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STOCHASTIC REPRESENTATION AND PATH PROPERTIES

OF A FRACTIONAL COX–INGERSOLL–ROSS PROCESS

YU. S. MISHURA, V. I. PITERBARG, K. V. RALCHENKO, AND
A. YU. YURCHENKO-TYTARENKO

Abstract. We consider the Cox–Ingersoll–Ross process that satisfies the stochastic
differential equation dXt = aXtdt+σ

√
XtdBH

t driven by a fractional Brownian mo-

tion BH
t with the Hurst index exceeding 2

3
, where

∫ t
0

√
XsdBH

s is the pathwise inte-
gral defined as the limit of the corresponding Riemann–Stieltjes sums. We show that
the Cox–Ingersoll–Ross process coincides with the square of the fractional Ornstein–
Uhlenbeck process up to the first return to zero. Based on this observation, we
consider the square of the fractional Ornstein–Uhlenbeck process with an arbitrary
Hurst index and prove that it satisfies the above stochastic differential equation up

to the first return to zero if
∫ t
0

√
XsdBH

s is understood as the pathwise Stratonovich

integral. Then a natural question arises about the first visit to zero of the fractional
Cox–Ingersoll–Ross process which coincides with the first visit to zero of the frac-
tional Ornstein–Uhlenbeck process. Since the latter process is Gaussian, we use the
bounds for the distributions of Gaussian processes to prove that the probability of a
visit to zero over a finite time equals 1 if a < 0. Otherwise this probability is positive.
We provide an upper bound for this probability.

1. Introduction

The standard diffusion Cox–Ingersoll–Ross process is introduced and studied in the
papers [5–7] as a generalization of the Vasiček model for better modeling the evolution
of interest rates. The Cox–Ingersoll–Ross process is a one-factor model that depends on
a single source of market risk. This model assumes that the instantaneous value of the
interest rate rt is a solution of the stochastic differential equation

drt = a(b− rt) dt+ σ
√
rt dWt, t ≥ 0,

where a, b, σ ∈ R
+, W = {Wt, t ≥ 0} is a Wiener process, and r|t=0 = r0 > 0. The

parameter a corresponds to the speed of adjustment of the model, that is, to the rate of
convergence to the mean value, b to the mean value, and σ to volatility. If 2ab ≥ σ2, then
the process assumes only positive values and does not visit zero with probability one. In
contrast to the Vasiček model, where the standard deviation is constant, the standard
deviation in the Cox–Ingersoll–Ross model equals σ

√
rt and thus depends on the values

of the process.
The Cox–Ingersoll–Ross process is ergodic and has a stationary distribution. The

conditional distribution of its future value rt+T given rt coincides with the noncentral χ2

distribution, while that of the limit values r∞ coincides with the Gamma distribution.
Another application of the Cox–Ingersoll–Ross process lies in modeling the stochastic
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volatility in the Heston model. A comprehensive bibliography on this topic can be found
in the papers [11, 12].

Note that many real financial models exhibit the so-called phenomenon of memory.
This phenomenon means that the fluctuations of prices in a market cannot be character-
ized exclusively by the randomness generated by a Wiener process. A survey of financial
markets with memory can be found, for example, in [1, 3, 9, 23]. It was believed until
recently that the best models of the evolution of interest rates necessarily involve a frac-
tional Brownian motion with the Hurst index H > 1

2 , while modern studies of markets
(see, for instance, [2]) indicate that the volatility can be so irregular that the correspond-
ing Hurst index is close to the value 0.1. This observation leads to a conclusion that a
fractional Ornstein–Uhlenbeck process is a better model for the corresponding interest
rates as well as for stochastic volatility. Another conclusion is that a fractional Cox–
Ingersoll–Ross process can also be used succesfully for modeling since the corresponding
stochastic process is nonnegative. A fractional Ornstein–Uhlenbeck process is Gaussian
and thus the stochastic integration with respect to it delivers no problem (properties of
fractional Ornstein–Uhlenbeck processes are described in [4]). On the other hand, there
are several approaches to the integration with respect to a fractional Cox–Ingersoll–Ross
process. The approach where the integral with respect to a fractional Brownian motion is
understood pathwisely is considered in [18] for H > 2

3 . Another approach, the so-called
rough-path approach, is introduced in [17]. One more approach is based on the property
that a standard Cox–Ingersoll–Ross process belongs to the class of Pearson diffusions and
thus it can be defined as a Cox–Ingersoll–Ross process subordinate to an inverse stable
subordinator [15, 16].

