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CONSISTENCY OF THE LEAST SQUARES ESTIMATORS
OF PARAMETERS IN THE TEXTURE
SURFACE SINUSOIDAL MODEL

UDC 519.21

A. V.IVANOV AND O. V. MALYAR

ABSTRACT. We consider the texture surface sinusoidal model of observations. In
other words, we consider a model where the regression function is the sum of two-
parameter harmonic oscillations while the noise is an isotropic and homogeneous
Gaussian random field on the plane. Conditions for the joint consistency of the least
squares estimator of unknown amplitudes and angular frequencies are obtained for
this trigonometric regression model.

1. INTRODUCTION

In the paper, we consider a two-dimensional texture surface sinusoidal model of obser-
vations. Various discrete modifications of this model have attracted considerable interest
in the literature on signal processing, since those models are used when analyzing tex-
tures [IH4]. In particular, some applications are known in the theory of processing of the
so-called symmetric gray-scale texture images under the assumption that the intensity
of the gray color at every pixel of an image is proportional to the value of a process
observed at this pixel. Special interest in this problem appears in spectral analysis [5]06]
(also see [4] and references therein).

The consistency of the least squares estimator of unknown parameters of the sinusoidal
model is studied in the case where the random noise is an isotropic and homogeneous
Gaussian field on the plane [7[§]. From the point of view of mathematics, such a setting
of the problem is a natural generalization of the well-known problem on detecting hidden
periodicities (see, for example, [91[10]).

Asymptotic properties of the least squares estimator are considered in the papers [11]
12] for the discrete setting where the errors of observations are independent identically
distributed (Gaussian, for example) random variables. These results are generalized
in [13] for the case of errors of observations represented by a discrete linear homogeneous
field. Note that multiparameter harmonic oscillations are studied in the paper [14] under
the assumption that the errors of observations constitute a homogeneous random field
for which spectral densities of all orders exist. Some results on the asymptotic behavior
of peridogram estimators as well as those of the least squares estimators of unknown am-
plitudes and angular frequencies of these harmonic oscillations are also obtained in [I4].
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2. SETTING OF THE PROBLEM

Consider the observation model

(1) X(t1>t2):g(t17t2;90)+5(t17t2)7 t:(tlth) E]Ria
where
N
(2) g (t1,t2;0%) = Z (A cos (AQts + pit2) + Bpsin (A1 + pta))
k=1
0° = (9?’ 9(2)7 egv 92’ SERE) 92N—3a 92N—27 92N-1; HSN)

= (A}, B, AL Y AR BRAR ) 5

here the number N > 1 is known and (A9)?+ (B2)? > 0, k =1,..., N, is a vector of true
values of unknown parameters. The random field € = {e(t1,t2), (t1,t2) € R?} is defined
on a complete probability space (2, F, P) such that

N. € is a mean square and almost surely continuous homogeneous Gaussian random
field with zero mean and covariance function

B(ty,t2) = Ee(t1,12)e(0,0), (t1,t2) € R?,
such that either

(i) the field € is isotropic and B(t1,t2) = B(||t]]) = L(||lt]D|It]~%, « € (0,1), where

L is a nondecreasing slowly varying at infinity function, ¢t = (¢1,t2), and ||t =
(#+8)"% or

(ll) fR2 |B(t1,t2)| dtq dty < oo.

The regression functions (2)) like the classical trigonometric regression functions with
,ug =0, k=1,...,N, do not distinguish the parameters in an optimal way if N > 2 in
the sense that the functions ([2) do not satisfy any condition of a general theorem on the
consistency of the least squares estimator of parameters in a model of nonlinear regression
(see, for example, [8I[I5]). Therefore one needs to impose an additional condition allowing
the trigonometric regression function to distinguish the parameters and to be able to
prove the consistency of the least squares estimator of parameters (). This can be
achieved by choosing a parametric set for determining the least squares estimator such
that the parameters are well distinguished.

We write (a,b) < (¢, d) for two points (a,b) and (c,d) in the plane if a < ¢ and b < d.
The model ([)—(2)) is considered in this paper under the following assumption.

