
Teor�� �Imov�r. ta Matem. Statist. Theor. Probability and Math. Statist.
Vip. 97, 2017 No. 97, 2018, Pages 183–200

https://doi.org/10.1090/tpms/1056
Article electronically published on February 21, 2019

ASYMPTOTIC EXPANSIONS FOR POWER-EXPONENTIAL

MOMENTS OF HITTING TIMES FOR NONLINEARLY PERTURBED

SEMI-MARKOV PROCESSES
UDC 519.21

D. S. SILVESTROV AND S. D. SILVESTROV

Abstract. New algorithms for construction of asymptotic expansions for exponen-
tial and power-exponential moments of hitting times for nonlinearly perturbed semi-
Markov processes are presented. The algorithms are based on special techniques of
sequential phase space reduction and the systematical use of operational calculus for
Laurent asymptotic expansions applied to moments of hitting times for perturbed
semi-Markov processes. These algorithms have a universal character. They can be
applied to nonlinearly perturbed semi-Markov processes with an arbitrary asymptotic
communicative structure of a phase space. Asymptotic expansions are given in two
forms, without and with explicit bounds for remainders. The algorithms are compu-
tationally effective, due to a recurrent character of the corresponding computational
procedures.

1. Introduction

We present new algorithms for construction of asymptotic expansions, without and
with explicit upper bounds for remainders, for exponential and power-exponential mo-
ments of hitting times for nonlinearly perturbed semi-Markov processes with finite phase
spaces.

Hitting times are also known under such names as first-rare-event times, first passage
times, and absorption times, in theoretical studies, and as lifetimes, failure times, ex-
tinction times, etc., in applications. These random functionals and their moments play
an important role in the theory of semi-Markov processes. We refer to books [1]–[12]
and [15]–[20] containing results related to asymptotic expansions for perturbed Markov
chains and semi-Markov processes, including results concerning hitting times, as well as
their applications to asymptotic analysis of reliability, queuing, bio-stochastic systems,
information networks, and other models of perturbed stochastic processes and systems.
Also, we would like to mention the recent paper [14], where one can find a comprehensive
bibliography of works in the area and the corresponding bibliographical remarks.

We consider models where the phase space for embedded Markov chains of pre-
limiting perturbed semi-Markov processes is one class of communicative states, while
it can asymptotically split in one or several closed classes of communicative states and,
possibly, a class of transient states.

The initial perturbation conditions are formulated in the forms of Laurent asymp-
totic expansions for power-exponential moments of transition times for perturbed semi-
Markov processes given in two alternative forms, without or with explicit upper bounds
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for remainders. The algorithms are based on special time-space screening procedures for
sequential phase space reduction and algorithms for recalculation of asymptotic expan-
sions and upper bounds for remainders, which constitute perturbation conditions for the
semi-Markov processes with reduced phase spaces. The final asymptotic expansions for
exponential and power-exponential moments of hitting times for nonlinearly perturbed
semi-Markov processes are given in the form of Laurent asymptotic expansions, without
or with explicit upper bounds for remainders.

The present paper continues the line of research of the book [4] and the authors’ recent
works [14] and [15]. The book [4] contains a detailed presentation of results related
to the asymptotic analysis of quasi-stationary distributions for nonlinearly perturbed
semi-Markov processes, where the power-exponential moments of hitting times play the
central role. In this book, asymptotic expansions for power-exponential moments have
been obtained for the nonsingularly perturbed semi-Markov processes with the simple
asymptotic communicative structure of the set of nonabsorbing states, which, in this case,
consists of one communicative class plus possibly a class of transient states. However,
the method (based on asymptotic analysis of generalized matrix inverses) used in this
book does not work well for the more complex model of singularly perturbed semi-
Markov processes, where the set of nonabsorbing states has a more complex asymptotic
structure and can asymptotically split in several closed communicative classes of states
plus possibly a class of transient states. In this case, moments of hitting times can be
asymptotically unbounded functions of perturbation parameter due to the presence of
asymptotically absorbing states or subsets of states. Their asymptotic analysis, with the
use of the generalized matrix inverses, becomes rather intricate. Also, the only asymptotic
expansions with remainders given in the standard form of o(·) have been given in this
book. In works [14] and [15], asymptotic expansions are obtained for singularly perturbed
semi-Markov processes, with remainders without and with explicit upper bounds for
remainders, but only for simpler power moments of hitting times.

