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ESTIMATES OF FUNCTIONALS CONSTRUCTED FROM RANDOM

SEQUENCES WITH PERIODICALLY STATIONARY INCREMENTS

P. S. KOZAK AND M. P. MOKLYACHUK

Dedicated to the blessed memory of Mykhailo Yosypovych Yadrenko

Abstract. The problem of the optimal estimation of the linear functional

AN ξ =
N∑

k=0

a(k)ξ(k)

is studied. The functional depends on unknown values of a random sequence ξ(k) with
periodically stationary increments. The estimate is constructed from observations
of this sequence at points Z \ {0, 1, . . . , N}. Expressions for evaluating the mean
square error and spectral characteristics are found for the optimal estimate of the
functional in the case where the spectral density of the sequence is known. For a
given set of admissible spectral densities, the sets of least favorable spectral densities
are found and the spectral characteristics of the optimal estimate of the functional
are determined.

1. Introduction

Problems of estimation of unknown values of stochastic processes play an important
role among modern topics of the theory of stochastic processes. The classical methods
of solving the problems of estimation of unknown values of stationary processes (namely,
the problems of extrapolation, interpolation, and filtration) with known spectral densities
are developed in the papers by Kolmogorov [5], Wiener [26], and Yaglom [27, 28]. The
study of stochastic processes with stationary increments of order n was initiated by
Yaglom [29] who obtained the spectral representation of stochastic increment processes
and solved the problem of prediction of values of a stochastic increment process by using
known observations. Stochastic processes with stationary increments are also studied by
Pinsker [23] and Pinsker and Yaglom [22].

If the spectral density is unknown but a set of admissible spectral densities is given,
then one uses the minimax method which constitutes finding an estimate that minimizes
the error for all densities of the given class. Grenander [2] was the first to apply the
minimax approach to the problem of extrapolation. Franke [3] studied the problem
of minimax extrapolation of stationary sequences with the help of methods of convex
optimization. Kassam and Poor [4] provide a survey of earlier papers published before
1985 concerning robust methods of estimation.

The problems of extrapolation, interpolation, and filtration have been studied by
Moklyachuk [13–16] for stationary processes and sequences. Solutions of problems of
extrapolation, interpolation, and filtration for vector-valued processes are presented in
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the book by Moklyachuk and Masyutka [21]. The corresponding results for periodi-
cally correlated processes are published by Moklyachuk and Golichenko [20]. Luz and
Moklyachuk [6–12] deal with estimates of functionals constructed from stochastic pro-
cesses with stationary increments and those of cointegrated sequences. Moklyachuk and
Sidei [17–19] studied the problems of extrapolation, interpolation, and filtration for sta-
tionary sequences with missing observations.

In the current paper, we study the problem of the optimal estimation of the linear
functional

ANξ =

N∑
k=0

a(k)ξ(k)

depending on unknown values of a random sequence ξ(k) with periodically stationary
increments. The estimate is constructed from observations of this sequence at points
Z \ {0, 1, . . . , N}. We find expressions for evaluating the mean square error as well as for
the spectral characteristic of the optimal estimate of the functional in the case where the
spectral density of the sequence is known. If the spectral density is unknown but a set
of admissible spectral densities is given we follow the minimax approach for estimation.
For a given set of admissible spectral densities, we determine the set of least favorable
spectral densities and minimax characteristics of the optimal estimate of the functional.

2. Processes with periodically stationary increments

Definition 2.1. The function

(1) η(n)(m,μ) = (1−Bμ)
n η(m) =

n∑
l=0

(−1)l
(
n

l

)
η(m− lμ)

is called the stochastic increment of order n with shift μ ∈ Z constructed from a random
sequence {η(m),m ∈ Z}, where Bμ is the shift operator with lag μ ∈ Z acting at the
sequence η as follows: Bμη(m) = η(m− μ), m ∈ Z.

Definition 2.2. The stochastic increment η(n)(m,μ) of order n constructed from a
random sequence {η(m),m ∈ Z} is called stationary (wide sense stationary) if the ex-
pectations

E η(n)(m0, μ) = c(n)(μ),

E η(n)(m0 +m,μ1) η(n)(m0, μ2) = D(n)(m,μ1, μ2)

exist for all integers m0, μ, m, μ1, μ2 and do not depend on m0. The function c(n)(μ) is
called the mean value of the stationary increment of order n. Accordingly,D(n)(m,μ1, μ2)
is called the structural function of the stationary increment of order n constructed from
a random sequence {η(m),m ∈ Z}.

