Then the limit in (18) exists
and p0 = KΓ is the stationary availability coefficient [15, p. 110]. Moreover

KΓ =
E τk

E τk + E ηk
=

1/λ

ETk
,

that is, ETk = 1
λp0

. It remains to apply Theorem 1. �

Remark 1. In the general case, where X(t) = m > 0 in the part τk (the process stays
in state m) and X(t) 
= m in the part ηk, the above argument allows one to rewrite
equality (17) as follows:

lim
u→∞

P
(
Z(t∗) ≥ u

)
= 1− exp(−λpmx).
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We denote by γk(t) the total time spent in a state k by the process X(t) during the
interval (0, t).

The following result improves Corollary 1 to some extent.

Lemma 2. Let X(t) be a stochastic process that assumes either a finite or countable
number of values, X(t) ∈ {0, 1, 2, . . . }. Assume that there exist the moments of regener-
ation for the process X(t): S0 = 0, S1, S2, . . . , where Ti = Si − Si−1, i = 1, 2, . . . , are
independent identically distributed random variables.

(i) If

ET1 = aT < ∞,

then the limit

(19) lim
t→∞

γk(t)

t
=

E γk(T1)

aT
=

1

aT

∫ ∞

0

P
(
X(t) = k, T1 > t

)
dt

exists almost surely for all k.
(ii) If the limit

(20) lim
t→∞

P(X(t) = k) = lim
t→∞

pk(t) = pk > 0

exists for some k and

(21) E γk(T1) = ck < ∞,

then equality (19) holds and

(22) ET1 = aT =
ck
pk

.

Proof of Lemma 2. The first part is a well-known result in reliability theory (see [11,
pp. 184–185], [16, pp. 429–430], or [17]). Thus we turn to the proof of part (ii). Assume
that ET1 = ∞.

Then

γk(Sn)

Sn
=

1
n

∑n
i=1

(
γk(Si)− γk(Si−1)

)
1
n

∑n
i=1 Ti

→ 0 a.s.(23)

as n → ∞ by the strong law of large numbers, since the nominator tends to ck < ∞,
while the denominator tends to +∞.

Thus

(24)
γk(t)

t
≤ γk(Sn−1)

Sn−1
+

γk(Sn)− γk(Sn−1)

Sn−1
a.s.

for Sn−1 < t ≤ Sn. The second term on the right hand side of (24) tends to 0. Indeed,

(25)
γk(Sn)

n
→ ck,

γk(Sn−1)

n
→ ck,

Sn

n
→ ∞ a.s.

Relations (23)–(25) imply

γk(t)

t
→ 0, t → ∞ a.s.

Since 0 ≤ γk(t)/t ≤ 1,

lim
t→∞

E γk(t)

t
= lim

t→∞

1

t

∫ t

0

E I(X(s) = k) ds = lim
t→∞

1

t

∫ t

0

pk(s) ds = 0,

which contradicts condition (20).
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Therefore ET1 = aT < ∞. According to equality (19) we have

ck
aT

= lim
t→∞

γk(t)

t
= lim

t→∞

E γk(t)

t
= lim

t→∞

1

t

∫ t

0

E I(X(s) = k) ds

= lim
t→∞

1

t

∫ t

0

pk(s) ds = pk

which proves equality (22). �

Corollary 2. Let X(t) be a regenerative process, X(t) ∈ (0, 1, 2, . . . ) almost surely, and
conditions (20) and (21) hold for some k. Let x > 0 and t∗ = x/q(u). Then

(26) lim
u→∞

P
(
Z(t∗) ≥ u

)
= 1− exp

(
−pk
ck

x

)
.

Remark 2. Let all assumptions of Lemma 2 hold and let the parameter t belong to a
countable set � = {t0 = 0 < t1 < t2 < . . . } such that ti → ∞ as n → ∞. The numbers ti
can be random and X(t) may depend on the sequence (ti). Assume further that moments
of regeneration Si belong to �, γ̂k(t) denotes the number of visits to the state k by the
sequence X(ti) for ti ∈ [0, t), and

N(t) = max(i ≥ 0: ti < t).

The proof of Lemma 2 can be used to prove the following equality:

âT = EN(T1) =
E γ̂k(T1)

pk
=

ck
pk

if relations (20) and (21) hold. Here âT denotes the mean number of points ti belonging
to a single regeneration interval. In this proof, the only change needed is to use the sums
instead of the corresponding integrals.

