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SIMULATION OF A FRACTIONAL BROWNIAN MOTION

IN THE SPACE Lp([0, T ])

UDC 519.21

YU. V. KOZACHENKO, A. O. PASHKO, AND O. I. VASYLYK

Dedicated to the memory of our teacher Mykhailo Yosypovych Yadrenko

Abstract. A model that approximates the fractional Brownian motion with param-

eter α ∈ (0, 2) with a given reliability 1 − δ, 0 < δ < 1, and accuracy ε > 0 in the
space Lp([0, T ]) is constructed. An example of a simulation in the space L2([0, 1]) is
given.

1. Introduction

Stochastic simulation of stochastic processes and fields is used in various fields of
natural and social science such as economics, mathematics, physics, engineering, meteor-
ology, biology, and sociology where it provides the base for thorough analysis and decision
making. Stochastic simulation has been an actively developing area since the second half
of the 20th century. A special place in stochastic simulation is occupied by methods and
procedures for simulation of Wiener and generalized Wiener processes (like a fractional
Brownian motion). Many studies (see, for example, [35]) exhibit the properties of the
self-similarity and long-range dependence of the data observed in queuing theory and
telecommunication networks. One of the processes possessing those properties is the
fractional Brownian motion. Kolmogorov [8] was the first to consider this process when
studying some problems in the theory of turbulence [9]. Kolmogorov [8] investigated
the fractional Brownian motion in a Hilbert space, in particular he found the covariance
function for this process by using a condition known today as self-similarity.

Among earlier papers, one should mention Yaglom [37] where stochastic processes
with stationary nth order increments are studied in order to extend the spectral theory
of a stationary process to a wider class of processes. The fractional Brownian motion is
considered in Yaglom [37] as an example of a stochastic process with stationary incre-
ments of the first order. Yaglom [37] defines the fractional Brownian motion in terms of
its spectral density.

Mandelbrot and van Ness [23] represent the fractional Brownian motion as an integral
with respect to a Wiener process over the whole real line. Since then the fractional Brow-
nian motion has been studied extensively. In particular, some classical representations
for the fractional Brownian motion are obtained in the papers [29,32]. The paper [34] is a
brief survey of properties of fractional Brownian motions, while the books [1,24] contain
a systematic analysis as well as generalizations and applications of results concerning
this process.
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A detailed survey of methods for simulation of fractional Brownian motions is given
in [2] and [4]. A discrete sequence of independent Gaussian random variables is used in
earlier papers as a model of generalized Wiener processes. Models of this kind are used,
for example, for numerical evaluation of integrals [6] and solving stochastic boundary
value problems [33]. The spectral representation of a generalized Wiener process is used
in [3,25,30,31] to construct a spectral model for this process. Expansions in the form of
random series (see, for example, [5, 10, 19]) are used in [7, 11, 12, 15, 17, 21, 26, 27, 36] to
construct the models in the form of finite sums of these series and to study the reliability
and accuracy of these procedures. The papers [13, 14, 16] are devoted to simulation of
stochastic processes and fields. In particular, the case of Gaussian processes and fields is
considered in [22, 26], while a more general case of ϕ-sub-Gaussian processes is studied
in [18, 36].

The approaches mentioned above have their own advantages and drawbacks. The
main drawback of the procedure based on the representation of the fractional Brownian
motion in the form of a random series is an enormous amount of preliminary calculations
needed to model this stochastic process. For example, the papers [21, 26] determine the
parameters of a model with a given accuracy in terms of zeros of two Bessel functions
of the first kind. A numerical evaluation of these zeros with a given accuracy is a time-
consuming procedure even for modern computers. In contrast, this drawback is not
present if one uses a spectral representation to model the fractional Brownian motion.

The papers cited above propose spectral models for simulation of the fractional Brow-
nian motion and study the convergence of covariance functions and finite-dimensional
distributions of models to those of the fractional Brownian motion. On the other hand,
the reliability and accuracy of the models are not investigated in those papers.

In the current paper, we construct a spectral model that approximates a fractional
Brownian motion with a given reliability 1 − δ, 0 < δ < 1, and accuracy ε > 0 in the
space Lp([0, T ]).