Definition 2.3. A random sequence {η(m),m ∈ Z} is said to have stationary increments
of order n if the increment η(n)(m,μ) of order n defined by equality (1) is stationary.

Definition 2.4. A vector random sequence η(m) = {ηp(m)}p=1,2,...,T is said to have

stationary increments of order n if the increments of order n of the components η
(n)
p (m,μ),

p = 1, 2, . . . , T , defined by equality (1) are stationary and stationary related.

Consider a random sequence ζ(m) and the corresponding sequence of stochastic incre-
ments ζ(n)(m,μ) constructed from the sequence ζ(m).
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Definition 2.5. The stochastic increment ζ(n)(m,μT ) of order n constructed from a
random sequence {ζ(m),m ∈ Z} is called periodically stationary (periodically correlated
with period T ) if the expectations

E ζ(n)(m+ T, μT ) = E ζ(n)(m,μT ) = c(n)(m,μT ),

E ζ(n)(m+ T, μ1T ) ζ(n)(k + T, μ2T ) = D(n)(m+ T, k + T ;μ1T, μ2T )

= D(n)(m, k;μ1T, μ2T )

exist and, moreover, given arbitrary integers m, k, μ, μ1, μ2 there is no number less than
T > 0 for which the above equalities hold.

Consider the vector sequence ζ(n)(m,μ) formed by blocks of elements of the sequence

ζ(n)(m,μT ). Every coordinate ζ
(n)
p (m,μ), p = 1, 2, . . . , T , of the vector ζ(n)(m,μ) is

defined by

ζ(n)p (m,μ) = ζ(n)(mT + p− 1, μT ), p = 1, 2, . . . , T.

Theorem 2.1. A stochastic increment ζ(n)(m,μT ) of order n is a stationary increment
if and only if T , T > 0, is the least integer number such that the T -dimensional sequence

ζ(n)(m,μ) is stationary with respect to parameter m for all integer μ.

Proof. The proof of the theorem follows from the following equalities:

E ζ(n)p1
(m0 +m,μ1) ζ

(n)
p2 (m0, μ2)

= E ζ(n)
(
(m0 +m)T + p1 − 1, μ1T

)
ζ(n)(m0T + p2 − 1, μ2T )

= E ζ(n)(m0T +mT + p1 − 1, μ1T ) ζ(n)(m0T + p2 − 1, μ2T )

= E ζ(n)(mT + p1 − 1, μ1T ) ζ(n)(p2 − 1, μ2T ) = E ζ(n)p1
(m,μ1T ) ζ

(n)
p2 (0, μ2T ),

E ζ(n)p (m0, μT ) = E ζ(n)(m0T + p− 1, μT ) = E ζ(n)(p− 1, μT ) = E ζ(n)p (0, μT ). �

Theorem 2.1 implies that the change

(2) ξp(k) = ζ(kT + p− 1), p = 1, 2, . . . , T, k ∈ Z,

results in the vector sequence ξ(k) = {ξp(k)}p=1,2,...,T , k ∈ Z, with stationary increments

of order n. Indeed,

ξ(n)p (m,μ) =

n∑
l=0

(−1)l
(
n

l

)
ξp(m− lμ) =

n∑
l=0

(−1)l
(
n

l

)
ζ
(
(m− lμ)T + p− 1

)
= ζ(n)(mT + p− 1, μT )

for all p = 1, 2, . . . , T , where ξ
(n)
p (m,μ) is the increment of order n constructed from the

pth component of the vector sequence ξ(m).
If the matrix of spectral densities F (λ) of a stationary sequence

ξ(n)(m,μ)

is known, then the sequence itself admits the spectral decomposition

(3) ξ(n)p (m,μ) =

∫ π

−π

eimλ
(
1− e−iμλ

)n 1

(iλ)n
dZp(λ), p = 1, 2, . . . , T,

where Z(Δ) = {Zp(Δ)}Tp=1 is an orthogonal random measure of the sequence ξ(n)(m,μ)
(see [1, 12, 29]).



88 P. S. KOZAK AND M. P. MOKLYACHUK

3. Classical method of estimation

Let the vector stochastic sequence ξ(m) be constructed from a sequence ζ(m) with
the help of transformation (2) and determine the stationary increment

ξ(n)(m,μ) =
{
ξ(n)p (m,μ)

}T
p=1

of order n with the matrix of spectral densities F (λ) = {fij(λ)}Ti,j=1.
Consider the problem of linear mean square optimal estimation of the functional

(4) ANξ =
N∑
j=0

a(j)�ξ(j) =
N∑
j=0

T∑
p=1

ap(j)ξp(j)

that depends on unknown values of the vector sequence ξ(j) = {ξp(j)}Tp=1. The estimate
is constructed from observations of the sequence ξ(j) at points j ∈ Z \ {0, 1, . . . , N}.