Remark 3. An anonymous reviewer pointed out that Theorem 1 follows easily from
Lemma 1.1 of the paper [8]. However, the method of the proof of Theorem 1 is of its own
interest. It can be used for the estimation of the rate of convergence in limit theorems
of the type studied above. For example, the proof of Theorem 1 and some known results
for “geometric” sums yield the following proposition.

Proposition 1. Let all conditions of Theorem 1 hold. Assume that random variables
Zk and Tk are independent for all k. Also let ET s

1 < ∞ for some s, 1 < s < 2. Then

(27) sup
x>0

∣∣∣∣P(Z(t∗) ≥ u
)
− 1 + exp

(
− x

aT

)∣∣∣∣ ≤ Cq(u)s−1ET s
1

asT
,

where C is an absolute constant.

We omit the proof of Proposition 1, since random variables Zk and Tk are dependent
in all applications known to the authors.

3. Birth and death processes

Assume that X(t) is a Markov process whose state space is 0, 1, 2, . . . and whose
transition probabilities pi,j(t) are stationary and such that

(28)

1. pi,i+1(h) = λih+ o(h), i ≥ 0,

2. pi,i−1(h) = μih+ o(h), i ≥ 1,

3. pi,i(h) = 1− (λi + μi)h+ o(h), i ≥ 0,

4. μ0 = 0, λ0 > 0, μi > 0, λi > 0, i = 1, 2, . . . ,
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as h → 0. Then X(t) is called a birth and death process. This model is widely used in
biology, queueing theory, reliability theory, etc. (See [1, § 1.4], [2, § 7.4], [15, § 6.3].)

Put

θ0 = 1, θk =

k∏
i=1

λi−1

μi
, k ≥ 1.

Throughout this section we assume that the birth and death process satisfies condi-
tion (28) and ∑

k≥1

θk < ∞,(29)

∑
k≥1

1

λkθk
= ∞.(30)

It is known that [2, 18] the stationary probabilities of the states exist, namely

(31) lim
t→∞

P
(
X(t) = k

)
= lim

t→∞
pk(t) = pk

and moreover

(32) pk = θkp0, p0 =

( ∞∑
k=0

θk

)−1

.

In addition, the embedded Markov chain is recurrent [2, pp. 85–86].
In what follows we use the following notation:

α0(m) = 1, αk(m) =
k+m∏

i=1+m

μi

λi
, k ≥ 1.

The expression (u ∈ N, u → ∞) means that u is integer and tends to ∞. The process
Z(t), as above, is defined by equality (3).

Theorem 2. Let X(t) be a birth and death process that satisfies conditions (28)–(30).
If

X(0) = m a.s., x > 0, t∗ = x

u−m−1∑
k=0

αk(m) for u ≥ m+ 1,

then

(33) lim
u∈N, u→∞

P
(
Z(t∗) ≥ u

)
= 1− exp(−λmpmx),

where pm is defined by equalities (32).

Remark 4. Equality (33) can be rewritten for an important case of m = 0 (meaning that
the process starts from the state 0) as follows:

lim
u∈N, u→∞

P
(
Z(t∗) ≥ u

)
= 1− exp(−λ0p0x),

where

t∗ = x
u−1∑
k=0

αk, α0 = α0(0) = 1, αk = αk(0) =
k∏

i=1

μi

λi
.
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Proof of Theorem 2. The assumptions of the theorem imply that X(t) is a regenerative
process of a special kind whose regeneration moments are S0 = 0, S1, S2, . . . , where Sk

is the moment of the first visit to a state m after kth exits from it. In this case

P(τk < x) = 1− exp
(
−(λm + μm)x

)
, x ≥ 0,

ETk =
1

(λm + μm)pm
.

The latter relation follows from equality (22) in Lemma 2.
Now we are going to show that

(34) q(u) = P(Z1 ≥ u) =
λm

λm + μm

(
u−m−1∑
k=0

αk(m)

)−1

for u ≥ m+ 1. Choosing

(35) t∗ = x

(
λm + μm

λm

) u−m−1∑
k=0

αk(m),

we derive from Corollary 1 that

(36) lim
u∈N, u→∞

P
(
Z(t∗) ≥ u

)
= 1− exp

(
−(λm + μm)pmx

)
(see Remark 1). Changing the variables in (35) and (36),

y = x

(
λm + μm

λm

)
,

we prove equality (33).
It remains to prove equality (34). For this, we need the result of Lemma 3.

