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SPECTRAL EXPANSIONS OF RANDOM SECTIONS
OF HOMOGENEOUS VECTOR BUNDLES

A. MALYARENKO

Dedicated to my teacher Mykhailo Yadrenko in the occasion of his 85th birthday

ABSTRACT. Tiny fluctuations of the Cosmic Microwave Background as well as vari-
ous observable quantities obtained by spin raising and spin lowering of the effective
gravitational lensing potential of distant galaxies and galaxy clusters are described
mathematically as isotropic random sections of homogeneous spin and tensor bun-
dles. We consider the three existing approaches to rigourous construction of the
above objects, emphasising an approach based on the theory of induced group rep-
resentations. Both orthogonal and unitary representations are treated in a unified
manner. Several examples from astrophysics are included.

1. INTRODUCTION

At the shift of millennia, cosmology came to an era of high-precision measurements.
Various cosmological quantities like the temperature and polarisation of the Cosmic
Microwave Background, the gravitational shear, and others are described mathematically
as single realisations of random fields. Their tiny random fluctuations are now observable.

A rigourous mathematical theory of scalar-valued random fields has been developing
since the 1920s; see [2I] and the references therein. However, cosmological applications
require one to introduce other types of random fields, the random sections of wvector,
tensor, and spin bundles.

The first mathematical model of a complex-valued spin random field on the sphere
was constructed by Geller and Marinucci in [6]. They formulated the classical theory
of Newman and Penrose [25] in the language of complex line bundles over the two-
dimensional sphere. See also [I7] for the case of tensor-valued random fields on the
sphere.

Another version of such a model was proposed by the author; see [20]. He used the fact
that the Hilbert space H of square-integrable sections of a homogeneous vector or tensor
bundle with the fiber E carries the so-called induced representation of the symmetry
group G of the bundle’s base. The powerful theory of induced representations can then
be used for spectral analysis of random sections of the bundle.

Baldi and Rossi [2] used the following observation. There is a map called the pullback
acting from the space H to the space of E-valued square-integrable functions on G
satisfying some symmetry condition. Applying the pullback to a random section of the
bundle, we obtain a more simple object, an F-valued random field on G. No information
is lost under the pullback, but the theory becomes easier.
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To show the issues one can meet, consider a toy example. Let M = S' be the centred
unit circle embedded into the plane R?. Let X (x) be a complex-valued random field
on S, that is, there is a probability space (€2, F,P) and a function

X(x,w): S'xQ—C

such that for any fixed xg € S! the function X (xg,w):  — C is a random variable. As-
sume a little bit more: the function X (x,w) is measurable as a function of two variables,
and has a finite variance: E[|X (x)|?] < oo for all x € S'. In other words, X (x) € L(Q2),
where L%(Q) is the Hilbert space of all complex-valued random variables on  with in-
ner product (X,Y) = E[XY |. By the result of Marinucci and Peccati [23], the field
X (x) is mean-square continuous, that is, the map X (x): St — L?(Q) is continuous. Put
U =S8\ {(1,0)}. An element x € U has the form x = (cos ¢,sin )" with ¢ € (0, 27).
Cover the set U by the chart o: U — (0,27) acting by o(x) = ¢. The mean-square
continuous random field X (x) is completely determined by its restriction X (¢) to the
dense set U. In what follows, we use both notations.

Let G = SO(2) be the group of orthogonal 2 x 2 matrices with unit determinant. An

element
[ cos®p  siny
99 =\ —sin Y costp

of the group G acts on an element x € S! by matrix-vector multiplication. In other
words, G acts on S! by rotations.

Definition 1. A random field X (x) is called strictly isotropic if its finite-dimensional
distributions are invariant with respect to the above action, that is, for any positive
integer n, for any n distinct points x, ..., x, € S!, and for any g € G, the random
vectors (X (x1),...,X(x,))" and (X (gx1),...,X(g%x,))" have the same distribution.

Let L?(X) be the intersection of all closed subspaces of the space L?(f2) that contain
the set {X(x): x € S'}. The group G acts on the vector X (x) by

((X)x) =X (97'%), geG.

This action can be extended by linearity and continuity to the action of G in L?(X). It
is easy to see the following: if the random field X (x) is isotropic, then the above action
is a unitary representation of the group G, that is, a continuous homomorphism of G to
the group of unitary operators in L?(X) equipped with the strong operator topology.