In the current paper, we start with considering the stochastic differential equation

(1) dXt = aXt dt+ σ
√
Xt dB

H
t , t ≥ 0,

where X|t=0 = x0 > 0, a ∈ R, σ > 0, and BH = {BH
t , t ≥ 0} is a fractional Brownian

motion with the Hurst index H ∈ (0, 1). In other words, BH
t is a centered Gaussian

process with the covariance function

EBH
t BH

s =
1

2

(
t2H + s2H − |t− s|2H

)
.

We deal with the Hurst index H ∈ ( 23 , 1), since
∫ t

0

√
Xs dB

H
s can be defined as a pathwise

integral that is the limit of integral Riemann–Stieltjes sums in this case. We prove that
a unique solution of equation (1) up to the first visit to zero is the square of a fractional
Ornstein–Uhlenbeck process. It is clear that the uniqueness of a solution implies that
the solution of equation (1) remains at zero after the first visit to zero.

Then we consider the square of a fractional Ornstein–Uhlenbeck process with an arbi-
trary Hurst index H ∈ (0, 1) and prove that it satisfies equation (1) up to the first visit
to zero if the stochastic integral is understood as a pathwise integral in the Stratonovich
sense.

It is a natural question to ask whether or not the moment of the first visit to zero of
a fractional Ornstein–Uhlenbeck process is finite. We prove that this moment is finite
with probability one if a < 0. Otherwise, that is, if a > 0, this probability belongs to
the interval (0, 1] or to the interval (0, 1) if a is sufficiently large. Using the explicit form
of the covariance function of a fractional Ornstein–Uhlenbeck process we find an upper
estimate of this probability.

The paper is constructed as follows. In Section 2, we consider equation (1) for the
case of H ∈ ( 23 , 1) and with the pathwise Riemann–Stieltjes integral with respect to a
fractional Brownian motion. We show that a solution of equation (1) is the square of a
fractional Ornstein–Uhlenbeck process up to the first visit to zero.
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A fractional Cox–Ingersoll–Ross process is introduced in Section 3 for all H ∈ (0, 1) as
the square of the corresponding Ornstein–Uhlenbeck process. We prove that the process
defined in this way satisfies equation (1) if the pathwise integral is understood in the
Stratonovich sense.

Section 4 is devoted to the study of the probability of a visit to zero of the above
process over a finite time.

Section 5 contains an auxiliary result, namely the derivation of the explicit form of
the covariance function of a fractional Ornstein–Uhlenbeck process.

2. Fractional Cox–Ingersoll–Ross process with Hurst index H ∈ (2/3, 1)

Consider the stochastic differential equation

(2) dXt = ãXt dt+ σ̃
√
Xt dB

H
t , t ≥ 0,

where X|t=0 = x0 > 0, ã ∈ R, and σ̃ > 0.
According to Theorem 6 of the paper [18], if H > 2/3, then equation (2) has a unique

solution until the first visit to zero if
∫ t

0

√
Xs dB

H
s is understood as a pathwise integral

that is the limit of Riemann–Stieltjes sums.
This fact can be explained as follows. An integral with respect to a fractional Brown-

ian motion (see, for example, [24] concerning conditions for the existence and properties
of such kind of integrals) is well-defined as a pathwise limit of integral Riemann–Stieltjes
sums if the sum of Hölder exponents of the integrand and fractional Brownian motion
exceeds 1. On the other hand, if a solution exists, then the integral possesses the Hölder
property up to order H (see, for example, [10]). Thus the integrand

√
Xt is a Hölder

function up to the order H/2. Therefore H/2 + H > 1 or H > 2/3 is the sufficient
condition for the existence of the pathwise integral with respect to a fractional Brownian
motion as the limit of integral Riemann–Stieltjes sums. We stress once more that equa-
tion (2) has a unique solution in this case and the trajectories of a solution are positive
until the first visit to zero.

Let τ0 : = inf{t > 0: Xt = 0} and consider trajectories of the process {Xt, t ≥ 0} in
the interval [0, τ0). Changing Yt =

√
Xt and using the Itô formula for integrals with

respect to a fractional Brownian motion (see [19]) we conclude that

dYt =
dXt

2
√
Xt

=
ãXt dt

2
√
Xt

+
σ̃

2
dBH

t .

Denoting a = ã/2 and σ = σ̃/2 we obtain the equation

(3) dYt = a Yt dt+ σ dBH
t

with the initial condition Y0 =
√
X0. Thus a solution {Xt, t ∈ [0, τ0)} of equation (2) is

the square of a fractional Ornstein–Uhlenbeck process {Yt, t ≥ 0} until the first visit to
zero (a fractional Ornstein–Uhlenbeck process is introduced in [4]).