Lemma 3. Consider a Markov chain with the states 0, 1, 2, . . . , d and transition proba-
bilities

pi,j =
λi

λi + μi
for j = i+ 1,

pi,j =
μi

λi + μi
for j = i− 1

for all i = 1, 2, . . . , d − 1, where λi > 0, μi > 0, i = 1, 2, . . . , d − 1. Assume that
p0,0 = pd,d = 1, that is, the states 0 and d are absorbing. If the Markov chain starts from
the state 1, then

P(absorption in the state d) = 1− P(absorption in the state 0) =
1∑d−1

k=0 αk

.

Lemma 3 is a particular case of a known result for Markov chains [2, pp. 89, 201–202].
Equality (34) easily follows from Lemma 3. Indeed, let m = 0 and consider the first

regeneration cycle [0, S1) of the birth and death process X(t), Z1 = sup0≤s<S1
X(s). The

processX(t) on the interval [0, S1) passes from the state 0 to the state 1 at the moment τ1.
Then the random event (Z1 ≥ u) is equivalent to the event that the embedded Markov
chain for the process X(t) attains the level u during the first regeneration cycle. The
latter event is equivalent to the event that the Markov chain in Lemma 3 is absorbed by
the state d = u. This together with Lemma 3 implies that

q(u) = P(Z1 ≥ u) =
1∑u−1

k=0 αk

,

that is, equality (34) is proved for m = 0.
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Let m ≥ 1. It is well known that the embedded Markov chain for the process X(t) has
the same transition probabilities as the Markov chain in Lemma 3 (without absorption).
Hence

(37) P(Z1 = m) =
μm

λm + μm

and

(38) P(Z1 ≥ u) =
λm

(λm + μm)
∑u−m−1

k=0 αk(m)

for u ≥ m+1. Indeed, equality (37) corresponds to the case where the processX(t) passes
from the state m to the state m− 1 at the moment τ1 with probability μm/(λm + μm).
Equality (38) means that the process passes from the state m to the state m + 1 at
the moment τ1 with probability λm/(λm + μm) and thus we deal, in fact, with the case
m = 0 considered above and treated with the help of Lemma 3. Equality (34) as well as
Theorem 2 are proved. �

4. Length of the queue in a queueing system

Below we present some applications of the result proved above to extreme values of
the length of the queue in some queueing systems.

Example 1 (Queueing system (M/M/m)). The definition of this system is given in the
beginning of this paper (also see [1,2]). The length of a queue is understood as the total
number of customers that either are serviced in the system or are waiting for the service.
Denote by Q(t) the length of a queue at the moment t and put Q̄(t) = sup0≤s<tQ(s).

It is known [2, pp. 195–197] that Q(t) is a birth and death process with parameters

λk = λ, k = 0, 1, 2, . . . ,

μ0 = 0, μk =

{
kμ for 1 ≤ k ≤ m,

mμ for k > m.

Then

αk =
k∏

i=1

μi

λi
=

{
k! ρ−k for 1 ≤ k ≤ m,

m!mk−mρ−k for k > m,

where ρ = λ/μ.
For sufficiently large u,

(39) q(u) =

(
u−1∑
k=0

αk

)−1

=

(
m∑

k=0

k!

ρk
+

m!
(
(m/ρ)u − (m/ρ)m+1

)
mm(m/ρ− 1)

)−1

.

We impose the following assumption on the parameters λ and μ:

(40) ρ =
λ

μ
< m.
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Then it is known that conditions (29) and (30) hold and the stationary probabilities
exist, namely

pk =
ρk

k!
p0 for 1 ≤ k ≤ m,

pk =
ρk

m!mk−m
p0 for k > m,

p0 =

(
m∑

k=0

ρk

k!
+

ρm+1

m! (m− ρ)

)−1

(41)

(see [1, 2]). This together with Theorem 2 and Remark 4 yield the following result.

Proposition 2. Let condition (40) hold for a queueing system (M/M/m). Assume that

Q(0) = 0 a.s., x > 0, t∗ = x

(
m∑

k=0

k!

ρk
+

m!
(
(m/ρ)u − (m/ρ)m+1

)
mm(m/ρ− 1)

)
.

Then

(42) lim
u∈N,u→∞

P(Q̄(t∗) ≥ u) = 1− exp(−λp0x),

where p0 is defined by (41).

Remark 5. (i) It is clear from the proof of Theorem 1 that q(u) in the definition of t∗

can be changed by q1(u) if q(u) ∼ q1(u). Thus q(u) in Proposition 2 can be changed by
a simpler variable

q1(u) =
m! (m/ρ)u

mm(m/ρ− 1)
.

However one can expect that the rate of convergence becomes slower after this change.
(ii) If m = ∞ in Example 1 (that is, a queueing system contains infinitely many service

channels), then

λk = λ, k = 0, 1, 2, . . . ; μk = kμ, αk =
k!