In Section 2l we give a quick introduction to representation theory for a reader without
the necessary background, using [4] as a main reference. Our main results, the spectral
expansions of invariant random fields in homogeneous real and complex vector bundles,
are presented in Section[3l Several examples from astrophysics are presented in Section [l
In particular, ExampleBlshows the equivalence of the spectral expansions of the polarised
Cosmic Microwave Background given by Kamionkowski et al. in [10] and by Zaldarriaga
and Seljak in [32]. In Example 4, we present an approach to the spectral expansions of
the distortion random fields alternative both to expansions in spherical Bessel functions
[BLI8LI2L24] and to wavelet expansions [14l[15]. See also [16] for examples of parametric
families of tensor-valued random fields.

2. A QUICK JUMP INTO REPRESENTATION THEORY
Let G be a group with identity e, and let V' be a set. A left action of G on V is a map
(1) p:GXV =V, (9,v) = p(g,v) =g-v
such that e-v =wv and (gh)-v=g-(h-v).
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Let K be either the field R of reals or the field C of complex numbers. A left action is
called a representation if V' is a linear space over K and all the left translations v +— g-v
are K-linear. If V' is finite dimensional, then we suppose in addition that the action ()
is continuous. In what follows we denote the representation () by just V if the action p
is considered.

A subspace U C V is called invariant if g-u € U for g € G and u € U. A representation
V # {0} is called drreducible if it has no invariant subspaces other than {0} and V.

Denote by V; the subspace of V' generated by all finite-dimensional invariant subspaces.
The subspace Vj is invariant, since each element of V is contained in a finite-dimensional
invariant subspace.

Let V and W be two representations of a group G. A linear map f: V — W is
called a G-intertwining operator if f(g-v)=g- f(v) for g € G and v € V. Denote by
Homg (V, W) the K-linear space of all G-intertwining operators. We can make G act on
the above space by the representation

(2) (9-H)=g-(f(g7"v)).
The representations V' and W are called equivalent if the space Homg(V, W) contains
an invertible operator.

In what follows we suppose that G is a compact topological group. There are finitely
or countably many equivalence classes of irreducible representations of G. Moreover, each
irreducible representation V' is finite dimensional, and has an inner product V x V — K,
(u,v) = (u,v) which is G-invariant, that is, (g-u,g-v) = (u,v) for all g € G and u,
v € V. Such a representation is called orthogonal when K = R and unitary when K = C.

It remains to investigate the structure of a particular representation of a group G.
Assume that G is a Lie group, that is: G is a smooth manifold, and the group multipli-
cation and taking the inverse element are smooth maps. Let K be a closed subgroup of
G, and let (E, (-,-)) be a finite-dimensional representation of K with K-invariant inner
product. Let G x i E be the quotient space of G x E under the equivalence relation
(g9,v) ~ (gk,k=* - v) for k € K. The map (g,v) — gK respects the introduced relation,
that is, equivalent points have the same image. Thus, the above map induces a map
p: G xxg E — G/K. The triple (G xx E,p,G/K) is a homogeneous vector bundle with
fiber p~1(x) isomorphic to E for every x € /K. Traditionally, some of such bundles
are called spin bundles (see Example [2 below) or tensor bundles when the elements of F
are tensors (see Example [3]).

A map s: G/K — G xg E is called a section of the vector bundle (G xx E,p,G/K)
if po s is the identity map in G/K. Let u be the probabilistic G-invariant Borel measure
on G/K. Denote by H the Hilbert space of the measurable sections satisfying

/ Is(@)I13 duz) < oo
G/K
with inner product
(51, 52) = /G @) pdute)

Make G act on H by the representation

(9-8)(z) =gs (97 '2).
The representation H is called the representation induced by the representation E of the
group K.
Let V be an irreducible representation of the group G. Schur’s lemma [4, Chapter I,
Theorem 1.10] says that every nonzero f € D(V) = Homg(V,V) is invertible. Hence
D(V) is a finite-dimensional division algebra over K. When K = C, there is only one
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possibility, C (see [9 Theorem 7.6]). When K = R, there are only three possibilities,
namely, R, C, and H, the skew field of quaternions (Frobenius Theorem [9, p. 452]).