3. Generalization of a fractional Cox–Ingersoll–Ross process

to the case of H ∈ (0, 1)

Based on the conclusion of Section 2, we define a fractional Cox–Ingersoll–Ross process
for all Hurst indices H ∈ (0, 1).

Definition 3.1. Let H ∈ (0, 1) be an arbitrary number, let {Yt, t ≥ 0} be a fractional
Ornstein–Uhlenbeck process satisfying equation (3), and let τ be the moment of the first
visit to zero. Then {Xt, t ≥ 0} is called a fractional Cox–Ingersoll–Ross process if

(4) Xt(ω) = Y 2
t (ω)1{t<τ(ω)}

for all t ≥ 0.



170 MISHURA ET AL.

A stochastic process defined in Definition 3.1 satisfies stochastic differential equa-

tion (2) if
∫ t

0

√
Xs dB

H
s is understood as a pathwise integral in the Stratonovich sense.

Below is the corresponding definition.

Definition 3.2. Let {Xt, t ≥ 0} and {Yt, t ≥ 0} be stochastic processes. The pathwise

integral
∫ T

0
Xs ◦ dYs in the Stratonovich sense over the interval [0, T ] is defined as the

limit of sums of the form

n∑
k=1

Xtk +Xtk−1

2

(
Ytk − Ytk−1

)
as the diameter of a partition 0 = t0 < t1 < t2 < · · · < tn−1 < tn = T tends to zero
(provided the limit exists).

Indeed, let {Yt, t ≥ 0} be a fractional Ornstein–Uhlenbeck process that starts from a
point

√
X0 and let τ = inf{s > 0: Ys = 0}. For some ω ∈ Ω, consider a point t such that

t < τ (ω). Then

(5) Xt = Y 2
t =

(√
X0 + a

∫ t

0

Ys ds+ σBH
t

)2

according to Definition 3.1.
Consider an arbitrary partition of the interval [0, t]:

0 = t0 < t1 < t2 < · · · < tn−1 < tn = t.

Using representation (5) we obtain

Xt =
n∑

k=1

(
Xtk −Xtk−1

)
+X0

=
n∑

k=1

([√
X0 + a

∫ tk

0

Ys ds+ σBH
tk

]2

−
[√

X0 + a

∫ tk−1

0

Ys ds+ σBH
tk−1

]2
)

+X0

=

n∑
k=1

(
2
√
X0 + a

(∫ tk

0

Ys ds+

∫ tk−1

0

Ys ds

)
+ σ

(
BH

tk
+BH

tk−1

))

×
(
a

∫ tk

tk−1

Ys ds+ σ
(
BH

tk
−BH

tk−1

))
+X0.

Expanding the brackets we obtain

Xt = 2a
√
X0

n∑
k=1

∫ tk

tk−1

Ys ds+ a2
n∑

k=1

(∫ tk

0

Ys ds+

∫ tk−1

0

Ys ds

) ∫ tk

tk−1

Ys ds

+ aσ
n∑

k=1

(
BH

tk
+BH

tk−1

) ∫ tk

tk−1

Ys ds+ 2σ
√
X0

n∑
k=1

(
BH

tk
−BH

tk−1

)
+ aσ

n∑
k=1

(∫ tk

0

Ys ds+

∫ tk−1

0

Ys ds

) (
BH

tk
−BH

tk−1

)
+ σ2

n∑
k=1

(
BH

tk
+BH

tk−1

) (
BH

tk
−BH

tk−1

)
.

(6)
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Now let the diameter Δt of a partition tend to zero. The limit of the sum of the first
three terms in the latter expression equals

2a
√
X0

n∑
k=1

∫ tk

tk−1

Ys ds+ a2
n∑

k=1

(∫ tk

0

Ysds+

∫ tk−1

0

Ys ds

) ∫ tk

tk−1

Ys ds

+ aσ
n∑

k=1

(
BH

tk
+BH

tk−1

) ∫ tk

tk−1

Ys ds

→ 2a
√
X0

∫ t

0

Ys ds+ 2a2
∫ t

0

Ys

∫ s

0

Yu du ds+ 2aσ

∫ t

0

BH
s Ys ds

= 2a

∫ t

0

Ys

(√
X0 + a

∫ s

0

Yu du+ σBH
s

)
ds = 2a

∫ t

0

Y 2
s ds

= 2a

∫ t

0

Xs ds = ã

∫ t

0

Xs ds, Δt → 0.