In the present paper, we get asymptotic expansions for more complex power-exponen-
tial moments of hitting times for nonlinearly and singularly perturbed semi-Markov pro-
cesses. An important novelty of results presented in the paper is that the corresponding
asymptotic expansions are obtained with remainders given not only in the standard form
of o(·), but, also, in a more advanced form, with explicit power-type upper bounds for re-
mainders asymptotically uniform with respect to the perturbation parameter. The latter
asymptotic expansions for power-exponential moments of hitting times for nonlinearly
perturbed semi-Markov processes were not known before.

The corresponding computational algorithms have a universal character. They can be
applied to perturbed semi-Markov processes with an arbitrary asymptotic communicative
structure of phase spaces and are computationally effective due to the recurrent character
of computational procedures.

2. Laurent asymptotic expansions

Let A(ε) be a real-valued function defined on an interval (0, ε0] for some 0 < ε0 ≤ 1,
and given on this interval by a Laurent asymptotic expansion,

A(ε) = ahA
εhA + · · ·+ akA

εkA + oA
(
εkA

)
,

where

(a) −∞ < hA ≤ kA < ∞ are integers,
(b) coefficients ahA

, . . . , akA
are real numbers,

(c) the function oA
(
εkA

)
/εkA → 0 as ε → 0.
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We refer to the Laurent asymptotic expansion A(ε) as an (hA, kA)-expansion. We also
refer to A(ε) as an (hA, kA, δA, GA, εA)-expansion, if additionally

(d)
∣∣oA (

εkA
)∣∣ ≤ GAε

kA+δA for 0 < ε ≤ εA, where
(e) 0 < δA ≤ 1, 0 < GA < ∞, and 0 < εA ≤ ε0.

We say that the Laurent asymptotic expansion A(ε) is pivotal if it is known that ahA
�= 0.

It is also useful to mention that a constant a can be interpreted as the function A(ε) ≡
a. Thus, 0 can be represented, for any integer −∞ < h ≤ k < ∞, as the (h, k)-expansion,
0 = 0εh + · · · + 0εk + o

(
εk
)
, with remainder o(εk) ≡ 0. Also, 1 can be represented, for

any integer 0 ≤ k < ∞, as the (0, k)-expansion, 1 = 1 + 0ε + · · · + 0εk + o
(
εk
)
, with

remainder o
(
εk
)
≡ 0.

Let us consider three Laurent asymptotic expansions,

A(ε) = ahA
εhA + · · ·+akA

εkA +oA
(
εkA

)
, B(ε) = bhB

εhB + · · ·+ bkB
εkB +oB

(
εkB

)
,

and
C(ε) = chC

εhC + · · ·+ ckC
εkC + oC

(
εkC

)
defined on the interval (0, ε0].

Let us denote FA = maxhA≤i≤kA
|ai|, FB = maxhB≤i≤kB

|bi|, FC = maxhC≤i≤kC
|ci|.

The following lemma presents operational rules for Laurent asymptotic expansions.
The corresponding proofs can be found in the authors’ works [14] and [15].

Lemma 1. The following operational rules take place for Laurent asymptotic expansions:

(i) If A(ε) is an (hA, kA)-expansion and c is a constant, then C(ε) = cA(ε) is an
(hC , kC)-expansion such that:
(a) hC = hA, kC = kA;
(b) chC+r = cahC+r, r = 0, . . . , kC − hC .
This expansion is pivotal if and only if chC

= cahA
�= 0.

(ii) Also, if A(ε) is an (hA,kA,δA,GA,εA)-expansion, then C(ε) is an (hC ,kC ,δC ,GC ,εC)-
expansion such that:
(a) δC = δA;
(b) GC = |c|GA;
(c) εC = εA.

(iii) If A(ε) is an (hA, kA)-expansion and B(ε) is an (hB, kB)-expansion, then

C(ε) = A(ε) + B(ε)

is an (hC , kC)-expansion such that:
(a) hC = hA ∧ hB, kC = kA ∧ kB;
(b) chC+r = ahC+r + bhC+r, r = 0, . . . , kC − hC , where ahC+r = 0 for 0 ≤ r <

hA − hC and bhC+r = 0 for 0 ≤ r < hB − hC .
This expansion is pivotal if and only if chC

= ahC
+ bhC

�= 0.
(iv) Also, if A(ε) is an (hA,kA,δA,GA,εA)-expansion and B(ε) is an (hB,kB ,δB,GB,εB)-

expansion, then C(ε) is an (hC , kC , δC , GC , εC)-expansion such that:
(a) δC = δA ∧ δB;
(b) GC = GA + FA(kA − kC) +GB + FB(kB − kC);
(c) εC = εA ∧ εB.