The composition f o «, f € Homg(V, Hy), a € D(V), turns Homg(V, Hs) into a
D(V)-linear space. If D(V) = H, then this space is a right one. The evaluation «(v),
v € V, turns V into another D(V')-linear space. If D(V) = H, then this space is a left
one. Make G act on the correctly defined tensor product Homg(V, H,) ®pvy V by the
representation

g-(fev)=I(g-felg-v),
where the representation g - f is given by (2)). Define the evaluation map
cy: Homg(V, Hy) @pvy V — H
by
ev(f @v) = ().
Denote by G the set of equivalence classes of irreducible representations of the group G

and by c the algebraic direct sum of the linear maps cy over V' € G. By [4, Chapter I11,
Proposition 1.7], the map

c: > @Home(V, Hy) @py V = Hy
ved

is an invertible G-intertwining operator. In other words, the representation Hj is equiv-
alent to the direct sum of the representations Homeg(V, Hs) ® p(vy V over V € G. The
image cy (Homg(V, Hs) ®@p vy V) is called the V-isotypical part of Hy and is the maximal
subspace of H, whose irreducible subspaces are all equivalent to V.

We would like to calculate n(V, Hy), the number of copies of V' contained in Hy. We
have
dimg cy (Homeg(V, Hs) @pevy V)

dimK \%

_ dimg (Homg (V, Hs) @pvy V)
B dimK \% ’

n(V, Hy) =

because cy is invertible. Furthermore,
dimD(V) (HOHIG (Vv, HS) ®D(V) V) dimg D(V)

n(‘/’ HS) - dimg V'

dimg D(V)

dimg V'

_ dimg Homg (V, H,) dimg V' dimg D(V)
T dimg D(V)  dimg D(V)  dimg V
_ dimg Homg(V, Hy)

N dimg D(V)

In order to calculate dimg Homg (V, Hy), we use Frobenius reciprocity [4, Chapter 111,
Proposition 6.2]. It says that the representation Homg(V, Hy) is equivalent to the rep-
resentation Hom g (res?( V,E), where res§ V is the restriction of the representation V
to K. In particular, we have

(3) dimg Homg(V, Hy) = dimg Hom g (resg V,E).

= dimD(V) Homg(V, HS) dimD(V) 1%

Assume F is irreducible. The right-hand side of equation (@) is n (E,resﬁ V), and we
obtain
n(E,res§ V)

(4’ "V ) = G D)
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In particular, when K = C, we have dim¢ D(V) = dim¢ C = 1, and we recover the classi-
cal form of Frobenius reciprocity: the multiplicity of V in Hg is equal to the multiplicity
of E inresG V.

When F is not irreducible, we use the following result: the representation induced by a
direct sum is equivalent to the direct sum of representations induced by the components
of the direct sum. Assume that E contains n; copies of the irreducible representation
E1, ..., np copies of the irreducible representation £,. Then we have

1 & .
(VH) m;nln (EZ,I'GSKV)

The generalised theorem of Peter and Weyl [4, Chapter 111, Theorem 5.7] says that H
is dense in H. Therefore, the representation H has the same structure as H, has.

3. INVARIANT RANDOM FIELDS IN VECTOR BUNDLES

For any = € G/K, let X(x) be a random vector in the fiber p~1(x) isomorphic to E.
Call X(z) a random field in the vector bundle (G xx E,p,G/K) if, in addition, the
function X(z,w) is measurable as a function of two variables. Definition[Ilcan be modified
as follows.

Definition 2. The random field X(z) is called strictly invariant if its finite-dimensional
distributions are invariant with respect to the action z + ¢~ 'z of the group G.

Assume that E[[|X(z)[|%] < oo and let L?(X) be the closed linear span of the vec-
tors X(z), z € G/K, in the space L*(Q, E). Assume that X (z) is mean-square continu-
ous, that is, the map X: G/K — L?(2) is continuous. Then for any g € G the domain
of the map defined by

U(g9)X(z) = X(9~ ")

can be extended by linearity and continuity to the space L?(X). We denote the extended
map by the same symbol, U(g), and observe that U(g) is a continuous representation
of G in L?(X) and the inner product of the above space is G-invariant. We investigate
the structure of the above representation.