R1. The numbers \) and u9, 4,5 =1,..., N, are positive and all different; moreover,
(Ao k) < Mo pign), k=1 N — 1.

This assumption means that the parametric sets containing the values of parameters
A=\, ...0%) and @ = (1, ..., %) are such that

(3) AXAX) ={A=A1,...,An) ERV:0<A <A <+ <Ay <A< o0},
4 M(pp) ={p=@Gu,...,un) ERN:0< p <y < < py <TE<00}.

T T
(5) QT(Q) = T_2/ / [X(tl,tg) —g(tl,tg;g)]2 dtl dtg.
o Jo
According to the standard definition, any random vector

(6) 0r = (Avr, Bir, \ir, i, - - -, ANy BNT, ANT, ANT)

is called the least squares estimator of the parameter #° constructed from observations
after the field X (¢1,t2), (t1,t2) = [0,T] x [0, T}, if (6) minimizes the functional (&) in the
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parametric set © C R*V, where A;, and By, k= 1,..., N, may assume arbitrary values,
while A and p assume values in the closed sets A°(A, ) and M(u, 1), respectively.

To prove relations ([Z7]) and ([28) and to perform further calculations, one needs to
guarantee the almost sure convergence to zero as T' — oo of the variables

sin T(AkT — >\jT) sin T(,ukT — ,Uij) sin T(AkT — )\]O)
- T(Ner — Njr) T(urer — pjr) T(Mer —A9)
. 0 . .
sin T'(ppr —élj) k4 sin TAkT’ sin T g k=1 . ...
T(prr — 1Y) TArr Tpr

On the other hand, one cannot derive the behavior of the denominators of ratios ()
as T' — oo from the above definition of the estimators

Ar = (Mi7s .., ANT) and pr = (M, -, UNT)-

Walker [I6] proposed a modification of the definition of the least squares estimator of
angular frequencies for the classical problem of determining hidden periodicities. This
definition in our case guarantees the almost sure convergence to zero of the variables ()
and to prove the consistency of the above estimators. Walker [16] defines the estimator (@)
as a point of minimum of the functional (Bl in a parametric set that depends on T" and
asymptotically, as T — oo, distinguishes the set of frequencies A and p.

Consider the two families of nondecreasing open sets

(8) Ar C A(A, X), My C M(H, ﬂ), T>1Ty >0,

that contain true values of parameters A and u°, respectively, and that satisfy the
following conditions:

9 R2. g i Ty —Ag) = lim_dnf - T(pg0 = py) = oo,
ANEAT pneEMr

(10) lim inf TX; = lim inf Ty = oo.
T—o00 AEAT T—o0 peMr

Condition (I0) holds if A > 0 and p > 0. If Ap C A(0,A) and My C M(0,%), then
conditions (@) and ([I0) are satisfied for sets Ar and Mz such that

1§j1£]{771 (Aj1—Aj) = Kjlgfvfl (g1 — 1)
(11) AEAT nEM
= inf A\ = inf =7 Y2
)\1€I}\T ! MIEIII\/[T i

Conditions (@) and ([I0) allow one to treat the case of close frequencies in the families \°
and p° and the case where the frequencies \Y and u{ are close to zero.

Definition 2.1. Any random vector 07 of the form (6]) that minimizes the functional (&)
in the set of parameters © C R*Y, where the amplitudes A, and By, k = 1,..., N, assume
arbitrary values, while the frequencies A and ;1 assume values in the closed sets A% and
M., respectively, is called the least squares estimator (Walker least squares estimator)
of the vector parameter 6° of the form (2)) in the model (), ().

In the rest of the paper, we study the Walker least squares estimator 61 of the pa-
rameter ° in the sense of Definition 211
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3. AUXILIARY RESULTS
Lemma [3.1] below generalizes the corresponding result of [9]. Let ¢ = (1, p2) € R
Lemma 3.1. If condition N(i) holds and p < a/6, then

(12)  &(T) = sup T~*t*

/ / i(p1ti+pats) e(t1,ta) dty dta| — 0 almost surely
pER?

as T — oo.