(v) If A(ε) is an (hA, kA)-expansion and B(ε) is an (hB, kB)-expansion, then

C(ε) = A(ε) ·B(ε)

is an (hC , kC)-expansion such that:
(a) hC = hA + hB, kC = (kA + hB) ∧ (kB + hA);
(b) chC+r =

∑
0≤i≤r ahA+ibhB+r−i, r = 0, . . . , kC − hC .

This expansion is pivotal if and only if chC
= ahA

bhB
�= 0.
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(vi) Also, if A(ε) is an (hA,kA,δA,GA,εA)-expansion and B(ε) is an (hB,kB ,δB,GB,εB)-
expansion, then C(ε) is an (hC , kC , δC , GC , εC)-expansion such that:
(a) δC = δA ∧ δB;
(b)

GC = FAFB(kA − hA + 1)(kB − hB + 1) +GAFB(kB − hB + 1)

+GBFA(kA − hA + 1) +GAGB;

(c) εC = εA ∧ εB.
(vii) If A(ε) is an (hA, kA)-expansion and B(ε) is a pivotal (hB, kB)-expansion such

that B(ε) �= 0, ε ∈ (0, ε0], then C(ε) = A(ε)/B(ε) is an (hC , kC)-expansion such
that:
(a) hC = hA − hB, kC = (kA − hB) ∧ (kB − 2hB + hA);
(b) chC+r = b−1

hB

(
ahA+r −

∑
1≤i≤r bhB+ichC+r−i

)
, r = 0, . . . , kC − hC .

This expansion is pivotal if and only if chD
= ahA

/bhB
�= 0.

(viii) Also, if A(ε) is an (hA, kA, δA, GA, εA)-expansion and B(ε) is a pivotal (hB, kB,
δB, GB, εB)-expansion, then C(ε) is an (hC , kC , δC , GC , εC)-expansion such that:
(a) δC = δA ∧ δB;
(b)

GC =

(
|bhB

|
2

)−1

×
(
FA(kA − kA ∧ (hA + kB − hB)) +GA

+ FBFD(kB − hB + 1)(kD − hD + 1) +GBFD(kD − hD + 1)
)
;

(c) εC = εA ∧ εB ∧
(
|bhB

|/(2(FB(kB − hB) +GB))
)1/δB .

3. Perturbed semi-Markov processes

Let X = {0, . . . ,m} and let (ηε,n, κε,n), n = 0, 1, . . . , be, for every ε ∈ (0, ε0], a
Markov renewal process, i.e., a homogeneous Markov chain with phase space X× [0,∞),
an initial distribution p̄ε = 〈pε,i = P{ηε,0 = i, κε,0 = 0} = P{ηε,0 = i}, i ∈ X〉, and
transition probabilities, defined for (i, s), (j, t) ∈ X × [0,∞),

Qε,ij(t) = P
{
ηε,1 = j, κε,1 ≤ t

/
ηε,0 = i, κε,0 = s

}
.

Note that the above transition probabilities do not depend on the variable s. In this
case, the random sequence ηε,n is also a homogeneous (embedded) Markov chain with
phase space X and transition probabilities, defined for i, j ∈ X,

pij(ε) = Qε,ij(∞) = P{ηε,1 = j / ηε,0 = i}.
The following communication condition plays an important role:

A: There exist sets Yi ⊆ X, i ∈ X, such that:
(a) probabilities pij(ε) > 0, j ∈ Yi, i ∈ X, for ε ∈ (0, ε0];

(b) probabilities pij(ε) = 0, j ∈ Yi, i ∈ X, for ε ∈ (0, ε0];
(c) there exist, for every pair of states i, j ∈ X, an integer nij ≥ 1 and a

chain of states i = lij,0, lij,1, . . . , lij,nij
= j such that lij,1 ∈ Ylij,0 , . . . ,

lij,nij
∈ Ylij,nij−1

.