Assume first that E is irreducible with an orthonormal basis {e;: 1 < j < dimg E'}.
Denote by @K(E) the set of all V € G with n (E,res?( V) > 0 and by V; the trivial

representation of the group G: Vy(g) = 1 for all g € G. For each V € @K(E), fix an
orthonormal basis g Y, («) in the space of the nth copy of the representation V, where
1<m<dimgV,1<n<n(V,H), and n(V, Hy) is defined by (@).

Theorem 1. Let G be a compact Lie group, let K be its closed subgroup, and let E
be an irreducible representation of K. A second-order mean-square continuous strictly
invariant random field X(x) in the vector bundle (G xx E,p,G/K) has the form

dimgV n(V,H;) dimg E

X](:L‘) = Z Z Z Z AV nmk (EY\%I)] (LL'),

VEGK(E) m=1 n=1 k=1

where

aAyvnmk = Xk(x)(EYX%)k(x) d/L(‘T)
G/K

If V #V,, then Elaynmi] = 0. Finally,

- v
Elavnms@vinme) = 6vv/mm Ry
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with
n(V,Hs)

Z Z dimgV tr [RV”} < o0.

VeGg(E) n=1

Proof. When K = C and n(V, Hy) = 1, this is [20, Theorem 2]. Otherwise, this is a
straightforward extension with one more summation over the index n. ]

Let Hx be the subspace of H spanned by the vectors {EY%L(x) RV™ £ 0}. Denote
avnm = (Avamis -« @vnmdimge) | € L*(X). Let RV™ = AV"(AV™)T be the Cholesky
decomposition of the matrix RV". The map

Tavnm = AvnEan (:17)

may be extended by linearity and continuity to an intertwining operator from L?(X)
to Hx. Thus, the representation U(g) contains as many copies of the irreducible represen-
tation V' as many elements that are contained in the set {n: 1<n<n(V,H,),RV" # O}.

If E is not irreducible, suppose that E is the direct sum of the irreducible representa-
tions Fj1, ..., En. Denote the components of an invariant random field X(z) by XJ(Z) (z),
1<i<N,1<j<dimg E;. Let P; be the orthogonal projection from F to E;. Let H;
be the representation induced by E;. The next result is a straightforward extension of
[20, Theorem 2].

Theorem 2. Let G be a compact Lie group, let K be its closed subgroup, and let E be a
finite-dimensional representation of K. A second-order mean-square continuous strictly
invariant random field X(zx) in the vector bundle (G xx E,p,G/K) has the form

dimgV n(V,H?) dimg B;

(5) XP@= 3 3 3 Y avema (Y0, (@),

VGGK(Ei) m=1 n=1 k=1
where
wvamit = [ X0 @) VIR duo)
G/K
If V £ Vy, then Elaynmix] = 0. Finally,
E[aVnmikaV’n/m’i’k’] = 5VV’5mm’R7¥ctli’k/

with
n(V,HY)

Y Y Y dimgVu [BRV'P] < .

=1 VE@K(Ei,) n=1

=

4. EXAMPLES

Example 1 (The absolute temperature of the Cosmic Microwave Background). Put
K =C, G = SO(3), K = SO(2), and let E be the trivial representation of K. The
irreducible unitary representations of G are enumerated by nonnegative integers [4];
denote them by V*¢. The restriction of V* to K is isomorphic to the direct sum of the
irreducible unitary representations ¢ +— ™%, —¢ < m < (. In particular, the multiplicity
of E in V¥ is equal to 1. It follows that the representation H contains one copy of each
representation V¢. The space G/K is the unit sphere S2. Denote by H* the subspace
of the space L2(S2) where the above copy acts. The space H* is spanned by spherical
harmonics, Yom (6, ¢), where (6, ¢) is the chart of the manifold S? known as spherical
coordinates. The above chart maps an open set U C S? (the completion of the zeroth
meridian) to the open set V = (0,7) x (0,27) C R2  Thus, we have 0 < 0 < ,
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0 < ¢ < 27. In what follows, we will also denote spherical harmonics by Y, (n), where
n € R? with ||n|| = 1. By Theorem[I] an invariant random field in (SO(3) xso(2)C*, p, S?)
has the form

) 4

(6) T(97 @) = Z Z a@myém(ev 90)7

=0 m=—4¢

where

and du(0,¢) = sin@df dp = dn is the SO(3)-invariant measure on S? with ;(S?) = 4.
G-invariant random fields with G = SO(3) or G = O(3) are usually called isotropic. By
Theorem [l E[ag,,] = 0 if £ # 0, E[agma@em’] = Cedpp dmms, and

> @20+ 1)C; < .