ρk
, k = 1, 2, . . . , μ0 = 0.

Thus, for all λ > 0 and μ > 0, equality (42) holds with

t∗ = x

u−1∑
k=0

k!

ρk
, p0 = exp(−ρ).

Example 2 (Queueing system (M/G/1)). This is a single channel queueing system
with a Poissonian flow of customers arriving with intensity λ and with an arbitrary
distribution of the service time ξ, that is, P(ξ < x) = G(x) and G is arbitrary. Assume
that E ξ = b < ∞ and

(43) ρ = λb < 1.

Condition (43) implies that the stationary probabilities of states exist,

(44) lim
t→∞

P(Q(t) = k) = pk,

and ϕ(s) =
∑∞

k=0 pks
k is given by the Pollachek–Khinchine identity. This means that

(45) p0 = 1− ρ

(see [2, pp. 441–442]).
If the system is empty at the moment S0 = 0 and if S1, S2, . . . denote the sequential

moments when the system becomes free of service, then Q(t) is a regenerative process
of a special kind with regeneration moments S0 = 0, S1, S2, . . . . The first part τk of the
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kth regeneration period (Sk−1, Sk) (where the system is empty) is distributed according
to P(τk < x) = 1 − exp(−λx). The second part ηk (busy period) has a finite mean,
E ηk = b/(1− λb) < ∞ [2, p. 466].

Therefore one can apply Theorem 1 and Corollary 1 if q(u) is known.
Let

dk =

∫ ∞

0

(λx)k

k!
exp(−λx) dG(x)

be the probability of the event that k new customers arrive to the queueing system during
the service time of a customer, and let

Dk =
∞∑

i=k+1

di

be the probability that more than k customers arrive to the queueing system during the
service time of a single customer.

We fix a large positive number u and denote by qk, 1 ≤ k < u, the probability of
the event that the process Q(t) visits the state u during the busy period given there
are k customers in the queueing system at a certain moment in the second part η and
the system starts the service of one of the customers (this moment coincides with the
beginning of the busy period if k = 1). In fact, qk is equal to the probability that the
embedded Markov chain starts from the state k and reaches u earlier than 0 (here the
values of the process Q(t) at the ends of service periods form the embedded Markov
chain).

Using the full probability formula for the vector (qk), k = 1, 2, . . . , u− 1, one obtains
the following system of linear equations:

(46)

qu−1 = D0 + d0qu−2,

qu−2 = D1 + d0qu−3 + d1qu−2,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

q1 = Du−2 +

u−2∑
i=1

diqi.

It is easy to understand that the process reaches the state 1 at a moment τ1 during the
first regeneration cycle. Hence the events

{the embedded Markov chain starts from 1 and reaches u earlier than 0}

and

{Z1 ≥ u} =

{
sup

0≤s<S1

Q(s) ≥ u

}
are equivalent, that is, q(u) = q1.

This together with Corollary 1 and equalities (45) and (46) prove the following result.

Proposition 3. Let condition (43) hold for a queueing system (M/G/1). If

Q(0) = 0 a.s., x > 0, t∗ =
x

q(u)
,

then

(47) lim
u∈N, u→∞

P
(
Q̄(t∗) ≥ u

)
= 1− exp

(
−λ(1− ρ)x

)
,

where q(u) = q1 and (qk) is a solution of the system of equations (46).
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Remark 6. A system of linear equations similar to (46) has been used in some problems
of reliability theory (see [14, p. 99]). Moreover a closed form for q1 is found in [14] (q1
in [14] is expressed in terms of the moment generating functions of the vector Dk). This
result, unfortunately, is not easy to apply in concrete problems.

A numerical solution of the system of equations (46) can be obtained with the help of
the sequential substitutions even if u is sufficiently large.

Example 3 (Queueing system (G/M/1)). This is a single channel queueing system with
a recurrent input flow of customers, and let t0 = 0, t1, t2, . . . be the moments when
customers arrive to the system. We suppose that (τk = tk − tk−1) is a sequence of
independent identically distributed random variables with a distribution function G(x)
and that the service time ξk is exponentially distributed with parameter μ.

Consider the regeneration moments S0 = 0, S1, S2, . . . of the process Q(t). Here Sk

denotes the arrival time of a new customer after kth busy period. For the sake of a
simpler notation we assume that a customer arrives to the system at the moment t0 = 0.
Let Tk be the duration of the kth regeneration cycle.