(7)

The limit of the sum of the last three terms is found similarly,

2σ
√
X0

n∑
k=1

(
BH

tk
−BH

tk−1

)
+ aσ

n∑
k=1

(∫ tk

0

Ysds+

∫ tk−1

0

Ysds

) (
BH

tk
−BH

tk−1

)
+ σ2

n∑
k=1

(
BH

tk
+BH

tk−1

) (
BH

tk
−BH

tk−1

)
→ 2σ

∫ t

0

(√
X0 + a

∫ s

0

Yudu+ σBH
s

)
◦ dBH

s

= σ̃

∫ t

0

√
Xs ◦ dBH

s , Δt → 0.

(8)

Therefore the fractional Cox–Ingersoll–Ross process defined in Definition 3.1 satisfies
the stochastic differential equation

(9) Xt = X0 + ã

∫ t

0

Xsds+ σ̃

∫ t

0

√
Xs ◦ dBH

s ,

where
∫ t

0

√
Xs ◦ dBH

s is understood as a pathwise integral in the Stratonovich sense.
Below are some remarks concerning stochastic differential equation (9).

Remark 3.3. The limit in (8) exists, since the left-hand side of equality (6) does not
depend on a partition, whence we conclude that the corresponding pathwise Stratonovich
integral exists, as well.

Remark 3.4. The solution of equation (9) coincides with the solutions of equation (2) if
H > 2/3, since the corresponding pathwise Stratonovich integral coincides in this case
with the integral defined as the limit of integral Riemann–Stieltjes sums.

4. Probability of hitting zero for a fractional

Ornstein–Uhlenbeck process

Our aim is to study the probability that the random moment τ , the first hitting
time of zero for a fractional Ornstein–Uhlenbeck process that is a solution of stochastic
differential equation (3), is finite. According to [4], the explicit form of this solution is
given by

(10) Yt = eat
(
Y0 + σ

∫ t

0

e−as dBH
s

)
,
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where the integral with respect to the fractional Brownian motion is the limit of the corre-
sponding Riemann–Stieltjes integral sums and can be defined with the help of integration
by parts:

(11) Jt : =

∫ t

0

e−as dBH
s : = e−atBH

t + a

∫ t

0

e−asBH
s ds.

Equality (10) implies that the first hitting time of zero for the process Yt coincides with
the first hitting time of level −Y0/σ for the integral (11). Note that the latter integral is
a normal random variable with zero mean. Since the normal distribution is symmetric,
the probability of hitting a negative level −Y0/σ by the integral (11) is equal to the
probability of hitting the positive level Y0/σ.

Thus we need to solve a general problem of finding the probability of hitting a level
x > 0 by the integral Jt over a finite time. It is clear that the behavior of this integral
depends essentially on the sign of the parameter a ∈ R.

Consider two mutually exclusive cases.

Case a ≤ 0.

Proposition 4.1. If a < 0, then

P

(
lim sup
t→∞

Jt = +∞
)

= 1.

Proof. It is known that the process

Gt = eat
∫ t

−∞
e−as dBH

s

is Gaussian, stationary, and ergodic if a < 0 (see [4]). The ergodic theorem implies that,
for an arbitrary x ∈ R,

1

n

n∑
k=1

1{Gk>x} → E1{G0>x} = P(G0 > x) > 0 a.s., n → ∞.

Hence
∞∑
k=1

1{Gk>x} = +∞ a.s.

Here and in the sequel “a.s.” abbreviates the expression “almost surely”. This means
that the random events {Gk > x} occur infinitely often. This yields

lim sup
t→∞

Gt = +∞ a.s.

Then

lim sup
t→∞

Jt = lim sup
t→∞

(
e−atGt −G0

)
= +∞ a.s. �

Remark 4.2. Proposition 4.1 remains true for the case a = 0, as well, since Jt = BH
t .

More detail concerning the asymptotic behavior of the supremum and hitting probabili-
ties for a fractional Brownian motion can be found, for example, in [8, 14, 20, 21].
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Case a > 0. By Corollary 5.6 in Section 5,

V 2
t : =Var Jt = H

∫ t

0

z2H−1
(
e−2at+az + e−az

)
dz.

The derivative of V 2
t is equal to

d

dt
V 2
t = 2H

(
t2H−1e−at − ae−2at

∫ t

0

z2H−1eaz dz

)
.

Since the second term in brackets is exponentially less than the first one, there exists
t(a) such that the derivative is positive for all t ≥ t(a). Note that

lim
t→∞

V 2
t = H

∫ ∞

0

z2H−1e−azdz =
HΓ(2H)

a2H
.