=0
The expansion (@) was discovered in [26]; see also [7, Chapter 2] and [22].

The spherical harmonics satisfy the relation Yy _,,(n) = (=1)™Yp,(n). It follows that
the random field (@) is real valued if and only if

(7) ag—m = (—=1)" Qom.

In this case, we can write the random field (@) in the form

[e'S) 4
(8) T(Il) = Z Z dimszn(n)v

=0 m=—1
where
V2Imag,, if m<O0,
Ao, = $ Qpm, if m=0,

V2Reagy, if m >0,
%(ng(n) — (-1)™Y;_m(m)), ifm <0,

Syt (n) = < Yo (n), if m=0,
%(ng(n) + (=1)™Yy_m(n)), if m > 0.

The functions Sy*(n) are real-valued spherical harmonics. In contrast to their complex-
valued counterparts, that are proportional to the matrix entries of irreducible unitary
representations of the group SO(3), the functions S;* (6, ) are proportional to the matrix
entries of irreducible orthogonal representations of the above group. Either equations (@)
and (7)) or equation (8) describe the absolute temperature of the Cosmic Microwave
Background. The set {Cy: £ > 0} is called the power spectrum and carries a lot of
cosmological information. This is known with very good precision; see [I]. See also the
discussion of relations between complex-valued and real-valued representations in [13].

Example 2 (Spin bundles). Put K = C, G = SO(3), K = SO(2), E, = C! with the
action of K given by ¢ — e ¥ s € Z. The restriction of the irreducible unitary
representation V¢ to K contains one copy of the representation E if and only if

Ce{ls|,|s|+1,...}.
By Frobenius reciprocity,

H, = i ovh.
{=|s|
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The basis vectors of the subspace of the Hilbert space L*(S?,SO(3) Xso(2) Es) where
the representation W, acts are called spin s spherical harmonics and are denoted by
Yo (n). In particular, oYy, (n) = Yy, (n). There exist different conventions concerning
these functions; see a survey in [20]. In what follows, we use conventions from [I4]. Let
(Q +1iU)(, ¢) be an isotropic random field in the spin bundle (SO(3) xso(2) Hs, p, S?)
with s = 2. Then it has the form

(10) (Q+iU)(n Z Z agn? £2Yem(n),

=2 m=—4

where
a:t2,£m:/ (Q£iU)(n) £2Yem(n) dn.
cp?

The real-valued random fields @Q(n) and U(n) describe the Stokes parameters of the
linear polarisation of the Cosmic Microwave Background. The expansion (I0) appeared
in [32]. Stokes parameters related to (I0) have been considered in similar content in [3]
and [34].

Define

eom = Re aﬁ)ﬂ b, = Im a(z)

Under the parity transformation n — —n, the spin s spherical harmonics are trans-

formed as
snm(_n) = (_1)2 —snm(n)-

Then we have

(Q ilU Z Z €im ilb[m ( ) ¥2nm(n)-

=2 m=—4

It follows that under the parity transformation, ey, remains invariant, while by, changes
sign. Following [32], introduce the random fields

oo J4 0o J4
n) = Z Z eémnm(n)a B(n) = Z Z bém}/ém(n)

1=2m=—1 (=2m=-1

The random field F(n) is scalar, like the electric field, while B(n) is pseudoscalar, like the
magnetic field, hence the notation. Currently, the random field E(n) has been observed,
while B(n) has not; see [1].

Example 3 (A tensor bundle). Put K = R, G = 0O(3), K = O(2). Let E be the real
linear space of Hermitian linear operators over a two-dimensional complex linear space
with inner product (A4, B) = tr AB, where the action of K is given by k- A = kAk~1,
ke K, AcE.