The paper is organized as follows. We provide some auxiliary results in Section 2 and
define a model for a fractional Brownian motion with parameter α ∈ (0, 2). Conditions
for a model to approximate a fractional Brownian motion with a given reliability and
accuracy in the space Lp([0, T ]) are obtained in Section 3. A particular case of the space
L2([0, T ]) is also discussed in Section 3. Section 4 contains an example of simulation of a
fractional Brownian motion with a given reliability and accuracy in the space L2([0, 1])
for certain values of the parameter α.

2. A model for the fractional Brownian motion

Let (Ω,Σ,P) be a standard probability space and let T be a parameteric set (T = [0, T ]
or T = [0,∞]).

Definition 2.1. A stochastic process {Wα(t), t ∈ T} is called a fractional Brownian
motion with a parameter α ∈ (0, 2) if it is a zero mean Gaussian process, EWα(t) = 0,
whose covariance function is given by

R(t, s) =
1

2

(
|t|α + |s|α − |t− s|α

)
and such that Wα(0) = 0.

It is known that a fractional Brownian motion with a parameter α ∈ (0, 2) can be
represented as follows:

Wα(t) =
A√
π

(∫ ∞

0

cos(λt)− 1

λ
α+1
2

dξ(λ)−
∫ ∞

0

sin(λt)

λ
α+1
2

dη(λ)

)
t ∈ [0, T ],
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(see, for example, [29–31]), where ξ(λ) and η(λ) are independent real-valued standard
Wiener processes such that

Eξ(λ) = Eη(λ) = 0,

E
(
dξ(λ)

)2
= E

(
dη(λ)

)2
= dλ,

A2 =

{
2

π

∫ ∞

0

1− cos(λt)

λα+1
dλ

}−1

=

{
− 2

π
Γ(−α) cos

(
απ

2

)}−1

.

Fix an interval [0,Λ], Λ > 0, and represent the process Wα = {Wα(t), t ∈ [0, T ]} as

Wα(t) = Wα(t, [0, ε]) +Wα(t, [ε,Λ]) +Wα(t, [Λ,∞]),

where 0 < ε < Λ and

Wα(t, [a, b]) =
A√
π

(∫ b

a

cos(λt)− 1

λ
α+1
2

dξ(λ)−
∫ b

a

sin(λt)

λ
α+1
2

dη(λ)

)
.

Let 0 = λ0 < λ1 < · · · < λM = Λ be a partition of the interval [0,Λ] with λ1 = ε.
Then a model of the process Wα is constructed as a sum

SM (t,Λ) =
A√
π

(
M−1∑
i=1

cos(λit)− 1

λ
α+1
2

i

(
ξ(λi+1)− ξ(λi)

)

−
M−1∑
i=1

sin(λit)

λ
α+1
2

i

(
η(λi+1)− η(λi)

))

=
A√
π

(
M−1∑
i=1

cos(λit)− 1

λ
α+1
2

i

Xi −
M−1∑
i=1

sin(λit)

λ
α+1
2

i

Yi

)
, t ∈ [0, T ], M ∈ N,

where {Xi, Yi}, i = 1, 2, . . . ,M − 1, are independent Gaussian random variables such
that

EXi = EYi = 0, EX2
i = EY 2

i = λi+1 − λi.

The following result is used in the rest of this paper (Proposition 2.1 below is a
particular case of Theorem 2.1 and Corollary 2.1 of [7]).

Proposition 2.1 ([7]). Let X = {X(t), t ∈ [0, T ]} be a centered Gaussian stochastic
process such that ∫ T

0

c : =
(
E(X(t))2

)p/2
dt < ∞.

Then the integral
∫ T

0
|X(t)|p dt is well defined with probability one and

P

{∫ T

0

|X(t)|p dt > ε

}
≤ 2 exp

{
− ε2/p

2c2/p

}

for all ε > cp
p
2 .

3. Simulation of a fractional Brownian motion with a given reliability

and accuracy in the space Lp([0, T ])

Definition 3.1. We say that a model SM = {SM (t,Λ), t ∈ [0, T ]} approximates the
stochastic process Wα = {Wα(t), t ∈ [0, T ]} with a given reliability 1− δ, 0 < δ < 1, and
accuracy ε > 0 in the space Lp([0, T ]), p ≥ 1, if

P

⎧⎨
⎩
(∫ T

0

|Wα(t)− SM (t,Λ)|p dt
)1/p

> ε

⎫⎬
⎭ ≤ δ.
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Since the deviation XM (t,Λ) := Wα(t) − SM (t,Λ), t ∈ [0, T ], is a centered Gaussian
stochastic process, one can apply Proposition 2.1. As a result, we obtain sufficient
conditions under which the model SM (t,Λ), t ∈ [0, T ], approximates the process Wα

with a reliability 1− δ, 0 < δ < 1, and accuracy ε > 0 in the space Lp([0, T ]).