Simple algebra allows one to transform equality (1) to a representation of the random
sequence ξp(j) in terms of the increments of order n,

(5) ξp(j) =
1

(1−Bμ)n
ξ(n)p (j, μ) =

j∑
k=−∞

dμ(j − k)ξ(n)p (k, μ), p = 1, 2, . . . , T,

where {dμ(j) : j � 0} are the coefficients of the term xj in the equality

∞∑
j=0

dμ(j)x
j =

( ∞∑
k=0

xμk

)n

.

Using representation (5), we rewrite the functional (4) as follows:

ANξ =

N∑
j=0

a(j)�ξ(j) =
N∑
j=0

T∑
p=1

ap(j)ξp(j)

=

T∑
p=1

⎡⎣− −1∑
j=−μn

vp(j)ξp(j) +

N∑
j=0

⎛⎝ N∑
k=j

ap(k)dμ(k − j)

⎞⎠ ξ(n)p (j, μ)

⎤⎦
= −

−1∑
j=−μn

T∑
p=1

vp(j)ξp(j) +

N∑
j=0

T∑
p=1

bp(j)ξ
(n)
p (j, μ)

= −
−1∑

j=−μn

v(j)�ξ(j) +
N∑
j=0

b(i)�ξ(n)(j, μ).

The latter relation implies that the functional ANξ is a difference of functionals,

ANξ = BNξ − VNξ,(6)
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where

BNξ =

N∑
j=0

b(j)�ξ(n)(j, μ), VNξ =

−1∑
j=−μn

v(j)�ξ(j),

vp(j) =
n∑

l=[− j
m ]′

(−1)l
(
n

l

)
bp(lμ+ j), p = 1, 2, . . . , T, j = −1,−2, . . . ,−μn,(7)

bp(j) =
N∑

m=j

ap(m)dμ(m− j), p = 1, 2, . . . , T, j = 0, 1, . . . , N,(8)

v(j) =
(
v1(j), v2(j), . . . , vT (j)

)�
, b(j) =

(
b1(j), b2(j), . . . , bT (j)

)�
.

The symbol [x]′ in relation (7) stands for the least integer number in the set of numbers
that are greater than or equal to x.

Let ÂNξ be the mean square optimal linear estimate of the functional ANξ constructed
from observations of the vector random sequence ξ(j) at points j ∈ Z \ {0, 1, . . . , N}.
Denote by B̂Nξ the mean square optimal linear estimate of the functional BNξ construc-

ted from observations of the stochastic increment ξ(n)(m,μ) of order n at the points
m ∈ Z \ {0, 1, . . . , N + μn}. Since the values of the sequence ξ(m) at points m =

−1,−2, . . . ,−μn are known, the estimate ÂNξ can be rewritten as

(9) ÂNξ = B̂Nξ − VNξ.

The mean square error of the estimate ÂNξ admits the relations

Δ
(
F, ÂNξ

)
= E

∣∣∣ANξ − ÂNξ
∣∣∣2 = E

∣∣∣ANξ + VNξ − B̂Nξ
∣∣∣2

= E
∣∣∣BNξ − B̂Nξ

∣∣∣2 = Δ
(
F, B̂Nξ

)
.(10)

Denote by H(N+μn)−(ξ(n)μ

)
the closed linear subspace in the space H = L2(Ω,F , P )

of second-order random variables generated by{
ξ(n)p (l, μ), p = 1, . . . , T, l ∈ Z \ {0, 1, . . . , N + μn}

}
.

Similarly, by L
(N+μn)−
2 (F ) we denote the subspace generated in the space L2(F ) by the

functions
eiλl(1− e−iλμ)nδp/(iλ)

n, δp = {δpk}Tp=1,

k = 1, 2, . . . , T, l ∈ Z \ {0, 1, . . . , N + μn}.
Here δpk denotes the Kronecker delta symbol.

There is a one-to-one correspondence between the elements ξ
(n)
p (l, μ) of the space

H(N+μn)−(ξ(n)μ

)
and the elements

eiλl
(
1− e−iλμ

)n
δp
/
(iλ)n

of the space L
(N+μn)−
2 (F ). This correspondence is defined by relation (3).

