Increasing domain asymptotics for the first Minkowski functional of spherical random fields
Authors:
N. N. Leonenko and M. D. Ruiz-Medina
Original publication:
Teoriya Imovirnostei ta Matematichna Statistika, tom 97 (2017).
Journal:
Theor. Probability and Math. Statist. 97 (2018), 127-149
MSC (2010):
Primary 60G60, 60F05, 60G10, 62E20
DOI:
https://doi.org/10.1090/tpms/1053
Published electronically:
February 21, 2019
MathSciNet review:
3746004
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: The restriction to the sphere of a homogeneous and isotropic random field defines a spherical isotropic random field. This paper derives central and noncentral limit results for the first Minkowski functional subordinated to homogeneous and isotropic Gaussian and chi-squared random fields, restricted to the sphere in . Both scenarios are motivated by their interesting applications in the analysis of the Cosmic Microwave Background (CMB) radiation.
- [1] Robert J. Adler and Jonathan E. Taylor, Random fields and geometry, Springer Monographs in Mathematics, Springer, New York, 2007. MR 2319516
- [2] Simeon M. Berman, Sojourns of vector Gaussian processes inside and outside spheres, Z. Wahrsch. Verw. Gebiete 66 (1984), no. 4, 529–542. MR 753812, https://doi.org/10.1007/BF00531889
- [3] Herold Dehling and Murad S. Taqqu, The empirical process of some long-range dependent sequences with an application to 𝑈-statistics, Ann. Statist. 17 (1989), no. 4, 1767–1783. MR 1026312, https://doi.org/10.1214/aos/1176347394
- [4] R. L. Dobrushin and P. Major, Non-central limit theorems for nonlinear functionals of Gaussian fields, Z. Wahrsch. Verw. Gebiete 50 (1979), no. 1, 27–52. MR 550122, https://doi.org/10.1007/BF00535673
- [5] C. Hikage, E. Komatsu, and T. Matsubara, Primordial non-Gaussianity and analytical formula for Minkowski functionals of the cosmic microwave background and large-scale structure, The Astrophysical Journal 653 (2006), 11-26.
- [6] A. V. Ivanov and N. N. Leonenko, Statistical analysis of random fields, Mathematics and its Applications (Soviet Series), vol. 28, Kluwer Academic Publishers Group, Dordrecht, 1989. With a preface by A. V. Skorokhod; Translated from the Russian by A. I. Kochubinskiĭ. MR 1009786
- [7] Annika Lang and Christoph Schwab, Isotropic Gaussian random fields on the sphere: regularity, fast simulation and stochastic partial differential equations, Ann. Appl. Probab. 25 (2015), no. 6, 3047–3094. MR 3404631, https://doi.org/10.1214/14-AAP1067
- [8] Nikolai Leonenko, Limit theorems for random fields with singular spectrum, Mathematics and its Applications, vol. 465, Kluwer Academic Publishers, Dordrecht, 1999. MR 1687092
- [9] N. N. Leonenko and A. Ya. Olenko, Tauberian theorems for correlation functions and limit theorems for spherical averages of random fields, Random Oper. Stochastic Equations 1 (1993), no. 1, 57–67. MR 1254176, https://doi.org/10.1515/rose.1993.1.1.57
- [10] Nikolai Leonenko and Andriy Olenko, Tauberian and Abelian theorems for long-range dependent random fields, Methodol. Comput. Appl. Probab. 15 (2013), no. 4, 715–742. MR 3117624, https://doi.org/10.1007/s11009-012-9276-9
- [11] Nikolai Leonenko and Andriy Olenko, Sojourn measures of Student and Fisher-Snedecor random fields, Bernoulli 20 (2014), no. 3, 1454–1483. MR 3217450, https://doi.org/10.3150/13-BEJ529
- [12] Nikolai Leonenko, M. Dolores Ruiz-Medina, and Murad S. Taqqu, Non-central limit theorems for random fields subordinated to gamma-correlated random fields, Bernoulli 23 (2017), no. 4B, 3469–3507. MR 3654813, https://doi.org/10.3150/16-BEJ853
- [13] N. N. Leonenko, M. D. Ruiz-Medina, and M. S. Taqqu, Rosenblatt distribution subordinated to Gaussian random fields with long-range dependence, Stoch. Anal. Appl. 35 (2017), no. 1, 144–177. MR 3581700, https://doi.org/10.1080/07362994.2016.1230723
- [14] N. N. Leonenko and K. V. Rybasov, Conditions for convergence to a Wiener process of spherical means of local functionals of Gaussian fields, Teor. Veroyatnost. i Mat. Statist. 34 (1986), 85–93, 136 (Russian). MR 887927
- [15] N. N. Leonenko and Sh. O. Sabirov, Spherical measures for the exceedence of a level for a class of random fields, Kibernetika (Kiev) 2 (1989), 101–105, 131, 135 (Russian, with English summary); English transl., Cybernetics 25 (1989), no. 2, 272–280. MR 1009707, https://doi.org/10.1007/BF01070136
- [16] Nikolai N. Leonenko, Murad S. Taqqu, and Gyorgy H. Terdik, Estimation of the covariance function of Gaussian isotropic random fields on spheres, related Rosenblatt-type distributions and the cosmic variance problem, Electron. J. Stat. 12 (2018), no. 2, 3114–3146. MR 3857874, https://doi.org/10.1214/18-EJS1473
- [17] Eugene Lukacs, Characteristic functions, Griffin’s Statistical Monographs& Courses, No. 5. Hafner Publishing Co., New York, 1960. MR 0124075
- [18] Péter Major, Multiple Wiener-Itô integrals, Lecture Notes in Mathematics, vol. 849, Springer, Berlin, 1981. With applications to limit theorems. MR 611334
- [19] Domenico Marinucci and Giovanni Peccati, Random fields on the sphere, London Mathematical Society Lecture Note Series, vol. 389, Cambridge University Press, Cambridge, 2011. Representation, limit theorems and cosmological applications. MR 2840154
- [20] Domenico Marinucci and Giovanni Peccati, Mean-square continuity on homogeneous spaces of compact groups, Electron. Commun. Probab. 18 (2013), no. 37, 10. MR 3064996, https://doi.org/10.1214/ECP.v18-2400
- [21] D. Munshi, J. Smidt, A. Cooray, A. Renzi, A. Heavens, and P. Coles, New approaches to probing Minkowski functionals, Monthly Notices of the Royal Astronomical Society 434 (2013), 2830-2855.