Proof. Changing the variables we obtain

T
e—i(¢1t1+s@2t2)5(t17 to)dt1dts

T pT T pT
= / / eiitpl (ti=s1) / / 67itp2(t2is2)€(t1, tg)E(Sl, 82) dtl dtg d$1 dSQ
0 JO 0 JO
T pT
= 2/0 /0 cos(p1u1 + pauz)

T—u1 T—uz
X / / e(v1,v2)e(v1 + uy, vo + ug) dvy dvg duy dus

T T
+ 2/ / cos(prur — paus)
o Jo

T—u1 T (%)
X / / e(v1 + u1, v2)e(v1, v2 + ug) dvy dvg duy dus.

Further

T pT
E£2(T) < 2T—4+2p/ /
0 JO
T pT
+ 2T74+2p/ /
0 JO

T T T T
< oT 442 / / \111/2 (u1,u9) duy dug + 274 / / \115/2 (u1,u2) duy dus,
o Jo o Jo

T—u1 T—uz

e(v1,v2)e(vy + ug, vo + ug) dvy dvg| duy dus

T—u1 T—uz

e(v1+uq, va)e(v1, vat+us) dvy dve| duy dusg

where

T—u1 T—ug T—u1 T—ug
\Ill(ul,u2):/ / / / EE(’U1+U1,’U2+U2)E(’01,’02)
0 0 0 0

X 6(’(1}1 + U1, wa + ’U,2)€(wl, ’U)Q) dvy dvg dwy dwo

(T — ul)Q(T — ’LLQ)QBQ(Ul, 'LLQ)

T—uy pT—us pT—uy pT— uz
+ / / / / v1 — w1, vy — wa) dvy dvg dwy dws
0 0 0 0
T—uy pT—us pT—ur pT— uz
+/ / / / 1)1 U}1+U1,Ug—w2+u2)
0 0 0 0

X B ’Ul w1 — U, V2 — W —UQ) d’Ul d’UQ dwl d’U)Q

Ul,UQ

H'Mu
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and

T—uy pT—uy pT—uq Tuz
2 (u1, u2) / / / / e(v1 + u1,v2)e(vy, v2 + uz)

X e(wy + up, wo)e(wy, wa + ug) dvy dvg dwy dws

(T — u1)2(T — UQ)232 (Ul, —Ug)

T—uy pT—ug pT—uy pT— u2
+ / / / / ’U1 — Wy, Vg — w2) dvy dvs dwq dws
0 0 0 0
T—ur pT—uy pT—ur pT—us
+/ / / / B(vy — wy 4 u1,v2 — we — ug)
0 0 0 0

— w1 — U,V — W2 + UQ) d’l)l d’Ug dw1 dU)Q

Ul,’ll,g

H'Mw

by the Isserlis theorem.
Since va + b+ ¢ < v/a + Vb + \/c for all nonnegative real numbers a, b, and ¢, we
obtain

3
\Ili Ul,U/Q E \I/ ul,u2
Jj=1

for i = 1,2. Now we conclude from the above consideration that the second moment of
the random variable £ is estimated as follows:

2 3
(13) EC(T) < Y3 I(T)
i=1 j=1

where the terms [;;(T), i = 1,2, j = 1,2, 3, in the sum on the right-hand side of ([I3)) are
given by

T pT
I;;(T) = 2T—4+2p/0 /0 \113]./2(u1,u2)du1 dus.

Now we estimate each term I;;(T), ¢ = 1,2, j = 1,2, 3, separately. For the sake of
brevity, let

bu(’Ul — W1,V2 — U)Q) = B(’Ul — W1 + U, V2 — Wy -|—’IL2)B(’U1 —w; — U1,V — W2 — UQ).
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We have
T—uy pT—u1r pT—us pT—us
\1113 Ul,UQ / / / / ’Ul — W1, Vg —’U)Q)d’l}l dw1 d’Ug d’U)Q

—u1 —UQ

T— U1 T— U
t t

/ / (1— 4] >(1— 2] )bu(tl,tg)dtldtg

T ul) (T ’u.g _ul T_u2
—T2 —ul)(T—u2)

1—u1T71 1—u2T71 |t1| |t2‘
X 1-— 1-— bu(Ttl, Ttg) dtl dtg
/(1u1T—1)/(1u2T—1)< 1- ulT_1>< 1-— uzT_1>
1 1
<T*T —uy)(T — ug)/ / bu(Tty, Tty) dty dty
-1/ -1