We search for a linear estimate B̂Nξ of the form

(11) B̂Nξ =

∫ π

−π

h(λ)� dZ(λ),

where h(λ) = {hp(λ)}Tp=1 is the spectral characteristic of the estimate. The optimal

estimate B̂Nξ is the projection of the element BNξ of the space H onto the subspace
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H(N+μn)−(ξ(n)μ

)
. The optimal estimate is determined by the conditions

B̂Nξ ∈ H(N+μn)−(ξ(n)μ

)
,(12)

BNξ − B̂Nξ ⊥ H(N+μn)−(ξ(n)μ

)
.(13)

Condition (13) implies that

(14) E
[(

BNξ − B̂Nξ
)
ξ
(n)
p (l, μ)

]
= 0

for all p = 1, . . . , T and l ∈ Z \ {0, 1, . . . , N + μn}. Since

BNξ =

N∑
j=0

b(j)�ξ(n)(j, μ) =
N∑
j=0

b(j)�
∫ π

−π

eijλ
(
1− e−iμλ

)n 1

(iλ)n
dZ(λ)

=

∫ π

−π

N∑
j=0

b(j)�eijλ
(
1− e−iμλ

)n
(iλ)n

dZ(λ) =

∫ π

−π

Bμ
N

(
eiλ
)� (1− e−iμλ

)n
(iλ)n

dZ(λ),

where

Bμ
N (eiλ) =

N∑
j=0

b(j)eijλ,

equality (14) is rewritten in the form

E

[∫ π

−π

(
Bμ

N

(
eiλ
)� (1− e−iμλ

)n
(iλ)n

− h(λ)�

)
dZ(λ)

∫ π

−π

e−ilλ

(
1− eiμλ

)n
(−iλ)n

dZ(λ)

]
= 0,

l ∈ Z \ {0, 1, . . . , N + μn}.

Thus

1

2π

∫ π

−π

(
Bμ

N

(
eiλ
) (1− e−iμλ

)n
(iλ)n

− h(λ)

)�

F (λ)

(
1− eiμλ

)n
(−iλ)n

e−ilλ dλ = 0,

l ∈ Z \ {0, 1, . . . , N + μn}.

The latter condition implies(
Bμ

N

(
eiλ
) (1− e−iμλ

)n
(iλ)n

− h(λ)

)�

F (λ)

(
1− eiμλ

)n
(−iλ)n

= CN+μn

(
eiλ
)�

,

CN+μn

(
eiλ
)
=

N+μn∑
j=0

c(j)eijλ,

where c(j) = {cp(j)}Tp=1 are unknown coefficients to be determined. The latter equality
allows us to find the spectral characteristic of the estimate,

h(λ)� = Bμ
N

(
eiλ
)� (1− e−iλμ

)n
(iλ)n

−
(−iλ)nCN+μn

(
eiλ
)�

(1− eiλμ)
n F−1(λ).

Our aim is to derive a system of equations that determine unknown coefficients c(j) =
{cp(j)}Tp=1. It follows from condition (12) that

1

2π

∫ π

−π

[
Bμ

N

(
eiλ
)� −

λ2nCN+μn

(
eiλ
)�

(1− e−iλμ)
n
(1− eiλμ)

n F−1(λ)

]
e−ijλ dλ = 0
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for all j = 0, . . . , N + μn. Now we transform the latter equality as follows for j =
0, . . . , N + μn:

(15)
1

2π

∫ π

−π

Bμ
N

(
eiλ
)�

e−ijλ dλ =
1

2π

∫ π

−π

λ2nCN+μn

(
eiλ
)�

(1− e−iλμ)
n
(1− eiλμ)

n F−1(λ)e−ijλ dλ.

Assume that the spectral density F (λ) satisfies the condition of minimality,

(16)

∫ π

−π

Tr

[
λ2n

|1− eiλμ|2nF
−1(λ)

]
dλ < ∞,

where Tr[A] is the trace of the matrix A. Note that this condition is equivalent to the
statement that an error-free estimate of an unknown value of a sequence does not exist
in the problem of interpolation (see [25]).

Now we consider the Fourier coefficients of the vector function

λ2n

|1− eiλμ|2n F−1(λ).

Put

D(j) =
1

2π

∫ π

−π

λ2n

|1− eiλμ|2n F−1(λ)�e−ijλ dλ, j = 0, . . . , N + μn.

Then we derive a system of equations from equality (15) that determine unknown coef-
ficients c(j) = {cp(j)}Tp=1, j = 0, . . . , N + μn, namely

b(0) = D(0)c(0) +D(−1)c(1) + · · ·+D(−N − μn)c(N + μn),

b(1) = D(1)c(0) +D(0)c(1) + · · ·+D(1−N − μn)c(N + μn),

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
b(N + μn) = D(N + μn)c(0) +D(N + μn− 1)c(1) + · · ·+D(0)c(N + μn).