The group O(2) has the following irreducible orthogonal representations: E°T (k) = 1,
E%= (k) = det k, and the representations E™, m > 1, acting by

m<cosso —smw) (cos(mw)) —Sin(m@)>
)

sinp cosp sin(my)  cos(myp)
m [cose sing \  (cos(myp sin(me)
sing —cosp) \sin(mp) —cos(my)/’
In contrast to the previous examples, this time the representation E is reducible and

contains three inequivalent irreducible components. The first component is E°*. It acts
in the one-dimensional subspace E generated by the matrix

bt )

(11)
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The elements of this space are scalars. The second component is E°~. It acts in the
one-dimensional subspace F_ generated by the matrix

1 1 /0 —i
(0 3)
The elements of this subspace are pseudoscalars. Finally, the third irreducible component
is E2. Tt acts in the two-dimensional space E5 of symmetric trace-free matrices generated
by

1 1 /0 1 1 1 /1 0
)
The matrices o; are known as Pauli matrices.
We use Frobenius reciprocity to analyse the structure of the space L?(S?, 0(3) X g(2) E).
Let V be an irreducible orthogonal representation of the group O(3). The group O(3) is
the Cartesian product of its subgroups SO(3) and Z§ = {+e}. Therefore,

V:VZi:V€®Vi,

where V* is the irreducible orthogonal representation of the group SO(3), V* is the
trivial representation of the group Z§, and V~ is the representation g — det g of Z5.

Lemma 1. The restriction of the representation V** to the subgroup O(2) has the form
resf V¥ =% o E' ... 0 E¥,

(12) resG VOIHVE _ POF g Bl g ... g BXH

Proof. Note that the group O(2) is embedded into O(3) as follows:

0(2) 3 k = (012 ?) €0(3).

It becomes obvious that (I2) is true when ¢ = 0. Assume that Lemma [Tl is proved for all
values of indices up to £. Then we have
resG VDT — - g plg ... @ B2
res% Vit = B~ ¢ E'.
It follows that
res (VDT @ VIT) = (B 0 Bl o 0 B¥) @ (B 0 BY).

The left-hand side of this equality is

res V2 @ res§ Dt g res% v e+

—E"GFE' @ . - 0EX0E" 0 E'a. .. @ EX! @ res§ VHD+

by the induction hypothesis. The right-hand side is

E o e - - oEX o 0B 0" 02 @ B2 @ E20+2,
Here we used the fact that E9~ @ E°~ = E°t F™ ® E0~ = E™,

E'® E' = E% @ B @ B2,

and B! @ E™ = E™~ 1 @ Em+ for m > 2. To prove this, recall that the character of a
finite-dimensional representation is the trace of its matrix. The character is independent
on the choice of a basis. Moreover, the character of the tensor product of finitely many
representations is equal to the product of the characters of the terms, while that of the
direct sum of finitely many representations is equal to the sum of the characters of the
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terms. Using equation (III), we prove that the characters of both sides are equal. It
follows from the last two displays that

resf VDT = EOt g El g ... @ E¥*F2
Multiply this equality by the equality res% V1= = E°~ @ E'. We obtain

resy V- — - o E'e ... @ B,
The induction step from 2¢+1 to 2¢ + 2 is proved. The step from 2¢+ 2 to 2+ 3 is done
similarly. ([l

We have E' = E, & E_ @ Ey. It follows that
0(3) X0(2) E = (0(3) XO(2) E+) D (0(3) XO(2) E,) D (0(3) Xo(g) EQ) R
and a similar equality is true for the spaces of the square-integrable sections of the above
bundles:
H=H,®H_® H>.

By Lemmalll the representation E°T belongs to the restrictions to O(2) of the represen-
tations VO+, V1= V2+ .. By Frobenius reciprocity,

n <E0+, res® Vf(_l)l)
dimg D (V4(=1")
To calculate dimg D(V) for a real irreducible representation V, do the following. Define

the extended representation by G%V = C®r V. By [, Chapter 2, Proposition 6.6,
Theorem 6.7], there may be three cases:
(1) €SV is irreducible. In this case, D(V) = R and dimg D(V) = 1.
(2) efV is a direct sum of two nonequivalent components. In this case, D(V) = C
and dimgD(V) = 2.
(3) efV is a direct sum of two equivalent components. In this case, D(V) = H and
dimg D(V) = 4.
It is easy to check that all the real irreducible representations of both G and K belong
to the first class. In other words, Frobenius reciprocity has the usual form. We have

_ = 2(—1)* _ — (—1)¢Ft
Hy =Y eV H_ =Y eV :
=0 £=0

n (Vf(—1>Z,H+) -

and

(13) Hy=3 o (Ve vi).
(=2

An isotropic random field in the bundle (0(3) Xo2) By, p, 32) takes the form

o] )4
Im)=3%" > af,Yem(n),

{=0 m=—¢

and describes the first Stokes parameter, the intensity I(n) of the Cosmic Microwave
Background, which is proportional to the fourth power of its absolute temperature, T'(n),
by the Stephan—Boltzmann law. Like E(n), this is a scalar field, a section of the vector
bundle generated by the trivial representation of the subgroup O(2).