Theorem 3.1. A model SM approximates the process Wα with a given reliability 1− δ,
0 < δ < 1, and accuracy ε > 0 in the space Lp([0, T ]), p ≥ 1, if∫ T

0

(
2A2

π

(
t2λ2−α

1

2(2− α)
+

1

αΛα
+ 2t2

M−1∑
i=1

(λi+1 − λi)
3

3λα+1
i

+
(
1 + 22−

3
2α

)
t
3
2α

M−1∑
i=1

(λi+1 − λi)
α+2

λ
α
2 +2
i

))p/2

dt

< εp ·min

{
1

p
p
2

,
1(

−2 ln δ
2

)p/2
}

in the case of α ∈ (0, 1], or if∫ T

0

(
2A2

π

(
t2λ2−α

1

2(2− α)
+

1

αΛα
+ 2t2

M−1∑
i=1

(λi+1 − λi)
3

3λα+1
i

+ 4t2
M−1∑
i=1

(λi+1 − λi)
α
2 + 3

2

λ
3α
2 − 1

2
i

))p/2

dt

< εp ·min

{
1

p
p
2

,
1(

−2 ln δ
2

)p/2
}

in the case of α ∈ (1, 2), where M ∈ N and 0 = λ0 < λ1 < · · · < λM = Λ is a partition
of the interval [0,Λ].

Proof. As mentioned above, one can apply Proposition 2.1 to the deviation process
XM (t,Λ), t ∈ [0, T ]. This means that the process XM (t,Λ) admits the inequality

P

{∫ T

0

|XM (t,Λ)|p dt > u

}
≤ 2 exp

{
− u

2
p

2c
2
p

}

for all u > cp
p
2 , where

c =

∫ T

0

(
E(XM (t,Λ))2

)p/2
dt.

If we choose ε = u1/p and

δ ≥ 2 exp

{
− u2/p

2c2/p

}
= 2 exp

{
− ε2

2c2/p

}
, 0 < δ < 1,

then the above bound is rewritten as

P

⎧⎨
⎩
(∫ T

0

|XM (t,Λ)|p dt
)1/p

> ε

⎫⎬
⎭ ≤ δ.

Note that the latter inequality coincides with that of Definition 3.1. Therefore, in order
to obtain sufficient conditions under which the model SM approximates the process Wα

with a given reliability 1− δ and accuracy ε > 0 in the space Lp([0, T ]) one only needs
to choose appropriate parameters to satisfy the assumptions of Proposition 2.1.



SIMULATION OF A FRACTIONAL BROWNIAN MOTION 103

First, the condition u > cpp/2 implies ε = u1/p >
(
cpp/2

)1/p
= c1/pp1/2, whence

c <
εp

pp/2
.

Second, if δ ∈ (0, 1) is such that

δ ≥ 2 exp

{
− ε2

2c2/p

}
,

then

exp

{
− ε2

2c
2
p

}
≤ δ

2
; − ε2

2c
2
p

≤ ln
δ

2
; 2c

2
p ≤ ε2

− ln δ
2

;

c ≤
(

ε2

−2 ln δ
2

)p/2

=
εp(

−2 ln δ
2

)p/2 .
Hence

(1) c =

∫ T

0

(
E(XM (t,Λ))2

)p/2
dt < εp ·min

{
1

p
p
2

,
1

(−2 ln δ
2 )

p/2

}
.

Further we consider the second moment E(XM (t,Λ))2:

E
(
XM (t,Λ)

)2
= E

(
Wα(t)− SM (t,Λ)

)2
= E

(
Wα(t, [0, λ1]) +Wα(t, [λ1,Λ]) +Wα(t, [Λ,∞])− SM (t,Λ)

)2
= E

(
Wα(t, [0, λ1])

)2
+ E

(
Wα(t, [Λ,∞])

)2
+ E

(
Wα(t, [λ1,Λ])− SM (t,Λ)

)2
.