Put b(j) = 0 for j = N + 1, N + 2, . . . , N + μn and denote by

bN+μn = {b(j)}N+μn
j=0 and cN+μn = {c(j)}N+μn

j=0

the vectors of dimension (N + μn+ 1)T , and by DN+μn the matrix of sizes

(N + μn+ 1)T × (N + μn+ 1)T

constituted of the matrix blocks of sizes T × T ,

DN+μn =

⎛⎜⎜⎝
D(0) D(−1) . . . D(−N − μn)
D(1) D(0) . . . D(1−N − μn)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
D(N + μn) D(N + μn− 1) . . . D(0)

⎞⎟⎟⎠ .

Then we transform the preceding system of equations to the form

bN+μn = DN+μncN+μn,

whence we derive the expression for evaluating unknown coefficients cp(j),

(17) cN+μn = D−1
N+μnbN+μn.

Using the relations obtained above we derive the formula for evaluating the spectral

characteristic h(λ) = {hp(λ)}Tp=1 of the optimal estimate B̂Nξ,

(18)

h(λ)� = Bμ
N

(
eiλ
)� (1− e−iλμ

)n
(iλ)n

−
(−iλ)n

[∑N+μn
j=0

(
D−1

N+μnbN+μn

)
j
eijλ
]�

(1− eiλμ)
n F−1(λ).
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The mean square error of the estimate is given by

(19)

Δ
(
F, B̂Nξ

)
= E

∣∣∣BNξ − B̂Nξ
∣∣∣2

=
1

2π

∫ π

−π

(iλ)n
[∑N+μn

j=0

(
D−1

N+μnbN+μn

)
j
eijλ
]�

(1− eiλμ)
n

× F−1(λ)

(−iλ)n
[∑N+μn

j=0

(
D−1

N+μnbN+μn

)
j
eijλ
]

(1− e−iλμ)
n dλ

= 〈cN+μn, DN+μncN+μn〉 =
〈
D−1

N+μnbN+μn, bN+μn

〉
.

The results obtained above are collected in the following theorem.

Theorem 3.1. Let a vector random sequence {ξ(m),m ∈ Z} define the stationary in-

crement ξ(n)(m,μ) of order n with the matrix of spectral densities

F (λ) = {fij(λ)}Ti,j=1

that satisfies condition (16).

The optimal linear estimate B̂Nξ of the functional BNξ that depends on unknown

values ξ(n)(m,μ), m ∈ {0, 1, . . . , N}, constructed from observations of the sequence ξ(m),
m ∈ Z \ {0, 1, . . . , N}, is defined by relation (11).

The spectral characteristic h(λ) = {hp(λ)}Tp=1 of the optimal estimate B̂Nξ is given
by equality (18).

The mean square error Δ
(
F, B̂Nξ

)
is obtained from equality (19).

As a consequence of Theorem 3.1, one can construct an estimate of an unknown value

of the increment ξ
(n)
p (m,μ), m = 0, 1, . . . , N , p = 1, 2, . . . , T , from observations of the

sequence ξ(m), m ∈ Z \ {0, 1, . . . , N}. This estimate is constructed from the vector
b(m) = ep whose coordinate p is equal to 1, while all other coordinates are equal to 0.
The remaining vectors

b(j), j = 0, 1, . . . , N, j �= m,

are equal to 0. Then bN+μn = emT+p is the vector whose coordinate (mT + p) is equal
to 1 and all other coordinates are equal to 0.

Now the optimal linear estimate ξ̂
(n)
p (m,μ) of an unknown increment ξ

(n)
p (m,μ) is

determined by the relation

(20) ξ̂(n)p (m,μ) =

∫ π

−π

ϕm(λ, μ)� dZ(λ).

The spectral characteristic ϕm(λ, μ) of the optimal estimate ξ̂
(n)
p (m,μ) can be found

from the relation

(21)

ϕm(λ, μ)� = e�mT+p e
imλ

(
1− e−iλμ

)n
(iλ)n

−
(−iλ)n

[∑N+μn
j=0

(
D−1

N+μnemT+p

)
j
eijλ
]�

(1− eiλμ)
n F−1(λ).
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To evaluate the mean square error of the estimate one can use the following formula:

(22)

Δ
(
F, ξ(n)p (m,μ)

)
= 〈c̃N+μn, DN+μnc̃N+μn〉

=
〈
D−1

N+μnemT+p, DN+μnD
−1
N+μnemT+p

〉
=
〈
D−1

N+μnemT+p, emT+p

〉
=
(
D−1

N+μn

)
mT+p,mT+p

,

where

c̃N+μn = {c̃(j)}N+μn
j=0 = D−1

N+μnemT+p.