For the bundle (O(3) xo2) E—,p, S?) we have

0o 4

Vi)=Y > ap,Yen(n).

£=0 m=—4¢
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This field describes the circular polarisation V(n) of the Cosmic Microwave Background.
Like B(n), this is a pseudoscalar field, an isotropic random section of the vector bundle
generated by the representation g — det g of the subgroup O(2).

Finally, an isotropic random section of the bundle (0(3) Xo(2) B2, p, 52) has the form

n U(n
(ggng (12 ) Z Z afmyém n) + ag, Y, (n )]

=2 m=—¢

where we denote by { V& (n): £ > 2,—¢ < m < £} a basis in the space VD" of the
expansion ([3)), while { Y, (n): £ > 2,—¢ < m < £} is a basis in the space VIO of
the above expansion. Comparing our expansion with [I0, equation (2.10)], we identify
the introduced basis functions with tensor spherical harmonics described there. See also
the survey [28] and [33].

The random field V(n) has never been observed. The reason for this is that the
scattering of the Cosmic Microwave Background by free charged particles cannot generate
circular polarisation; see [11].

Example 4. The Universe is identified with a four-dimensional manifold, say M. If the
manifold M were unperturbed, we would define a preferred observer as one who sees zero
momentum density at his/her own position; see [18]. Such observers are called comoving.
Let (¢,x) be a chart centred at a comoving observer. Then, the spacetime M threads into
lines corresponding to fixed x and slices into hypersurfaces corresponding to fixed ¢. The
slicing is orthogonal to the threading, and, on each slice, the Universe is homogeneous.

In the presence of perturbations, it is impossible to find a chart satisfying all the above
properties. A chart is called a gauge if it converges to the comoving chart in the limit
where the perturbations vanish. In what follows, we use the so-called total-matter gauge
(t,r,n) described in [I8, Subsection 14.6.4].

Let §(r,n) be the overdensity field:

r,n)—p
5(r,m) = L) =P
p
where p(r,n) is the matter density at a point (r,n), and p is the average matter density.
The overdensity field is not observable because most parts of the matter is dark and

invisible. To overcome this difficulty, we proceed in three steps.

1. Relate the overdensity field 6(r,n) and the Newtonian potential ®(r, n) by Pois-
son’s equation

L)MH(% o(r,n)
2a(r) T

where 2, is the dimensionless matter density, Hy is the current value of the
Hubble parameter, and a(r) is the dimensionless scale factor.
2. Define the lensing potential by

V20(r,n) =

!
—
dr

2 ‘s
é(r,n) = 6—2/0 o' n)”

rr! ’
where c is the speed of light in a vacuum.

3. For a fixed s € Z, define a differential operator 0 (in fact, a family of operators)
by
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Then we have

oo
8SYM(H):{O, if 0 =s5>0,

V(0= 38)(l+ s+ 1)s41Yem(n), otherwise.

In other words, 0 maps a section of the spin s bundle to a section of the spin
s + 1 bundle, hence the name spin-rising operator. The conjugate operator
0 i 0

0" =scotd — 89+sin0%

lowers the spin:

0, ifl=—s>0,
V(+ )l — s+ 1)s-1Yem(n), otherwise,

0* sYom (n) = {

hence the name spin-lowering operator.

Define the distortion fields (X ((r,n) by
on(rn) = (00 + 306l m),
1F(r,n) = —1(6*55 + 00%0 + 000" )p(r, n),
27y(r,m) = —52417( n),

3G(r,n) = —53?%;5(1", n).