Now we estimate each term in the above expression separately:

E
(
Wα(t, [0, λ1])

)2
=

A2

π
E

(∫ λ1

0

cos(λt)− 1

λ
α+1
2

dξ(λ)−
∫ λ1

0

sin(λt)

λ
α+1
2

dη(λ)

)2

=
A2

π

{
E

(∫ λ1

0

cos(λt)− 1

λ
α+1
2

dξ(λ)

)2

+ E

(∫ λ1

0

sin(λt)

λ
α+1
2

dη(λ)

)2}

=
A2

π

{∫ λ1

0

(cos(λt)− 1)2

λα+1
dλ+

∫ λ1

0

sin2(λt)

λα+1
dλ

}

=
A2

π

{∫ λ1

0

(cos(λt)− 1)2 + sin2(λt)

λα+1
dλ

}

=
A2

π

{∫ λ1

0

2− 2 cos(λt)

λα+1
dλ

}
=

A2

π

{∫ λ1

0

4 sin2
(
λt
2

)
λα+1

dλ

}

≤ A2

π

{
t2
∫ λ1

0

λ2−1−α dλ

}
=

A2

π

{
t2λ2−α

1

2− α

}
.

The second term in that expression admits the bound

E
(
Wα(t, [Λ,∞])

)2
= E

(
A√
π

∫ ∞

Λ

cos(λt)− 1

λ
α+1
2

dξ(λ)−
∫ ∞

Λ

sin(λt)

λ
α+1
2

dη(λ)

)2

=
A2

π

{∫ ∞

Λ

2− 2 cos(λt)

λα+1
dλ

}
≤ 2

A2

π

{∫ ∞

Λ

dλ

λα+1

}

≤ 2A2

απΛα
.
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The third term E
(
Wα(t, [λ1,Λ])− SM (t,Λ)

)2
is such that

E
(
Wα(t, [λ1,Λ])− SM (t,Λ)

)2
=

A2

π
E

(∫ Λ

λ1

cos(λt)− 1

λ
α+1
2

dξ(λ)−
∫ Λ

λ1

sin(λt)

λ
α+1
2

dη(λ)

−
M−1∑
i=1

cos(λit)− 1

λ
α+1
2

i

(
ξ(λi+1)− ξ(λi)

)

+
M−1∑
i=1

sin(λit)

λ
α+1
2

i

(
η(λi+1)− η(λi)

))2

=
A2

π

⎧⎨
⎩E

⎛
⎝M−1∑

i=1

∫ λi+1

λi

(
cos(λt)− 1

λ
α+1
2

− cos(λit)− 1

λ
α+1
2

i

)
dξ(λ)

−
M−1∑
i=1

∫ λi+1

λi

(
sin(λt)

λ
α+1
2

− sin(λit)

λ
α+1
2

i

)
dη(λ)

)2
⎫⎬
⎭

=
A2

π

⎧⎨
⎩

M−1∑
i=1

∫ λi+1

λi

(
cos(λt)− 1

λ
α+1
2

− cos(λit)− 1

λ
α+1
2

i

)2

dλ

+

M−1∑
i=1

∫ λi+1

λi

(
sin(λt)

λ
α+1
2

− sin(λit)

λ
α+1
2

i

)2

dλ

⎫⎬
⎭

=
A2

π
(Σcos +Σsin) .

Now we estimate the integral

∫ λi+1

λi

(
sin(λt)

λ
α+1
2

− sin(λit)

λ
α+1
2

i

)2

dλ

=

∫ λi+1

λi

(
sin(λt)

λ
α+1
2

− sin(λit)

λ
α+1
2

+
sin(λit)

λ
α+1
2

− sin(λit)

λ
α+1
2

i

)2

dλ

≤ 2

⎛
⎝∫ λi+1

λi

(
sin(λt)− sin(λit)

λ
α+1
2

)2

dλ+

∫ λi+1

λi

(
sin(λit)

)2 ( 1

λ
α+1
2

− 1

λ
α+1
2

i

)2

dλ

⎞
⎠

= 2(Wi1 +Wi2)

and Wi1 and Wi2 on the right-hand side of the latter inequality:

(2) Wi1 ≤
∫ λi+1

λi

4
(
sin

(
λt−λit

2

))2
λα+1
i

dλ ≤
∫ λi+1

λi

(λ− λi)
2t2

λα+1
i

dλ =
t2(λi+1 − λi)

3

3λα+1
i

.