STQ(T—Ul)(T—UQ) B O)// B(Ttl +u1,Tt2+u2)dt1dt2
0

o)/O /0 B(Tty — ur, Tty — up) dts dt
L

:TQ(t—Ul — Uy Z\If ul,ug

By the assumption of Lemma[3.1] ‘I’%) = \Ilgg) and \11533) = \11543). Thus we need to estimate

\1153) and \Ifg‘? Since ||Tt & u|| < 2v/2T, we obtain L (|Tt +u|) < (1 +¢)L(T) for an
arbitrary € > 0 and for sufficiently large T' (for T' > Ty, say) in view of the monotonicity
of L. On the other hand,

(14) Tt + || > T,
(15) v < (1481 -a) 'BO)B(T), T>Tp.

Passing to the term \1113 , note that the bound (I4)) holds for the first factor b, (Tt1, Tts),
while the second one is estimated by

(16) (|7t — u|| > Tt5,

that is

(17) Uh, < (14+e)*(1—a)?BXT), T > Ty,
and

(18)

Ii3(T) < g\/i ((1 +)V2(1 — a)"V2BY2(0)BY2(T) + (1 + &) (1 — a)—lB(T)) 7%

for the same T.
Reasoning similarly, we get the bounds

\P12(U1, UQ) S 4B(O)T2(T - ul)(T - Ug) / / B(Ttl, Ttg) dtl dtg,
0J0

(19) I15(T) < 1—96(1 +e)Y2(1 — a)"Y2BY2(0)BY*(T)T?.
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In addition,

L (T) <217+ /T/T(T —u1 )(T — ug) B(u1, uz) duy dusg
(20)

1,1
< sz/ / B(Tuy, Tug) duy dug < 2(1 +¢)(1 — o) ' B(T)T*
0

for T > Ty. Thus the bounds (I8)—(20) imply that

(21) 23: - (31/2(T)T2P)

as T — oo. Put

Cu(U1 — W1,V — wg) = B(Ul — w1 + Uy, V2 — W — UQ)B(Ul — w1 — U1, V2 — W2 + Ug).

As in the case of the term Wy3(uy,us), we conclude that

Uos(ur,ug) < THT — ur)(T — ug)

CLATT L oo

=TT — ) (T —u) Y WS (ur, up).
k=1

~

By the assumptions of Lemma [3.1]
1 2 3 4 3 4 1 2
‘I’és) = ‘1’53) ‘I’gs) = ‘I’gs)v ‘I’és) = ‘I’és) = ‘I’( ) = \I’§3)

Moreover, W9 = Uy and Woy = Wy, This means that

3
(22) SN h;=0 (Bl/z(T)T2”)

j=1
as T'— oo. Relations (2I]) and ([22) together with (I4)) show that
(23) EEX(T) = O (LM2()T~o/2+2)

as T' — oo.
Let T}, = n®, where 8 > 0 is such that (% — 2p) B =140 for some § > 0. Then

i E&X(T,
n=1

that is, £(T},) — 0 almost surely as n — oo.

79
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Consider the following sequence of random variables:

Cn=_ sup  [§(T) —=&(Tn)l

Tn<T<Tni1

< sup sup
T <T<Thi1 p€ER?

2.7
( L 1) &(Ty)
n
Tn+1 Tn Tn Tn+l Tn+1 Tn+1
+ 1,2t / / +/ / +/ / |e(t1, t2)| dt1 dts
T, Jo 0 JT, T, JT,
4
-y
i=1
It is obvious that (:,(Ll) — 0 almost surely as n — oco. For k € N, consider

2k Tht1 Tn Tpi1 pTn 2k ] ) 2k ' '
E(¢®) =12k / / 2 / / ETT |e (.48)| TT at? arf?
T, Jo T, Jo o 5 i1