Consider the Gaussian process

Zt = Jt/(1−t), t ∈ [0, 1],

with Z1 = J∞. The derivative of its variance v2t is given by

(12)

d

dt
v2t =

d

ds
V 2
s

∣∣∣∣
s=t/(1−t)

(
t

1− t

)′

= 2H

(
t/(1− t)

)2H−1
e−at/(1−t) − ae−2at/(1−t)

∫ t/(1−t)

0
z2H−1eaz dz

(1− t)2
.

The derivative exists and tends to zero as t → 1. Since the factors are exponential,
we conclude that the second derivative also tends to zero as t → 1. Now we use the
covariance function obtained in Corollary 5.6 (throughout below s < t). After some
simplification we get

E(Jt − Js)
2 = V 2

t + V 2
s − 2Cov(Js, Jt)

= He−2at

∫ t

0

z2H−1e−az dz +H

∫ t

0

z2H−1e−az dz +He−2as

∫ s

0

z2H−1eaz dz

+H

∫ s

0

z2H−1e−az dz +He−2as

∫ t−s

0

z2H−1e−az dz

−He−2at

∫ t

t−s

z2H−1eaz dz +H

∫ t

s

z2H−1e−az dz

−He−2as

∫ s

0

z2H−1eaz dz − 2H

∫ t

0

z2H−1e−az dz

= He−2at

∫ t−s

0

z2H−1eaz dz +He−2as

∫ t−s

0

z2H−1e−az dz.

Then

E(Zt − Zs)
2 = He−2at/(1−t)

∫ (t−s)/(1−t)(1−s)

0

z2H−1eaz dz

+He−2as/(1−s)

∫ (t−s)/(1−t)(1−s)

0

z2H−1e−az dz.



174 MISHURA ET AL.

Further, for every s ∈ [0, 1),

t− s

(1− t)(1− s)
=

t− s

(1− s)2
+

(t− s)2

(1− t)(1− s)
,

e−2at/(1−t) = e−2as/(1−s)e−2a(t−s)/(1−t)(1−s)

= e−2as/(1−s)

(
1 +

−2a(t− s)

(1− s)2
+

−4a(t− s)2

(1− s)2
+

O
(
(t− s)3

)
(1− s)2

)
as t ↓ s. Moreover∫ (t−s)/(1−t)(1−s)

0

z2H−1e±az dz =
1

2H

(t− s)2H +O
(
(t− s)2H+1

)
(1− s)2H

as t ↓ s, whence

(13) E(Zt − Zs)
2 = He−2as/(1−s)

(
(t− s)2H

H(1− s)2H
+

O
(
(t− s)2H+1

)
(1− s)2H

)
as t ↓ s. Thus

(14) lim sup
t−s↓0

E(Zt − Zs)
2

(t− s)2H
≤ H max

s∈[0,1]
(1− s)−2e−2as/(1−s)

for s ∈ [0, 1]. Equalities (12) and (14) imply that

(15) P

(
sup
t≥0

Jt < ∞
)

= P

(
max
t∈[0,1]

Zt < ∞
)

= 1.

Applying Theorem D.4 of [22] together with equalities (12) and (14) we prove the fol-
lowing result.

Proposition 4.3. There exists a constant C such that

(16) P

(
sup
t≥0

Jt ≥ x

)
= P

(
max
t∈[0,1]

Zt ≥ x

)
≤ Cx

1
H −1 exp

(
− x2

2v2

)
for an arbitrary x > 0, where

v2 = sup
t≥0

V 2
t = max

t∈[0,1]
v2t < ∞.

Moreover, since vt is twice differentiable, we derive from (14) that

Cov(Zs/vs, Zt/vt) ≥ 1− c|t− s|2H

for some c > 0 and sufficiently small t − s. Now one can use the Slepian lemma (see,
for example, [22]) to estimate the probability (16) from above by the corresponding
probability for the process vtUt, where Ut is a Gaussian stationary process with zero
mean and with covariance function whose behavior at zero is such that 1−|t|2H+o(|t|2H).
Then Theorem D.4 of [22] yields the following result.

Proposition 4.4. There exists a constant C1 such that

P

(
sup
t≥0

Jt ≥ x

)
≤ C1x

1
H −2 exp

(
− x2

2v2

)
for an arbitrary x > 0.
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Remark 4.5. It is easy to make sure that

max
t∈[0,1]

v2t = v21 = V 2
∞ =

HΓ(2H)

a2H
.

Indeed, equality (12) implies that t = 1 is a point of local maximum of the function vt.
We have v20 = V 2

0 = 0 at t = 0. The result desired follows if we show that the function v2t
does not have local extremums at points of the open interval (0, 1). If, by contradiction,
such a point exists, then equality (12) implies that this point satisfies the equation(

t

1− t

)2H−1

e−at/(1−t) − ae−2at/(1−t)

∫ t/(1−t)

0

z2H−1eaz dz = 0, t ∈ (0, 1).