When estimating Wi2, we consider separately the cases α ≤ 1 and 1 < α < 2. In the
case of α ≤ 1, we apply the inequality | sin x| ≤ |x|β , 0 < β ≤ 1. Then
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(3) Wi2 ≤
∫ λi+1

λi

λ2β
i t2β

⎛
⎝ 1

λ
α+1
2

i

− 1

λ
α+1
2

i+1

⎞
⎠

2

dλ =

∫ λi+1

λi

λ2β
i t2β

(
λ

α+1
2

i+1 − λ
α+1
2

i

)2

(
λ

α+1
2

i λ
α+1
2

i+1

)2 dλ

for β < α.
Recalling the inequality aν − bν ≤ (a− b)ν if ν ≤ 1 and a > b we deduce from (3) that

Wi2 ≤ λ2β
i t2β

(λi+1 − λi)
α+1

λ
2(α+1)
i

∫ λi+1

λi

dλ = t2β
(λi+1 − λi)

α+2

λ
2(α−β)+2
i

,

since 0 < λi < λi+1 and (α+ 1)/2 ≤ 1 for α ≤ 1. Choose β = 3
4α. Then

(4) Wi2 ≤ t
3
2α

(λi+1 − λi)
α+2

λ
α
2 +2
i

.

In the case of 1 < α < 2, we have

(5)

Wi2 ≤
∫ λi+1

λi

λ2
i t

2

(
λ

α+1
2

i+1 − λ
α+1
2

i

)2

(λiλi+1)α+1
dλ

=

∫ λi+1

λi

λ2
i t

2

(
λ

α+1
4

i+1 − λ
α+1
4

i

)2 (
λ

α+1
4

i+1 + λ
α+1
4

i

)2

(λiλi+1)α+1
dλ

≤
∫ λi+1

λi

λ2
i t

2 (λi+1 − λi)
α+1
2 4λ

α+1
2

i+1

(λiλi+1)α+1
dλ =

4t2(λi+1 − λi)
α
2 + 3

2

λα−1
i λ

α+1
2

i+1

≤ 4t2(λi+1 − λi)
α
2 + 3

2

λ
3α
2 − 1

2

i

.

Therefore inequalities (2)–(5) imply that

(6) Σsin ≤ 2

(
t2

M−1∑
i=1

(λi+1 − λi)
3

3λα+1
i

+ t
3
2α

M−1∑
i=1

(λi+1 − λi)
α+2

λ
α
2 +2
i

)

for α ≤ 1, or that

(7) Σsin ≤ 2t2

(
M−1∑
i=1

(λi+1 − λi)
3

3λα+1
i

+
M−1∑
i=1

4(λi+1 − λi)
α
2 + 3

2

λ
3α
2 − 1

2

i

)

for 1 < α < 2.
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Now we estimate the integral
∫ λi+1

λi

(
cos(λt)−1

λ
α+1
2

− cos(λit)−1

λ
α+1
2

i

)2

dλ:

∫ λi+1

λi

(
cos(λt)− 1

λ
α+1
2

− cos(λit)− 1

λ
α+1
2

i

)2

dλ

=

∫ λi+1

λi

(
cos(λt)− 1

λ
α+1
2

− cos(λit)− 1

λ
α+1
2

+
cos(λit)− 1

λ
α+1
2

− cos(λit)− 1

λ
α+1
2

i

)2

dλ

≤ 2

(∫ λi+1

λi

(
cos(λt)− cos(λit)

λ
α+1
2

)2

dλ

+

∫ λi+1

λi

(cos(λit)− 1)2

(
1

λ
α+1
2

− 1

λ
α+1
2

i

)2

dλ

⎞
⎠

= 2(Wi3 +Wi4).

For the term Wi3, we get

(8)

Wi3 =

∫ λi+1

λi

(
cos(λt)− cos(λit)

)2
λα+1

dλ =

∫ λi+1

λi

(
2 sin

(
λt+λit

2

)
sin

(
λit−λt

2

))2
λα+1

dλ

≤
∫ λi+1

λi

4
∣∣λit−λt

2

∣∣2
λα+1
i

dλ ≤
∫ λi+1

λi

t2 (λi+1 − λi)
2

λα+1
i

dλ =
t2 (λi+1 − λi)

3

3λα+1
i

.