< (2k — DN BR(0)T7 2R C=P)(T,, yy — T, )2k T2k

T pT
T*”P/ / eTilertitenta)o (g 1)) dt
0 JO

T, (T
- Tr:2+p/0 /0 €71(wlt1+@2t2)€(t1, tg) dt

2k
T,
= (2k — 1)!' B¥(0) ( T“ - 1) T2k = O (n—%(l-ﬁm) . n— .
If Bp < 1, then the series y | E( ,(L2))2k converges for an appropriate k£ and hence
Sgtg)p <1orp < 554 Since 6 >0
can be chosen arbitrarily small, the assumption p < «/6 implies the convergence of Q(f)

Q(f) — 0 almost surely as n — oo, whence 8p =

as well as the convergence Q(f) — 0 almost surely as n — oco. Since

9 4k
E (4,24)) < (2k — 1)1 B*(0) (% - 1) T2k = O (n—%(z—ﬁm) . n—oo,

n

and C,(;l) — 0 almost surely as n — oo, Lemma [B.1] is proved. O

Lemma 3.2. Assume that condition N(ii) holds. Then £(T) — 0 almost surely as
T— o0 if p<1/3.

Proof. Using the notation introduced in Lemma Bl and the assumption of Lemma [3.2]
we obtain for ¢ = 1,2 that

I4(T) = O (T7%%),  Ix(T) =0 (T~+?%), Lis(T) = O (T~1+2)

(24) T — 0.

Let T,, = n®, where (1 —2p)3 = 1+ 4§ and § > 0. Then, similarly to the proof of

Lemma Bl £(7;,) — 0 almost surely as n — oo. Put ¢, = Z?Zl Q(Li). Then ¢{” — 0
almost surely as n — oco. As in the proof of Lemma Bl the assumption p < 1/3 implies

the convergence Q(zi) — 0 almost surely as n — oo for i = 2,3, 4. ]
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4. MAIN RESULT

Theorem 4.1. Assume that conditions N, R1, and R2 hold. Then the Walker least
squares estimator O is a strongly consistent estimator of the parameter 6°, namely

AkT — Ag, Brr — Bg, T()\kT — )\2) — 0, T(ILLkT — /Lg) —0
almost surely as T — oo, k=1,...,N.

Proof. Consider the following system of linear equations with respect to the least squares
estimators Ay and Bgr, k=1,...,N:

Q1 (0) ~0Qr(9)
DA, ~ 0B,

0=0r 0=0r

We rewrite this system in the form
(25) {EkNl p;AkT+Ek 1 l)B —C%:;’ p=1...,N;
Zk 1akpAkT+Zk1 BkT—cp , p=1,...,N.
Let
(26) cos(A\grt1 + prTts) = COSE, sin(Agrt1 + prrts) = sing,
cos(ALty + ud) = cosy, sin(At; + pf)) = sing, k=1,...,N.

Then the coefficients of system (28] are such that

T T T T
a,&? T / / cosy, cosy, dt dia, a,(jo) T2 / / cosy, siny, dty dto,
o Jo
T T
(1) / / siny, cos,, dt; dts, b,(c? = T_Q/ / siny, sin,, dt; dto,
o Jo
T T
Cz(al) = TﬁQ/ / X(t1,t2) cosp dty dta, C,(i) = 72/ / X (t1,t2) sin, dty dto.
o Jo o Jo

Below we use the symbol o(1) to denote various stochastic processes (possibly different
in different places) that depend on the parameter T' and that almost surely approach zero
as T — oo.

Taking into account properties (@) and (I0) of parametric sets Ar and My whose
closures contain the values of the estimators Ay and ur, respectively, we find after simple
algebra that

1
(27) a,(cl) =o(1), k # p, a]%) =3 +o(1), a,(f; = o(1), k,p=1,...,N;

1
1 2 2 2
by =al) =o(1), b =o0(1), k#p, %;:§+mm

(28)
k,p=1,...,N.
Further let
inT (Apr — AY inT —ud
oy = ST Qpr =) T i)
(29) T ()‘PT - )‘p) T (MPT - /‘p)
= 1—cosT()\pT—)\g) 1—cosT(upT—ug) p=1. N

TOwr -2 " T Tl — )
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Then

/ / tl, tg COSp dtl dtg + 71T / / tl, tQ, COSp dtl dtg
(30)

D) [A (@\pZpp — YrpYpp) — Bg(xupykp "’x)\pyup)] +o(1)
in view of Lemmas [3.1] and Analogously
1
(31) Cg) =3 [Ag(xupykp + TapYpup) + Bg(xApxup - y/\pyup)] +o(1).