We refer to sets Yi, i ∈ X, as transition sets. Condition A implies that all sets Yi �= ∅,
i ∈ X, and that the phase space X of Markov chain ηε,n is one class of communicative
states for every ε ∈ (0, ε0].

The following condition excludes instant transitions:

B: Qε,ij(0) = 0, i, j ∈ X, for every ε ∈ (0, ε0].
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Let us now introduce a semi-Markov process ηε(t) = ηε,νε(t), t ≥ 0, where

νε(t) = max(n ≥ 0: ζε,n ≤ t)

is a number of jumps in the time interval [0, t] and ζε,n = κε,1 + · · ·+ κε,n, n = 0, 1, . . . ,
are sequential moments of jumps for the semi-Markov process ηε(t).

Let us introduce transition power-exponential moments of transition times, for � ≥ 0,
k = 0, 1, . . . , i, j ∈ X,

(1) φij(k, �, ε) = Eiκ
k
ε,1e

�κε,1I(ηε,1 = j) =

∫ ∞

0

tke�t Qε,ij(dt).

Here and henceforth, the notation Pi and Ei is used for conditional probabilities and
expectations under condition ηε,0 = i.

Conditions A(a)–(b) and B imply that, for every ε ∈ (0, ε0], moments

φij(k, �, ε) ∈ (0,∞]

for � ≥ 0, k = 0, 1, . . . , j ∈ Yi, i ∈ X, and φij(k, �, ε) = 0 for � ≥ 0, k = 0, 1, . . . , j ∈ Yi,
i ∈ X.

Let us assume that the following condition holds for some ρ◦ > 0:

Cρ◦ : φij(0, ρ◦, ε) < ∞, j ∈ Yi, i ∈ X, for ε ∈ (0, ε0].

Obviously condition Cρ◦ implies that moments φij(k, �, ε) < ∞ for any 0 ≤ � < ρ◦,
k = 0, 1, . . . , j ∈ Yi, i ∈ X.

It is appropriate to mention two important particular cases.
If Qε,ij(t) = I(t ≥ 1)pij(ε), t ≥ 0, i, j ∈ X, then ηε(t) = ηε,[t], t ≥ 0, is a discrete time

homogeneous Markov chain embedded in continuous time. In this case,

φij(k, �, ε) = e�pij(ε) < ∞

for � > 0, i, j ∈ X.
If Qε,ij(t) =

(
1− e−λi(ε)t

)
pij(ε), t ≥ 0, i, j ∈ X (here, 0 < λi(ε) < ∞, i ∈ X), then

ηε(t), t ≥ 0, is a continuous time homogeneous Markov chain. In this case,

φij(k, �, ε) =
kλi(ε)

(λi(ε)− �)k+1
pij(ε) < ∞

for � < λi(ε), i, j ∈ X.
Let us define the hitting time for the semi-Markov process ηε(t) to the state 0 (of

course, this state can be replaced by any other state i ∈ X),

(2) τε,0 =

νε,0∑
n=1

κε,n, where νε,0 = min(n ≥ 1: ηε,n = 0).

The object of our interest are power-exponential moments for hitting times, for � ≥ 0,
k = 0, 1, . . . , i ∈ X,

(3) Φi(k, �, ε) = Eiτ
k
ε,0e

�τε,0 .

Condition Cρ◦ does not imply that exponential moments Φi(0, ρ◦, ε) are finite.
Necessary and sufficient conditions of finiteness for exponential moments of hitting

times are given in terms of so-called test-functions in [4] and [13].
We refer to functions v(i), i ∈ X, defined on the space X and taking value in the

interval [0,∞) as test-functions.
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Let us introduce a condition:

Dρ◦ : There exists, for every ε ∈ (0, ε0], a test-function vε,ρ◦(i), i ∈ X, such that the
following test inequalities hold:

(4) vε,ρ◦(i) ≥ φi0(0, ρ◦, ε) +
∑

j∈X,j �=0

φij(0, ρ◦, ε)vε,ρ◦(j), i ∈ X.