- [22] Giovanni Peccati and Murad S. Taqqu, Wiener chaos: moments, cumulants and diagrams, Bocconi & Springer Series, vol. 1, Springer, Milan; Bocconi University Press, Milan, 2011. A survey with computer implementation; Supplementary material available online. MR 2791919
- [23] Viet-Hung Pham, On the rate of convergence for central limit theorems of sojourn times of Gaussian fields, Stochastic Process. Appl. 123 (2013), no. 6, 2158–2174. MR 3038501, https://doi.org/10.1016/j.spa.2013.01.016
- [24] Pham Viet Hung, Quantitative central limit theorems of spherical sojourn times of isotropic Gaussian fields, Acta Math. Vietnam. 42 (2017), no. 4, 637–651. MR 3708033, https://doi.org/10.1007/s40306-017-0212-5
- [25] Planck 2015 results. XVI, Isotropy and statistics of the CMB, Planck Collaboration, Astronomy and Astrophysics 594 (2016), A16.
- [26] Planck 2015 results. I, Overview of products and scientific results, Astronomy and Astrophysics 594 (2016), A16.
- [27] Ju. D. Popov and M. Ĭ. Jadrenko, Certain questions of the spectral theory of homogeneous and isotropic random fields, Teor. Verojatnost. i Primenen. 14 (1969), 531–540 (Russian, with English summary). MR 0278374
- [28] Michael Reed and Barry Simon, Methods of modern mathematical physics. I, 2nd ed., Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980. Functional analysis. MR 751959
- [29] J. Schmalzing and K. M. Gorski, Minkowski functionals used in the morphological analysis of Cosmic Microwave Background anisotropy maps, Mon. Not. R. Astron. Soc. 297 (1998), 355-365.
- [30] Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- [31] Murad S. Taqqu, Weak convergence to fractional Brownian motion and to the Rosenblatt process, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 31 (1974/75), 287–302. MR 400329, https://doi.org/10.1007/BF00532868
- [32] Mark S. Veillette and Murad S. Taqqu, Properties and numerical evaluation of the Rosenblatt distribution, Bernoulli 19 (2013), no. 3, 982–1005. MR 3079303, https://doi.org/10.3150/12-BEJ421
- [33] M. Ĭ. Yadrenko, Spectral theory of random fields, Translation Series in Mathematics and Engineering, Optimization Software, Inc., Publications Division, New York, 1983. Translated from the Russian. MR 697386
Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2010): 60G60, 60F05, 60G10, 62E20
Retrieve articles in all journals with MSC (2010): 60G60, 60F05, 60G10, 62E20
Additional Information
N. N. Leonenko
Affiliation:
Cardiff School of Mathematics, Cardiff University, Senghennydd Road, Cardiff CF24 4AG, United Kingdom
Email:
LeonenkoN@cardiff.ac.uk
M. D. Ruiz-Medina
Affiliation:
Department of Statistics and Operations Research, Campus de Fuente Nueva s/n, University of Granada, E-18071 Granada, Spain
Email:
mruiz@ugr.es
DOI:
https://doi.org/10.1090/tpms/1053
Keywords:
Central and noncentral limit theorems,
chi-squared random fields,
Gaussian random fields,
Karhunen--Lo\'eve expansion,
spherical Rosenblatt distribution
Received by editor(s):
September 17, 2017
Published electronically:
February 21, 2019
Additional Notes:
The first author was supported in particular by Cardiff Incoming Visiting Fellowship Scheme, International Collaboration Seedcorn Fund, Data Innovation URI Seedcorn Fund, and Australian Research Council’s Discovery Projects funding scheme (project DP160101366).
The authors were supported by project MTM2015-71839-P of MINECO, Spain (co-funded with FEDER funds).
Dedicated:
This contribution is dedicated to the 85th anniversary of Professor Mykhailo Yosypovych Yadrenko
Article copyright:
© Copyright 2019
American Mathematical Society