The latter equation for the variable s = t
1−t becomes of the form

(17) e−2as

(
s2H−1eas − a

∫ s

0

z2H−1eaz dz

)
= 0, s > 0.

Now we study the behavior of the function

h(s) = s2H−1eas − a

∫ s

0

z2H−1eaz dz

for s > 0. If H = 1
2 , then h(s) ≡ 1 and thus equation (17) does not have any root. For

H �= 1
2 , we evaluate the derivative

d

dt
h(t) = (2H − 1)s2H−2eas.

If H < 1
2 , then the function h decreases and thus the left-hand side of (17) also decreases

and tends to 0 as s → ∞, since a > 0. This implies that equation (17) does not have
any root in the interval (0,+∞). If H > 1

2 , then h increases and h(0) = 0, whence we
conclude that h(s) > 0 for s > 0 and therefore equation (17) does not have roots in the
interval (0,+∞), as well.

Remark 4.6. Let 1 > t > s. Relations (13) and (14) imply that E(Zt−Zs)
2 exponentially

approaches zero as s → 1. One can also prove that all derivatives with respect to the
argument s of the expectation approach zero as s → 1. The same result holds for v2s . This
explains why Theorem D.3 of [22] is not applicable in our case for finding the asymptotic
behavior of the probability

P

(
sup
t≥0

Zt ≥ x

)
as x → ∞. However the asymptotic behavior desired can be obtained with the help of
the same methods as those used in the proof of Theorem D.3 of [22].

Now we turn back to the question on the finiteness of τ , the moment of the first
hitting time of zero for a fractional Ornstein–Uhlenbeck process (3). The reasoning
above together with Propositions 4.1 and 4.4 and Remark 4.2 yields the following result.

Theorem 4.7. (1) If a ≤ 0, then P(τ < ∞) = 1.
(2) If a > 0, then P(τ < ∞) ∈ (0, 1]. Moreover

P(τ < ∞) ≤ C1

(
Y0

σ

) 1
H −2

exp

(
− a2HY 2

0

σ2Γ(2H + 1)

)
,

where C1 > 0 is a constant.
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5. Covariance function of an Ornstein–Uhlenbeck process

Consider an Ornstein–Uhlenbeck process Yt that is a solution of equation (3) with the
initial condition Yt = y0 ∈ R. According to relations (10)–(11), this solution is given by

(18) Yt = y0e
at + aσeat

∫ t

0

e−asBH
s ds+ σBH

t , t ≥ 0.

Proposition 5.1. Let t ≥ s ≥ 0. Then the covariance function of a fractional Ornstein–
Uhlenbeck process (18) is given by

RH(t, s) =
Hσ2

2

(
−eat−as

∫ t−s

0

e−azz2H−1 dz + e−at+as

∫ t

t−s

eazz2H−1 dz

− eat+as

∫ t

s

e−azz2H−1 dz + eat−as

∫ s

0

eazz2H−1 dz

+2eat+as

∫ t

0

e−azz2H−1 dz

)
.

(19)

Proof. Using representation (18) and the explicit form of the covariance of a fractional
Brownian motion, we write

RH(t, s) = E
[(
Yt − y0e

at
)
(Ys − y0e

as)
]

= E

[(
aσeat

∫ t

0

e−auBH
u du+ σBH

t

) (
aσeas

∫ s

0

e−avBH
v dv + σBH

s

)]
=

aσ2

2
eat

∫ t

0

e−au
(
u2H + s2H − |u− s|2H

)
du

+
aσ2

2
eas

∫ s

0

e−av
(
v2H + t2H − |v − t|2H

)
dv +

σ2

2

(
t2H + s2H − |t− s|2H

)
+

a2σ2

2
eat+as

∫ t

0

∫ s

0

e−au−av
(
u2H + v2H − |u− v|2H

)
du dv

=
σ2

2

10∑
n=1

In,

where

I1 = aeat
∫ t

0

e−aus2H du, I2 = aeat
∫ t

0

e−auu2H du,

I3 = −aeat
∫ t

0

e−au|u− s|2H du, I4 = aeas
∫ s

0

e−avt2H dv,

I5 = aeas
∫ s

0

e−avv2H dv, I6 = −aeas
∫ s

0

e−av(t− v)2H dv,

I7 = t2H + s2H − (t− s)2H , I8 = a2eat+as

∫ t

0

e−av dv

∫ s

0

e−auu2H du,

I9 = a2eat+as

∫ s

0

e−au du

∫ t

0

e−avv2H dv,

I10 = −a2eat+as

∫ t

0

∫ s

0

e−au−av|u− v|2H du dv.