Lemma 2. Let conditions A, B, and Cρ◦ hold. Then, the exponential moments
Φi0(0, ρ◦, ε) < ∞, i ∈ X, for ε ∈ (0, ε0] if and only if condition Dρ◦ holds. In this
case, inequalities Φi0(0, ρ◦, ε) ≤ vε,ρ◦(i), i ∈ X, hold for ε ∈ (0, ε0], and the exponen-
tial moments Φi0(0, ρ◦, ε), i ∈ X, are, for every ε ∈ (0, ε0], the unique solution for the
following system of linear equations:

(5) Φi0(0, ρ◦, ε) = φi0(0, ρ◦, ε) +
∑

j∈X,j �=0

φij(0, ρ◦, ε)Φj0(0, ρ◦, ε), i ∈ X.

In what follows, we always assume that conditions A, B, Cρ◦ , and Dρ◦ hold.
It is obvious that Φi0(k, �, ε) ≤ Lk,ρ0−�Φi0(0, ρ◦, ε) < ∞ for 0 ≤ � < ρ◦, k = 0, 1, . . . ,

i ∈ X, where Lk,ρ0−� = supx≥0 x
ke−(ρ◦−�)x < ∞.

Let us assume that the following perturbation condition, based on Laurent asymptotic
expansions, holds for some integer d ≥ 0 and real 0 < ρ < ρ◦:

Ed,ρ: φij(k, ρ, ε) =
∑h+

ij [k,ρ]

l=h−
ij [k,ρ]

gij [k, ρ, l]ε
l+ok,ρ,ij

(
εh

+
ij [k,ρ]

)
, ε ∈ (0, ε0], for k = 0, . . . , d,

j ∈ Yi, i ∈ X, where
(a) −∞ < h−

ij [k, ρ] ≤ h+
ij [k, ρ] < ∞ are integers, coefficients

gij [k, ρ, l], l = h−
ij [k, ρ], . . . , h

+
ij [k, ρ],

are real numbers, and gij
[
k, ρ, h−

ij [k, ρ]
]
> 0 for k = 0, . . . , d, j ∈ Yi, i ∈ X;

(b) the function ok,ρ,ij
(
εh

+
ij [k,ρ]

)
/εh

+
ij [k,ρ] → 0 as ε → 0 for k = 0, . . . , d, j ∈ Yi,

i ∈ X.

We refer here to the book [4], where the asymptotic expansions appearing in con-
dition Ed,ρ are explicitly given for the cases of discrete and continuous time Markov
chains.

If ηε,0 �= 0, then the first hitting time τε,0 ≥ τε =
∑με

n=1 κε,n, where

με = max(n ≥ 0: ηε,n �= ηε,0).

This inequality implies that, for � ≥ 0, i �= 0, and ε ∈ (0, ε0],

Φi(0, �, ε) ≥ Eie
�τε =

∑
n≥1

φii(0, �, ε)
n−1

∑
j �=i

φij(0, �, ε) =

∑
j �=i φij(0, �, ε)

1− φii(0, �, ε)
.(6)

Thus, condition Dρ◦ implies that the following inequalities should also hold for ε ∈
(0, ε0]:

(7) φii(0, ρ◦, ε) < 1, i �= 0.

Condition Ed,ρ and inequalities (7) imply that the following condition should also
hold:

Fρ: For every i �= 0, either
(a) h−

ii [0, ρ] > 0, or
(b) h−

ii [0, ρ] = 0 and gii[0, ρ, h
−
ii [0, ρ]] < 1, or

(c) h−
ii [0, ρ] = 0, gii[0, ρ, h

−
ii [0, ρ]] = 1, h+

ii [0, ρ] ≥ 1
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and there are nonzero terms in the sequence gii[0, ρ, 1], . . . , gii[0, ρ, h
+
ii [0, ρ]], more-

over, the first such term, say gii[0, ρ, li], where 1 ≤ li ≤ h+
ii [0, ρ], is a negative

number.

It is useful to note that proposition (i) of Lemma 1 and conditions Ed,ρ and Fρ imply
that the function

(8)

1− φii(0, ρ, ε) = 1 +

h+
ii[0,ρ]∑

l=h−
ii[0,ρ]

−gii[0, ρ, l]ε
l − o0,ρ,ii

(
εh

+
ii[0,ρ]

)

=

h̄+
ii[0,ρ]∑

l=h̄−
ii[0,ρ]

ḡii[0, ρ, l]ε
l + ō0,ρ,ii

(
εh̄

+
ii[0,ρ]

)
, ε ∈ (0, ε0],

is, for every i ∈ Yi, i �= 0, a pivotal Taylor asymptotic expansion, with parameters h̄−
ii [0, ρ]

equal to 0 if alternative (a) or (b) takes place, or li if alternative (c) takes place in condi-
tion Fρ, with h̄+

ii [0, ρ] = h+
ii [0, ρ], and with the corresponding coefficients and remainder

determined in an obvious way by relation (8). Note also that 1 − φii(0, ρ, ε) ≡ 1 for
i ∈ Yi, i �= 0.