The constructed fields are called the magnification, the first flexion, the shear, and
the third flexion. In contrast to the overdensity field, they are observable. To find their
spectral expansions, use the idea formulated by M. I. Yadrenko in [30]; see also his
book [31]. Suppose these fields are mean-square continuous. The restriction of the field
sX (r,n) to the centred sphere of a fixed radius r¢o > 0 is an isotropic random section of
the bundle (0(3) Xo(2) Es, 5'2) and has the form

o0 4

’f‘o, Z Z salm TO S/Em( ) OSSSS

l=s m=—1{

Varying rg, we obtain

[e%S) £
X(rm)=>)_ Z «@om (1) «Yem (),

l=s -

where sag, (1) is a sequence of stochastic processes satisfying E[sagm ()] = 0 unless
s =¥¢ =m = 0. For simplicity, put E[pago(r)] = 0. Moreover, we have

E [safm (rl)saﬁ’m’ (TQ) ] = 522’6mm’ SCZ (7’1, 7‘2),

with

oo

Z(%—i— 1)sCo(r,7) < o0, r>0.
l=s
The stochastic processes sagn,(r) are expressed through the values of the distortion
field as

sQem (T) = - SX(Ta 1’1) snm(n) dn
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and are usually represented by

(15) s@em (1) = \/%/000 Je(kr)stem (k)k? dk,

where
. 2 [ 2
saﬁm(k) = ; jg(k'l")sagm(’l’)T dr
0

is the Fourier-Bessel (or Hankel) transform of the process sagy, (), and k is the radial
wavenumber. Here we implicitly suppose that the sample paths of the above process are
a.s. square-integrable. The spectral expansion of the distortion field takes the form

D) [e%S) 4 %)
SX(T) Il) = \/j / jg(k’f’) sdfm(k)k2 dk snm(n);
& Zzz:s m;K 0
see [5L8L12,24].

The drawback of the above approach is as follows: there exists no method to compute
the transform (B exactly for a useful class of functions; see [I4]. Moreover, the spherical
Bessel functions js(kr) are highly oscillating, and finding a good quadrature formula is
a complicated issue. To overcome these difficulties, wavelet methods were proposed in
[T4,[15]. We propose a different approach.

Assume the following: the distortion field is Gaussian, has almost surely continuous
sample paths, and is observed in the ball of radius R. Then, the stochastic processes
saem (r) are Gaussian, independent, a.s. continuous, and their distributions depend on ¢
but do not depend on m. Each process generates a Gaussian centred measure 4y in the
real separable Banach space C[0, R]. Let sHy be the reproducing kernel Hilbert space of
site with inner product (-,-); see [29]. A sequence { ;f¢;(r): 7 > 1} of the elements of
<Hpy is called a Parceval frame [19] if

oo

> ofgih) sfej =h

j=1
for all h € 4Hy, where the series converges in the norm of ¢H,. By adding zeroes, finite
sequences may also serve as frames. Let ;X,; be independent standard normal random
variables. By [19, Theorem 1] the process sasy, () has almost surely uniformly convergent
expansion

safm(r) = Z sféj(r) sXémj
j=1

if and only if the sequence {,f;(r): 7 > 1} is a Parceval frame for (H,. The spectral
expansion of the distortion field takes the form

[e'S) 4 0o
sX(r,mn) = Z Z Z sféj(T) s X bmj sYem(n).

l=s m=—{ j=1
In other words, each “component”
0

ng(’f‘, Il) = Z saém(r) snm(ro

m=—/

of the distortion random field ;X (r,n) is expanded with respect to a separable Parceval
frame

{sfe(r) sYem(n): j > 1, ~0 <m < ¢}
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for the Hilbert space (H, ® L? (5’2,0(3) X0(2) ES), that is, the coordinates r and n
are separated. For each ¢ > s, one can choose a suitable basis {f¢;(r): j > 1} in
the Hilbert space L2([0, R], 72 dr). These may be wavelets, orthogonal polynomials, etc.
Assume that there are real numbers scg; such that the sequence {scgj 5 fr;(r): 7 > 1} is
a Parceval frame for ;Hy. The distortion random field takes the form

00 4 0o
sX(Tv Il) = Z Z Z sCej sféj(r) sXij snm(n)-

l=s m=—{ j=1

The obtained expansion may serve as a base for the further statistical analysis of the
distortion random field.

Currently, the distortion random fields have been observed in particular points of the
manifold M. Their observation and analysis in a chart of a significant comoving volume
is one of the tasks of the forthcoming Euclid mission; see [27].
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