Since |zxp| < 1, |zup| < 1, |yrp| < 1, and |yup| < 1,p=1,..., N, solutions of system (2])
can be represented as

Apr = Ag(%p%p - yApyup) - BS (xupykp + 33)\pyup) +o(1),
(32) Byr = Ag(xupykp + TxpYpup) + Bg(xApxup — YrpYpup) + 0(1),
p=1,...,N,

according to relations (27)), 28), B0), and &I)).

In turn, relation (32]) implies the inequalities
(33) |[Aprl, [Bpr| <2(JA)| + |BJl) +o(1), p=1,....N.
Put
Gr(01;0) = / / g(t1,t2;01) — glty, ta; 02)]7 dty dts.
By the definition of the least squares estimator,

0> Qr(0r) — Qr(6°)
(34) T T
:GT(0T590)+2T72/ / €(t1,t2) (g(tl,tQ;go) —g(tl,tg;eT)) dtl dtQ.
0 JO

The second term on the right-hand side of equality ([B34)) is o(1) in view of Lemmas [31]
and and relation (33). This means that

(35) Gr(67;60°) — 0 almost surely as T' — oo.

Now we rewrite the expression for Gr(fr;60%) in such a way that relation ([B%) implies
the consistency of the least squares estimators of parameters )\2 and u%, k=1,...,N.
We have

Gr(07;6°) = // 2(ty, to; 0p) dty dto + T // (t1,t0;0°) dt dt,

—QT_Z/ / g(t1,t2;07)g(t1, t;6°) dty dts
0 Jo

=N+ Jo+ 5
Using (B3) and 27), (28) we obtain

N
1
(36) = 52 Ajr + Biir) + o(1),
1

]5:
=>> (4 By)?) +o(1),

k=1

(37)

l\3|H
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N N
-2 Z Z / / Apr A} cos,, cosl) +A,r B cos, smk) dty dts
k=

p=1 1

N N
-2 Z Z / / Byr A} sin,, cos), +Byr By siny, sing)) dty dts

p=1k=1

N
Z x)\pxup YapYpp) — ApTBg(xupyAp + xkpyup))
p=1

N
Z pTA TupYrp T TrpYup) + BpTB (@7pZup — YrpYup)) + 0(1).
p=1

Put z1p = TxpTup — YopYup a0d 22p = TupYnp + TxpYup, P = 1,...,N. Substituting

expressions ([B2) into (36) and (BF]), we get

1 r
Gr(07:0°) = 5 3 [(ADz1p — Bhzy)” + (Apzay + BYany)” + (45)° + (BY)]

N
- Z _(Ag) zlp — 2AOB p21p22p + (BO) zzp}

N
=" [(A49)? 23, + 240 Bl 2120y + (BY) 4, ] +0(1)

LS (A0 + (B)?) (1 5, - ) + o)

—
w
=)

~

I

%i (497 + (BY)) (1= (a3, +13,) (a2, +42,) ) + o)
LS (97 + (87
i (sin LT (Apr — A2)>2 <Sm%T (ot — ;4;))2 o)

2T oz = X)) 2T (upr = 1)

Equality ([B9) together with ([BH) proves that
T (/\pT — /\2) — 0, T (MpT — /,62) —0

almost surely as T'— oo, p = 1,...,N. Now (29) implies that x, — 1, z,, — 1 and

Yap — 0, yup — 0 almost surely as T'— oo, p =1,..., N. We also obtain from (32)) that
ApT — Ag, BpT — Bg

The theorem is proved. O

5. CONCLUDING REMARKS

The strong consistency of the least squares estimator of parameters in the texture
surface sinusoidal model is proved in the paper under the assumption that the random
noise is an isotropic and homogeneous Gaussian random field. It is natural to extend this
result in order to find conditions for the consistency of least squares estimators in the
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case of a non-Gaussian noise and to prove the asymptotic normality of the least squares

estimators.
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