Conditions Ed,ρ and Fρ guarantee that there exists ε′0 ∈ (0, ε0] such that the function
φii(0, �, ε) given by the asymptotic expansion appearing in condition satisfies, for every
i �= 0 and ε ∈ (0, ε′0], the inequality 0 < φii(0, ρ, ε) < 1. For simplicity, we just assume
that ε′0 = ε0.

In the case where Laurent asymptotic expansions with explicit upper bounds for re-
mainders are the objects of interest, the assumption Ed,ρ (b) imposed on the remainders

ok,ij
(
εh

+
ij [k,ρ]

)
should be replaced by the following stronger condition:

Gd,ρ:
∣∣ok,ρ,ij(εh+

ij [k,ρ]
)∣∣ ≤ Gij [k, ρ]ε

h+
ij [k,ρ]+δij [k,ρ], 0 < ε ≤ εij [k, ρ], for k = 0, . . . , d,

j ∈ Yi, i ∈ X, where 0 < δij [k, ρ] ≤ 1, 0 ≤ Gij [k, ρ] < ∞, 0 < εij [k, ρ] ≤ ε0 for
k = 0, . . . , d, j ∈ Yi, i ∈ X.

It is also useful to note that, in this case, the above
(
h̄−
ii [0, ρ], h̄

+
ii [0, ρ]

)
-expansion for

the function 1 − φii(0, ρ, ε) is an
(
h̄−
ii [0, ρ], h̄

+
ii [0, ρ], δii[k, ρ], Gii[k, ρ], εii[k, ρ]

)
-expansion

for i �= 0.
Condition Ed,ρ does not imply that there exist limits, limε→0 pij(ε), i, j ∈ X. However,

any sequence εn → 0 as n → ∞ obviously contains a subsequence εnN
→ 0 as N → ∞

such that there exist limits, limN→0 pij(εnN
) = pij(0), i, j ∈ X. Matrix ‖pij(ε)‖ is

stochastic for every ε ∈ (0, ε0], and, thus, matrix ‖pij(0)‖ is also stochastic. It is possible
that matrix ‖pij(0)‖ has more zero elements than matrices ‖pij(ε)‖. Therefore, a Markov
chain η0,n, with the phase space X and the matrix of transition probabilities ‖pij(0)‖,
can be nonergodic, and its phase space X can consist of one or several closed classes of
communicative states plus, possibly, a class of transient states.

4. Reduced semi-Markov processes

In what follows, we assume that conditions A–Dρ◦ hold.
Let us choose some state r �= 0 and consider the reduced phase space rX = X \ {r},

with the state r excluded from the phase space X.
We define the sequential moments of hitting space rX by the embedded Markov chain

rξε,n = min(k > rξε,n−1, ηε,k ∈ rX), n = 1, 2, . . . , where rξε,0 = 0, and the random
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sequence

(rηε,n, rκε,n) =

(
ηε,rξε,n ,

rξε,n∑
k=rξε,n−1+1

κε,k

)
, n = 1, 2, . . . , (rηε,0, rκε,0) = (ηε,0, 0).

This sequence is also a Markov renewal process with the phase space X× [0,∞), the
initial distribution rp̄ε = 〈rpε,i = pε,i, i ∈ X〉, and transition probabilities, defined for
(i, s), (j, t) ∈ X× [0,∞),

rQε,ij(t) = P
{
rηε,1 = j, rκε,1 ≤ t

/
rηε,0 = i, rκε,0 = s

}
.