The first two integrals are equal to

I1 = s2H
(
eat − 1

)
and I2 = −eat

∫ t

0

u2H de−au = −t2H + 2Heat
∫ t

0

e−auu2H−1 du,
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respectively. Changing the variables and integrating by parts we get

I3 = −aeat
∫ s

0

e−au(s− u)2H du− aeat
∫ t

s

e−au(u− s)2H du

= −aeat−as

∫ s

0

eazz2H dz − aeat−as

∫ t−s

0

e−azz2H dz

= −eat−as

(
eass2H − 2H

∫ s

0

eazz2H−1 dz − e−a(t−s)(t− s)2H

+2H

∫ t−s

0

e−azz2H−1 dz

)
= −eats2H + (t− s)2H + 2Heat−as

∫ s

0

eazz2H−1 dz − 2Heat−as

∫ t−s

0

e−azz2H−1 dz.

Similarly to the integrals I1–I3 we rewrite the integrals I4–I6:

I4 = t2H (eas − 1) , I5 = −s2H + 2Heas
∫ s

0

e−avv2H−1 dv,

I6 = −aeas−at

∫ t

t−s

eazz2H dz = −eas−at

∫ t

t−s

z2Hdeaz

= −east2H + (t− s)2H + 2Heas−at

∫ t

t−s

eazz2H−1 dz.

Further

I8 = eat+as
(
e−at − 1

) ∫ s

0

u2H de−au = (1− eat)s2H − 2Heas(1− eat)

∫ s

0

e−auu2H−1 du

and analogously

I9 = (1− eas)t2H − 2Heat(1− eas)

∫ t

0

e−avv2H−1 dv.

Finally we consider the integral I10. First we represent it as the sum of two integrals,
namely

I10 = −a2eat+as

∫ s

0

∫ v

0

e−au−av(v − u)2H du dv

− a2eat+as

∫ s

0

∫ s

v

e−au−av(u− v)2H du dv

− a2eat+as

∫ t

s

∫ s

0

e−au−av(v − u)2H du dv

= −2a2eat+as

∫ s

0

∫ v

0

e−au−av(v − u)2H du dv

− a2eat+as

∫ t

s

∫ s

0

e−au−av(v − u)2H du dv

=: I ′10 + I ′′10.
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Changing the variables v − u = z, then changing the order of integration, and finally
integrating by parts we obtain

I ′10 = −2a2eat+as

∫ s

0

e−2av

∫ v

0

eazz2H dz dv

= −2a2eat+as

∫ s

0

eazz2H
∫ s

z

e−2av dv dz

= −2a2eat+as

∫ s

0

eazz2H
e−2as − e−2az

−2a
dz

= aeat−as

(∫ s

0

eazz2H dz −
∫ s

0

e−auu2H du

)
= eats2H − 2Heat−as

∫ s

0

eazz2H−1 dz + eats2H − 2Heat+as

∫ s

0

e−auu2H−1 du.

Now we consider two cases for the integral I ′′10. If t > 2s, then we change the variable
v − u = z in the inner integral, interchange the order of integrals, and integrate with
respect to the variable v. We obtain

I ′′10 = −a2eat+as

∫ t

s

∫ v

v−s

eaz−2avz2H dz dv

= −a2eat+as

(∫ s

0

∫ z+s

s

eaz−2avz2H dv dz +

∫ t−s

s

∫ z+s

z

eaz−2avz2H dv dz

+

∫ t

t−s

∫ t

z

eaz−2avz2H dv dz

)
= −a2eat+as

(∫ s

0

eazz2H
e−2a(z+s) − e−2as

−2a
dz

+

∫ t−s

s

eazz2H
e−2a(z+s) − e−2az

−2a
dz +

∫ t

t−s

eazz2H
e−2at − e−2az

−2a
dz

)
=

a

2
eat−as

∫ t−s

0

e−azz2H dz − a

2
eat+as

∫ t

s

e−azz2H dz − a

2
eat−as

∫ s

0

eazz2H dz

+
a

2
eas−at

∫ t

t−s

eazz2H dz.

Integrating by parts in each of the four integrals above and collecting similar terms we
conclude that

I ′′10 = −Heas−at

∫ t

t−s

eazz2H−1 dz

+Heat−as

∫ s

0

eazz2H−1 dz

−Heat+as

∫ t

s

e−azz2H−1 dz

+Heat−as

∫ t−s

0

e−azz2H−1 dz

− eats2H + east2H − (t− s)2H .

The latter relation holds for the case s < t < 2s, as well. The proof is analogous to the
case t > 2s.