Therefore we obtain the following result for the estimate ξ̂
(n)
p (m,μ) of an unknown in-

crement ξ
(n)
p (m,μ).

Corollary 3.1. The optimal linear estimate ξ̂
(n)
p (m,μ) of the increment ξ

(n)
p (m,μ), m =

0, 1, . . . , N , p = 1, 2, . . . , T , constructed from observations of the sequence ξ(m), m ∈
Z \ {0, 1, . . . , N}, is defined by formula (20). The spectral characteristic ϕm(λ, μ) of

the optimal estimate ξ̂
(n)
p (m,μ) is found from equality (21). The mean square error is

evaluated according to the relation

(23) Δ
(
F, ξ(n)p (m,μ)

)
=
(
D−1

N+μn

)
mT+p,mT+p

.

Theorem 3.1 and equalities (10) and (19) yield the following result.

Theorem 3.2. Let a vector random sequence {ξ(m),m ∈ Z} define the stationary in-

crement ξ(n)(m,μ) of order n whose matrix of spectral densities is given by

F (λ) = {fij(λ)}Ti,j=1.

Assume that F satisfies condition (16). The optimal linear estimate ÂNξ of the func-
tional ANξ that depends on unknown elements ξ(m), m ∈ {0, 1, . . . , N}, is constructed
from observations of the sequence ξ(m), m ∈ Z \ {0, 1, . . . , N}, as follows:

ÂNξ =

∫ π

−π

h(λ)� dZ(λ)−
−1∑

j=−μn

v(j)�ξ(j),

where the spectral characteristic h(λ) = {hp(λ)}Tp=1 of the optimal estimate is found
from equality (18) and v(j) are defined by (7). The mean square error of the estimate

Δ
(
F, ÂNξ

)
is given by

Δ
(
F, ÂNξ

)
= 〈cN+μn, DN+μncN+μn〉 =

〈
D−1

N+μnbN+μn, bN+μn

〉
,

where cN+μn = {c(j)}N+μn
j=0 = D−1

N+μnbN+μn and the vector bN+μn is constituted by

vectors b(j) whose components are defined in relation (8).

Now we turn to the case of a one-dimensional random sequence with periodically
stationary increments {ζ(m),m ∈ Z}. Consider the problem of linear mean square
optimal estimation of the functional

(24) AMζ =

M∑
k=0

a(ζ)(k)ζ(k)

that depends on unknown values of the sequence ζ(k). The estimate is constructed from
observations of the sequence ζ(k) with k < 0 and k > M . Assume that M + 1, the
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number of unknown values of the sequence {ζ(m),m ∈ Z}, is divided by the number T ,
the corresponding period. Let the number N be such that

(25) N =
M + 1

T
− 1.

Making the change of variables (2) and taking into account the equalityM = (N+1)T−1
we rewrite the expression defining the functional AMζ as follows:

AMζ =

M∑
k=0

a(ζ)(k)ζ(k) =

N∑
j=0

T∑
p=1

a(ζ)(jT + p− 1)ζ(jT + p− 1)

=

N∑
j=0

T∑
p=1

ap(j)ξp(j) =

N∑
j=0

a(j)�ξ(j) = ANξ,

where a(j)� =
(
a1(j), a2(j), . . . , aT (j)

)
and ap(j) = a(ζ)(jT + p − 1). Considering the

latter equality and Theorem 3.2 one can obtain the optimal linear estimate ÂMζ of the
functional AMζ.

Theorem 3.3. Let {ζ(k), k ∈ Z} be a random sequence with periodically stationary
increments such that the vector sequence {ξ(m),m ∈ Z} obtained after the change (2)
satisfies the assumptions of Theorem 3.2.

Then the optimal linear estimate ÂMζ of the functional AMζ that depends on unknown
values ζ(k), k ∈ {0, 1, . . . ,M}, is constructed from observations of the sequence ζ(k) with
k < 0 and k > M according to

ÂMζ =

∫ π

−π

h(λ)� dZ(λ)−
−1∑

j=−μn

v(j)�ξ(j),

where the spectral characteristic h(λ) = {hp(λ)}Tp=1 of the optimal estimate Â(N+1)T−1ζ
is defined by equality (18) and v(j) is defined in relation (7).