For α ≤ 1, the term Wi4 is estimated as follows:

Wi4 =

∫ λi+1

λi

(
cos(λit)− 1

)2 ( 1

λ
α+1
2

− 1

λ
α+1
2

i

)2

dλ

=

∫ λi+1

λi

(
2 sin2

(
λit

2

))2
(

1

λ
α+1
2

− 1

λ
α+1
2

i

)2

dλ

=

∫ λi+1

λi

4 sin4
(
λit

2

)(
1

λ
α+1
2

− 1

λ
α+1
2

i

)2

dλ

≤
∫ λi+1

λi

4

(∣∣∣∣λit

2

∣∣∣∣
β
2

)4
(
λ

α+1
2

i+1 − λ
α+1
2

i

)2

(λiλi+1)α+1
dλ

≤ 22−2βλ2β
i t2β

(λi+1 − λi)
α+1

λ
2(α+1)
i

∫ λi+1

λi

dλ =
22−2βt2β(λi+1 − λi)

α+2

λ
2(α−β)+2
i

.

We choose β = 3
4α again. Then

(9) Wi4 ≤ 22−
3
2αt

3
2α(λi+1 − λi)

α+2

λ
α
2 +2
i

.
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In the case of 1 < α < 2, we get

(10)

Wi4 =

∫ λi+1

λi

4 sin4
(
λit

2

) (
λ

α+1
2

i+1 − λ
α+1
2

i

)2

(λiλi+1)α+1
dλ

≤
∫ λi+1

λi

4

(∣∣∣∣λit

2

∣∣∣∣
1
2

)4
(
λ

α+1
4

i+1 − λ
α+1
4

i

)2 (
λ

α+1
4

i+1 + λ
α+1
4

i

)2

(λiλi+1)α+1
dλ

≤
∫ λi+1

λi

λ2
i t

2 (λi+1 − λi)
α+1
2 4λ

α+1
2

i+1

(λiλi+1)α+1
dλ ≤ 4t2(λi+1 − λi)

α
2 + 3

2

λ
3α
2 − 1

2
i

.

Therefore inequalities (8)–(10) imply that

(11) Σcos ≤ 2

(
t2

M−1∑
i=1

(λi+1 − λi)
3

3λα+1
i

+ 22−
3
2αt

3
2α

M−1∑
i=1

(λi+1 − λi)
α+2

λ
α
2 +2
i

)

for α ≤ 1, or that

(12) Σcos ≤ 2t2

(
M−1∑
i=1

(λi+1 − λi)
3

3λα+1
i

+
M−1∑
i=1

4(λi+1 − λi)
α
2 + 3

2

λ
3α
2 − 1

2

i

)

for 1 < α < 2.
Therefore,

E
(
Wα(t, [λ1,Λ])− SM (t,Λ)

)2

≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2A2

π

(
2t2

∑M−1
i=1

(λi+1−λi)
3

3λα+1
i

+
(
1 + 22−

3
2α

)
t
3
2α

∑M−1
i=1

(λi+1−λi)
α+2

λ
α
2

+2

i

)
,

α ≤ 1;

4A2t2

π

(∑M−1
i=1

(λi+1−λi)
3

3λα+1
i

+ 4
∑M−1

i=1
(λi+1−λi)

α
2

+ 3
2

λ
3α
2

− 1
2

i

)
, 1 < α < 2.

The second moment E(XM (t,Λ))2 is estimated as follows:

(13)

E
(
XM (t,Λ)

)2 ≤ 2A2

π

(
t2λ2−α

1

2(2− α)
+

1

αΛα
+ 2t2

M−1∑
i=1

(λi+1 − λi)
3

3λα+1
i

+ (1 + 22−
3
2α)t

3
2α

M−1∑
i=1

(λi+1 − λi)
α+2

λ
α
2 +2
i

)
, α ≤ 1,

and

(14)

E
(
XM (t,Λ)

)2 ≤ 2A2

π

(
t2λ2−α

1

2(2− α)
+

1

αΛα
+ 2t2

M−1∑
i=1

(λi+1 − λi)
3

3λα+1
i

+ 4t2
M−1∑
i=1

(λi+1 − λi)
α
2 + 3

2

λ
3α
2 − 1

2

i

)
,

1 < α < 2.
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Finally, we conclude from bounds (13)–(14) that condition (1) holds if

(15)

∫ T

0

(
2A2

π

(
t2λ2−α

1

2(2− α)
+

1

αΛα
+ 2t2

M−1∑
i=1

(λi+1 − λi)
3

3λα+1
i

+
(
1 + 22−

3
2α

)
t
3
2α

M−1∑
i=1

(λi+1 − λi)
α+2

λ
α
2 +2
i

))p/2

dt

< εp ·min

{
1

p
p
2

,
1

(−2 ln δ
2 )

p/2

}
, α ≤ 1,

and

(16)