Therefore equality (19) is proved by adding the corresponding terms. �
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Remark 5.2. Proposition 5.1 applied for the case of s = t yields the formula that allows
one to get the precise value of the variance of the Ornstein–Uhlenbeck process Yt, namely
it is equal to

VarYt = Hσ2

∫ t

0

z2H−1
(
eaz + e2at−az

)
dz.

This result is proved in [13, Lemma A.1].

Remark 5.3. The covariance function of a fractional Ornstein–Uhlenbeck process is such
that

RH(t, s) =
Hσ2

2

(
−ea|t−s|

∫ |t−s|

0

e−azz2H−1 dz

+ e−a|t−s|
∫ max{t,s}

|t−s|
eazz2H−1 dz

− ea(t+s)

∫ max{t,s}

min{t,s}
e−azz2H−1 dz

+ ea|t−s|
∫ min{t,s}

0

eazz2H−1 dz

+2ea(t+s)

∫ max{t,s}

0

e−azz2H−1 dz

)

for all t, s ∈ R
+.

Corollary 5.4. Let H ∈ (0, 12 )∪( 12 , 1], a < 0, and let t > 0 be fixed. Then the covariance
function RH of the fractional Ornstein–Uhlenbeck process admits the following asymptotic
representation:

RH(t+ s, t) =
σ2H(2H − 1)

2(−a)2H

×
(
eas

∫ −as

1

eyy2H−2 dy + e−as

∫ +∞

−as

e−yy2H−2 dy

− eat
[
e−a(t+s)

∫ +∞

−a(t+s)

e−yy2H−2 dy

+ ea(t+s)

∫ −a(t+s)

1

eyy2H−2 dy

])
+O(eas), s → ∞.

(20)

Proof. Without loss of generality we consider the case of those s such that −as > 1.
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Changing the variable y = −az we transform equality (19) as follows:

RH(t+ s, t) =
Hσ2

2(−a)2H

(
−eas

∫ 1

0

eyy2H−1 dy − eas
∫ −as

1

eyy2H−1 dy

+ e−as

∫ −a(t+s)

−as

e−yy2H−1 dy − e2at+as

∫ −a(t+s)

−at

eyy2H−1 dy

+ eas
∫ −at

0

e−yy2H−1 dy + 2e2at+as

∫ 1

0

eyy2H−1 dy

+ 2e2at+as

∫ −a(t+s)

1

eyy2H−1 dy

)
=

Hσ2

2(−a)2H

(
−eas

∫ −as

1

eyy2H−1 dy + e−as

∫ −a(t+s)

−as

e−yy2H−1 dy

− e2at+as

∫ −a(t+s)

−at

eyy2H−1 dy

+ 2e2at+as

∫ −a(t+s)

1

eyy2H−1 dy

)
+O(eas).

Integrating by parts in the latter relation we prove (20). �

Remark 5.5. The results obtained above are well agreed with those obtained in [4].
Indeed, let a < 0 and H ∈ (0, 12 ) ∪ ( 12 , 1]. It is shown in the proof of Corollary 2.5 in [4]
that

(21) RH(t+ s, t) = Cov(Ỹ H
t , Ỹ H

t+s)− eat Cov(Ỹ H
0 , Ỹ H

t+s) +O(eas), s → ∞,

where

Ỹ H
t := σ

∫ t

−∞
ea(t−u) dBH

u .

The following asymptotic representation of Cov(Ỹ H
t , Ỹ H

t+s) is obtained in the proof of The-
orem 2.3 in [4]:

Cov(Ỹ H
t , Ỹ H

t+s) =
σ2

2(−a)2H
H(2H − 1)

×
(
eas

∫ −as

1

eyy2H−2 dy + e−as

∫ ∞

−as

e−yy2H−2 dy

)
+O(eas)

(22)

as s → ∞. Substituting representation (22) in asymptotic equality (21) we derive an
expression which coincides with that in equality (20).

Note that the integral Jt defined by (11) is equal to e−atYt, where Yt is a process
defined by (18) with parameters y0 = 0 and σ = 1. Therefore we proved the following
result.
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Corollary 5.6. If s ≤ t, then

Cov(Js, Jt) = −H

2
e−2as

∫ t−s

0

z2H−1e−az dz +
H

2
e−2at

∫ t

t−s

z2H−1eaz dz

− H

2

∫ t

s

z2H−1e−az dz +
H

2
e−2as

∫ s

0

z2H−1eaz dz

+H

∫ t

0

z2H−1e−az dz.

In particular,

VarJt = H

∫ t

0

z2H−1
(
eaz−2at + e−az

)
dz.
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