The mean square error Δ
(
F, ÂMζ

)
is given by

Δ(F, ÂMζ) = 〈cN+μn, DN+μncN+μn〉 =
〈
D−1

N+μnbN+μn, bN+μn

〉
,

where cN+μn = {c(j)}N+μn
j=0 = D−1

N+μnbN+μn and the vector bN+μn is constituted by

vectors b(j) whose elements are defined according to equality (8).

4. Minimax estimates of the functional

The matrix of spectral densities F (λ) = {fij(λ)}Ti,j=1 of a stationary increment

ξ(n)(m,μ) of order n is needed to use the theorems and equalities of the preceding sec-
tion. If the spectral density is unknown but a set D of admissible densities is specified,
then one applies the minimax method for estimating a functional. Following this method,
one finds an estimate that minimizes the mean square error for all spectral densities of
a given set D.

Definition 4.1. Given a set D, a spectral density F 0(λ) ∈ D is called the least favorable
in the class D for the optimal estimation of a functional ANξ if

Δ
(
F 0
)
= Δ

(
h
(
F 0
)
;F 0
)
= max

F∈D
Δ
(
h(F );F

)
.
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Definition 4.2. Given a set D, a spectral characteristic h0(λ) of the optimal estimate
of a functional ANξ is called minimax (robust) if

h0(λ) ∈ HD =
⋂
F∈D

LN−
2 (F ),

min
h∈HD

max
F∈D

Δ(h;F ) = max
F∈D

Δ(h0;F ).

The following result follows from the results obtained in the preceding section and uses
our definitions of the least favorable spectral density and minimax spectral characteristic.

Lemma 4.1. A spectral density F 0(λ) ∈ D that satisfies the condition of minimality (16)
is the least favorable in the class D for the optimal linear estimation of a functional ANξ
from observations ξ(m) with m ∈ Z \ {0, 1, 2, . . . , N} if the matrix D0

N+μn constituted by
the Fourier coefficients of the function

λ2n

|1− eiλμ|2n
(
F 0
)−1

(λ)

determines a solution of the conditional extremum problem

(26) max
F∈D

〈
D−1

N+μnbN+μn, bN+μn

〉
=
〈(

D0
N+μn

)−1
bN+μn, bN+μn

〉
.

The minimax spectral characteristic h0 = h(F 0) is given by equality (18) if h(F 0) ∈ HD.

A more careful analysis of properties of the least favorable spectral densities and
minimax spectral characteristic of the optimal estimate of a functional is based on an
observation that the minimax spectral characteristic h0 and least favorable spectral den-
sity F 0 form a saddle point of the function Δ(h;F ) in the set HD ×D. The saddle point
inequalities

Δ
(
h;F 0

)
≥ Δ

(
h0;F 0

)
≥ Δ

(
h0;F

)
∀F ∈ D, ∀h ∈ HD

hold if h0 = h
(
F 0
)
and h

(
F 0
)
∈ HD, where F

0 is a solution of the conditional extremum
problem

Δ̃(F ) = −Δ
(
h
(
F 0
)
;F
)
→ inf, F ∈ D,

(27)

Δ
(
h
(
F 0
)
;F
)

=
1

2π

∫ π

−π

(iλ)n
[∑N+μn

j=0

((
D0

N+μn

)−1
bN+μn

)
j
eijλ
]�

(1− eiλμ)
n

(
F 0(λ)

)−1

× F (λ)
(
F 0(λ)

)−1

(−iλ)n

[∑N+μn
j=0

((
D0

N+μn

)−1

bN+μn

)
j

eijλ

]
(1− e−iλμ)

n dλ.

The latter problem is equivalent to the unconditional extremum problem

(28) ΔD(F ) = Δ̃(F ) + δ(F | D) → inf,

where δ(F | D) is the indicator function of the set D. The solution F 0 of the unconditional
extremum problem is characterized by the condition 0 ∈ ∂ΔD(F

0) which is necessary
and sufficient for the function F 0 to belong to the set of minimums of the functional
ΔD(F ) (see [15, 24]). The expression ∂ΔD

(
F 0
)
here denotes the subdifferential of the

functional ΔD(F ) at the point F = F 0.
The expression (27) for the functional Δ

(
h
(
F 0
)
;F
)
is convenient for applying the

Lagrange multipliers method in the extremum problem (28). Following the Lagrange
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multipliers method and using the expressions for subdifferentials of indicator functions for
sets of the admissible densities, one can find relations that determine the least favorable
spectral densities and minimax spectral characteristics of the optimal estimate in the
case of some specific sets of admissible spectral densities.