∫ T

0

(
2A2

π

(
t2λ2−α

1

2(2− α)
+

1

αΛα
+ 2t2

M−1∑
i=1

(λi+1 − λi)
3

3λα+1
i

+ 4t2
M−1∑
i=1

(λi+1 − λi)
α
2 + 3

2

λ
3α
2 − 1

2
i

))p/2

dt

< εp ·min

{
1

p
p
2

,
1(

−2 ln δ
2

)p/2
}
, 1 < α < 2.

Therefore if conditions (15)–(16) hold, then Theorem 3.1 is proved. �

Corollary 3.1. A model SM approximates the process Wα with a given reliability 1− δ,
0 < δ < 1, and accuracy ε > 0 in the space L2([0, T ]) if

2A2

π

(
T 3λ2−α

1

6(2− α)
+

T

αΛα
+

2T 3

9

M−1∑
i=1

(λi+1 − λi)
3

λα+1
i

+
(1 + 22−

3
2α)T

3
2α+1

3
2α+ 1

M−1∑
i=1

(λi+1 − λi)
α+2

λ
α
2 +2
i

)

<
ε2

2
·min

{
1,

(
− ln

δ

2

)−1
}

in the case of α ∈ (0, 1], or if

2A2

π

(
T 3λ2−α

1

6(2− α)
+

T

αΛα
+

2T 3

9

M−1∑
i=1

(λi+1 − λi)
3

λα+1
i

+
4T 3

3

M−1∑
i=1

(λi+1 − λi)
α
2 + 3

2

λ
3α
2 − 1

2
i

)

<
ε2

2
·min

{
1,

(
− ln

δ

2

)−1
}

in the case of α ∈ (1, 2), where M ∈ N and 0 = λ0 < λ1 < · · · < λM = Λ is a partition
of the interval [0,Λ].

Proof. If p = 2, then

εp ·min

{
1

p
p
2

,
1

(−2 ln δ
2 )

p/2

}
=

ε2

2
·min

{
1,

(
− ln

δ

2

)−1
}
.

Further, substituting p = 2 into the integrands in the assumptions of Theorem 3.1 and
then integrating over t ∈ [0, T ] we prove Corollary 3.1. �
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4. A procedure for simulation in the space L2([0, 1])

Note that

Δλ = λi+1 − λi =
Λ

M
, λ1 =

Λ

M
, λi =

iΛ

M
for a uniform partition of the interval [0,Λ]. Corollary 3.1 allows one to easily obtain
conditions for evaluating the parameters Λ and M of the model for the space L2([0, 1]).
For example, if α ∈ (0, 1], then

2A2

π

⎛
⎝ Λ2−α

6(2− α)M2−α
+

1

αΛα
+

2Λ2−α

9M2−α

M−1∑
i=1

1

iα+1
+

(
1 + 22−

3
2α

)
Λ

α
2(

3
2α+ 1

)
M

α
2

M−1∑
i=1

1

i
α
2 +2

⎞
⎠

<
ε2

2
·min

{
1,

(
− ln

δ

2

)−1
}
.

The trajectories of some models of the fractional Brownian motion are depicted in
Figures 1–4 for the reliability 1 − δ = 0.95 and accuracy ε = 0.05 for several values of
the parameter α.

Figure 1. α = 0.4 Figure 2. α = 0.6

Figure 3. α = 0.8 Figure 4. α = 1.2

As expected, a larger value of α results in a smoother trajectory of a model of the
fractional Brownian motion.

The procedure for simulation of a fractional Brownian motion presented in the pa-
per [26] is based on a representation of this process in the form of a random series [5].
This procedure requires enormous preliminary work needed to evaluate the zeros of a
Bessel function with a given accuracy. Instead, the procedure presented in the current
paper is based on the spectral representation of the fractional Brownian motion and is
more effective as far as the running time is concerned.
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5. Concluding remarks

A new procedure for simulation of a fractional Brownian motion with a given relia-
bility and accuracy in the space Lp([0, T ]) is proposed in the paper. The general results
obtained for p ≥ 1 are used for a particular example for simulation of the fractional
Brownian motion in the space L2([0, 1]).
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