The embedded Markov chain (Qn) is determined by the moments (tn) and the values
of the length of the queue prior to the arrival of a customer constitute the set of its
states, that is,

Qn = Q(tn − 0), n = 0, 1, 2, . . . .

Denote by

d∗k =

∫ ∞

0

(μx)k

k!
exp(−μx) dG(x), k = 0, 1, 2, . . . ,

the probability of the event that k customers are served during a time interval of length τ ,
and let

f(v) =

∞∑
k=0

d∗kv
k.

Assume further that

(48) E τk = aτ < ∞ 3 ρ =
1

aτμ
< 1.

It is known [2, pp. 446–447], [19] that the stationary probabilities of the states of the
sequence (Qn) exist in this case,

(49) lim
n→∞

P(Qn = k) = pk = (1− v0)v
k
0 , k = 0, 1, 2, . . . ,

where v0 is a unique solution of the equation

(50) f(v0) = v0, 0 < v0 < 1.

Moreover, if the distribution G(x) is nonlattice, then condition (48) implies that the
stationary probabilities exist for the process Q(t), as well:

(51) lim
t→∞

P(Q(t) = k) = p∗k =
pk−1

aτμ
, k = 1, 2, . . . ,

(see [19]).
To apply Theorem 1 or its corollaries in a way similar to the previous examples, one

can find the quantity q(u), the probability that the process Q(t) attains the state u over
a regeneration cycle.

For the sake of definiteness, let us analyze the first regeneration cycle [0, S1). Denote
by qk, k = 1, 2, . . . , u − 1, the probability of the event that the process Q(t) attains the
state u during the interval [0, S1) given its state is k at the moment when a customer
arrives, ti ∈ [0, S1).
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Consider the values of the process Q(t) at the moments ti when customers arrive
and apply the full probability formula. Like Example 2, we obtain the system of linear
equations for the vector (qk):

(52)

q1 = d∗0q2,

q2 = d∗0q3 + d∗1q2,

· · · · · · · · · · · · · · · · · ·
qk = d∗0qk+1 + d∗1qk + · · ·+ d∗k−1q2,

· · · · · · · · · · · · · · · · · ·
qu−1 = d∗0 + d∗1qu−1 + · · ·+ d∗u−2q2.

This system of linear equations can be solved similarly to the system (46) by sequential
substitutions. Then q(u) = q1.

Proposition 4. Let conditions (48) hold for a queueing system (G/M/1). If

Q(0) = 1 a.s., x > 0, t∗ =
x

q(u)
,

then

(53) lim
u∈N, u→∞

P
(
Q̄(t∗) ≥ u

)
= 1− exp

(
− (1− v0)x

aτ

)
,

where aτ and v0 are defined by (48) and (50), respectively, q(u) = q1, and (qk) is a
solution of the system of equations (52).

Proposition 4 follows from Theorem 1 and the following auxiliary result.

Lemma 4. If conditions (48) hold for a queueing system (G/M/1), then the mean
duration of the regeneration cycle is given by

(54) ETk =
aτ

1− v0
.

Proof of Lemma 4. Consider the first regeneration cycle [0, S1) of the process Q(t). Let
T1 = S1 be its duration, κ = min (n ≥ 1:

∑n
i=1 τi ≥

∑n
i=1 ξi). According to the defini-

tion,

T1 =
κ∑

i=1

τi.

In fact, κ is the first overjump moment over 0 for the sequence
∑n

i=1(τi − ξi). Therefore
κ is a Markov time with respect to the σ-algebra G = σ(τi, ξi, i = 1, 2, . . . ). Then

(55) ET1 = E τ1 Eκ

by the Wald identity [11, p. 229]. The variable κ can be viewed as the number of steps
needed for the embedded Markov chain (Qn) to visit the state 0 after the first visit to 0.
Using Lemma 2 (see Remark 2) and equality (49) we obtain

(56) Eκ =
c0
p0

=
c0

1− v0
.

Since the chain (Qn) visits the state 0 only once during the interval [0, S1), we conclude
that

(57) c0 = E γ0(T1) = 1.

Combining together equalities (55)–(57) we prove (54). �
Remark 7. The authors are not aware whether or not uniform bound (27) is valid under
the assumptions of Theorem 2 or those of Propositions 2–4.
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[17] B. V. Dovgăı and I. K. Matsak, On a redundant system with renewals, Theory Probab. Math.
Statist. 94 (2017), 63–76. MR3553454

[18] S. Karlin and J. McGregor, The classification of birth and death processes, Trans. Amer. Math.
Soc. 86 (1957), 366–400. MR0094854
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