5. Least favorable spectral densities in the class D−
0,n

Consider the problem of the minimax estimation of a functional ÂNξ by using the
observations ξ(j), j ∈ Z \ {0, 1, . . . , N}, under the condition that the spectral density

F (λ) of a stationary increment ξ(n)(m,μ) of order n belongs to the set

D−
0,n =

{
F (λ)

∣∣∣∣ 1

2π

∫ π

−π

λ2n [F (λ)]
−1

dλ = P

}
,

where P = {pij}Ti,j=1 is a given matrix.

The condition 0 ∈ ∂ΔD
(
F 0
)
for D = D−

0,n implies the following relation for the least
favorable spectral density in a given set:

(29)

1

|1− eiλμ|2n

⎡⎣N+μn∑
j=0

((
D0

N+μn

)−1
bN+μn

)
j
eijλ

⎤⎦

×

⎡⎣N+μn∑
j=0

((
D0

N+μn

)−1

bN+μn

)
j

eijλ

⎤⎦�

= αα�,

where α = {αp}Tp=1 is the vector of Lagrange multipliers.

Denote by s(α)(j), j = 0, . . . , N + μn, the vector of dimension T , where

s(α)(kμ) = α(−1)k
(
n

k

)
, k = 0, . . . , n, s(α)(j) = 0, j �= kμ.

Put s
(α)
N+μn =

{
s(α)(j)

}N+μn

j=0
(this is a vector of dimension (N + μn + 1)T ). Then we

derive the following system of equations from relation (29):

(30) D0
N+μns

(α)
N+μn = bN+μn.

Note that the elements of the vector s
(α)
N+μn are such that s(α)(j) = 0 for j > μn and

s(α)(j) = (−1)μns(α)(μn − j) for j � μn. The entries of the matrix D0
N+μn are such

that D0(j) = D0(−j), j = 0, . . . , N + μn. The following conditions are sufficient for
system (30) to be solvable:

(31) b(j) = (−1)μnb(μn− j), j = 0, . . . , μn.

The constraints imposed on the functions constituting the class D−
0,n yield the equation

(32)

N+μn∑
j=−N−μn

D0(|j|)
2π

∫ π

−π

eijλ
∣∣1− eiλμ

∣∣2n dλ = P.

Therefore the least favorable spectral density satisfies the relation

(33)
λ2n

|1− eiλμ|2n
[
F 0(λ)

]−1
=

N+μn∑
j=−N−μn

D0(|j|)eijλ,
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where equalities (30) and (32) hold for the matrices D(0)(j), j = 0, . . . , N+μn. The class
of the least favorable densities is of the form

(34) R =

⎧⎪⎨⎪⎩F 0(λ) ∈ D−
0,n : F

0(λ) =
λ2n

|1− eiλμ|2n

⎛⎝ N+μn∑
j=−N−μn

D0(j)eijλ

⎞⎠−1
⎫⎪⎬⎪⎭ .

Therefore we proved the following result.

Theorem 5.1. Let a vector random sequence {ξ(m),m ∈ Z} determine a stationary
increment of order n. Assume that the matrices D(0)(j), j = 0, . . . , N + μn, satisfy
equalities (29), (30), (31), and (32).

If the sequence a(0), . . . ,a(N) satisfies condition (31), then the set of the least favor-
able in the class D−

0,n spectral densities used to construct the optimal linear estimate of the

functional ANξ by observations of the sequence ξ(m) at points m ∈ Z\{0, 1, . . . , N} is of
the form (34). The minimax spectral characteristic of the optimal estimate is evaluated
according to equality (18).

6. Concluding remarks

The problem of the mean square optimal linear estimation of the functional

ANξ =

N∑
k=0

a(k)ξ(k)

is studied in the paper. The functional depends on unknown values of the random
sequence ξ(k) with periodically stationary increments. An estimate is constructed from
observations of this sequence at the points belonging to the set Z \ {0, 1, . . . , N}.

Both methods of estimation, the classical and minimax (robust), are used for the case
of spectral definiteness where the spectral density of the sequence is known as well as for
the case of spectral indefiniteness where the spectral density of the sequence is unknown
but a set of admissible densities is specified. In particular, we found the expressions
for the mean square error and for spectral characteristic of the optimal estimate of the
functional for the case of a known spectral density. If the spectral density is unknown
but a class of admissible spectral densities is specified, then we derive a relation that
determines the least favorable spectral densities and minimax spectral characteristics.
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