Obviously, transition probabilities rQε,ir(t) = 0 for i ∈ X, t ≥ 0.
The transition probabilities rQε,ij(t) are expressed via the transition probabilities

Qε,ij(t) by the following formula for i ∈ X, j ∈ rX, t ≥ 0:

(9)

rQε,ij(t) = Pi {ηε,1 = j, κε,1 ≤ t}

+
∞∑
n=0

Pi

{
ηε,1 = r, ηε,k+1 = r, 1 ≤ k ≤ n, ηε,n+2 = j,

κε,1 + · · ·+ κε,n+2 ≤ t
}

= Qε,ij(t) +
∞∑

n=0

Qε,ir(t) ∗Q∗n
ε,rr(t) ∗Qε,rj(t).

Here, the symbol ∗ is used to denote the corresponding variant of convolution for the
above semi-Markov transition probabilities.

The above formula directly implies the following formula for transition probabilities
of the embedded Markov chain rηε,n for i ∈ X, j ∈ rX:

(10) rpij(ε) = rQε,ij(∞) = pij(ε) + pir(ε)
prj(ε)

1− prr(ε)
.

The transition distributions for the Markov chain rηε,n are concentrated on the reduced
phase space rX, i.e., for every i ∈ X,

(11)

∑
j∈rX

rpij(ε) =
∑
j∈rX

pij(ε) + pir(ε)
∑
j∈rX

prj(ε)

1− prr(ε)

=
∑
j∈rX

pij(ε) + pir(ε) = 1.

If the initial distribution p̄ε is concentrated on the phase space rX, i.e., pε,r = 0, then
the random sequence (rηε,n, rκε,n), n = 0, 1, . . . , can also be considered as a Markov
renewal process with the reduced phase rX× [0,∞), the initial distribution

rp̄ε =
〈
pε,i = P{rηε,0 = i, rκε,0 = 0} = P{rηε,0 = i}, i ∈ rX

〉
,

and transition probabilities rQε,ij(t), t ≥ 0, i, j ∈ rX.
If the initial distribution p̄ is not concentrated on the phase space rX, i.e., pε,r > 0,

then the random sequence (rηε,n, rκε,n), n = 0, 1, . . ., can be considered as a Markov
renewal process with so-called transition period.

Respectively, one can define the transformed semi-Markov process

(12) rηε(t) = rηε,rνε(t), t ≥ 0,

where rνε(t) = max(n ≥ 0: rζε,n ≤ t) is a number of jumps at time interval [0, t] for
t ≥ 0, and rζε,n = rκε,1 + · · ·+ rκε,n, n = 0, 1, . . ., are sequential moments of jumps for
the semi-Markov process rηε(t).
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If the initial distribution p̄ε is concentrated on the phase space rX, then the process

rηε(t) can be considered as a standard semi-Markov process with the reduced phase rX,
the initial distribution rp̄ε = 〈rpi = P{rηε(0) = i}, i ∈ rX〉, and transition probabilities

rQε,ij(t), t ≥ 0, i, j ∈ rX.
According to the above remarks, we can refer to the process rηε(t) as a reduced semi-

Markov process.
If the initial distribution p̄ε is not concentrated on the phase space rX, then the pro-

cess rηε(t) can be interpreted as a reduced semi-Markov process with transition period.
Let us introduce the following sets for i, r ∈ X:

(13) Y
+
ir = {j ∈ rX : j ∈ Yi} and Y

−
ir =

{
{j ∈ rX : j ∈ Yr}, if r ∈ Yi,

∅, if r /∈ Yi,

and

(14) rYi = Y
−
ir ∪ Y

+
ir, i ∈ X.

It is readily seen that, for every r �= 0, condition A holds for the reduced Markov
chains rηε,n, with the phase space rX. In this case, rYi, i ∈ rX, are the corresponding
transition sets.

Condition A implies that prr(ε) ∈ [0, 1), r �= 0, ε ∈ (0, ε0].
This relation and formulas (10)–(11) imply that transition probabilities rprj(ε) > 0,

j ∈ rYr = Yr \ {r}, for ε ∈ (0, ε0], or rprj(ε) = 0, j ∈ rYr, for ε ∈ (0, ε0].
Thus, if rηε,n is a reduced Markov chain with transition period, then the set rX is a

closed class of communicative states, while r is a transient state for every ε ∈ (0, ε0].
Obviously, condition B also holds for the reduced semi-Markov processes rηε(t).
Taking into account that rξε,1 is a Markov time for the Markov renewal process

(ηε,n, κε,n), we can write down the following system of stochastic equalities for every
i, j ∈ rX:

(15)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

rκε,i,1I(rηε,i,1 = j)
d
= κε,i,1I(ηε,i,1 = j)

+ (κε,i,1 + rκε,r,1)I(ηε,i,1 = r)I( rηε,r,1 = j),

rκε,r,1I( rηε,r,1 = j)
d
= κε,r,1I(ηε,r,1 = j)

+ (κε,r,1 + rκε,r,1)I(ηε,r,1 = r)I(rηε,r,1 = j),

where:

(a) (ηε,i,1, κε,i,1) is a random vector, which takes values in the space X× [0,∞) and
has distribution P{ηε,i,1 = j, κε,i,1 ≤ t} = Qij(t), j ∈ X, t ≥ 0, for every i ∈ X;

(b) (rηε,i,1, rκε,i,1) is a random vector which takes values in the space rX×[0,∞) and
has distribution P{rηε,i,1 = j, rκε,i,1 ≤ t} = Pi{rηε,1 = j, rκε,1 ≤ t} = kQij(t),
j ∈ kX, t ≥ 0, for every i ∈ X;

(c) (ηε,i,1, κε,i,1) and (rηε,r,1, rηε,r,1) are independent random vectors for every i, r ∈
X.

Here, the symbol
d
= is used to show that random variables on the left- and right-hand

sides of the corresponding equality have the same distribution.
Let us introduce transition power-exponential moments for � ≥ 0, k = 0, 1, . . . , r �= 0,

i ∈ X, j ∈ rX:

rφij(k, �, ε) =

∫ ∞

0

tke�t rQε,ij(dt).(16)

By computing exponential moments in stochastic relations (15) we get, for every
0 ≤ � ≤ ρ0, r �= 0, i, j ∈ rX, and ε ∈ (0, ε0], the following system of linear equations for
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the exponential moments rφrj(0, �, ε), rφij(0, �, ε):

(17)

{
rφrj(0, �, ε) = φrj(0, �, ε) + φrr(0, �, ε) rφrj(0, �, ε),

rφij(0, �, ε) = φij(0, �, ε) + φir(0, �, ε) rφrj(0, �, ε).

It is possible that the moment φrr(0, ρ, ε) or φir(0, ρ, ε) equals 0, while the moment
φj0(0, ρ, ε) equals +∞ in relation (17). In such cases, one should set the product 0 · ∞
to be 0 when calculating the products in the right-hand side of equality (17).

However, inequality (7) and relation (17) imply that rφij(0, ρ0, ε) < ∞ for every r �= 0,
i ∈ X, j ∈ rX, and ε ∈ (0, ε0].

Thus, relation (17) yields the following formulas for the moments rφrj(0, ρ, ε) and

rφij(0, ρ, ε) for every 0 ≤ � ≤ ρ0, r �= 0, i, j ∈ rX:

(18)

⎧⎪⎪⎨
⎪⎪⎩

rφrj(0, ρ, ε) =
φrj(0, ρ, ε)

1− φrr(0, ρ, ε)
,

rφij(0, ρ, ε) = φij(0, ρ, ε) +
φir(0, ρ, ε)φrj(0, ρ, ε)

1− φrr(0, ρ, ε)
.

It is useful to note that the second formula in relation (18) reduces to the first one, if
we assign i = r in this formula.

Thus, condition Cρ◦ holds for the reduced semi-Markov processes rηε(t).
Obviously, rφij(k, �, ε) ≤ Lk,ρ0−� rφij(0, ρ◦, ε) for 0 ≤ � < ρ◦, k = 0, 1, . . . , r �= 0,

i ∈ X, j ∈ rX, and ε ∈ (0, ε0].
Also, it is easily seen that for every 0 ≤ � < ρ◦, k = 1, . . . , r �= 0, i ∈ X, j ∈ rX, and

ε ∈ (0, ε0], the function rφij(0, �, ε) has a derivative of order k, and it is the function

rφij(k, �, ε).
Therefore, we can differentiate equations (17) and get the following system of linear

equations for every 0 ≤ � < ρ◦, k = 1, . . . , r �= 0, i ∈ X, j ∈ rX, and ε ∈ (0, ε0]:

(19)

{
rφrj(k, �, ε) = rλrj(k, �, ε) + φrr(0, �, ε) rφrj(k, �, ε),

rφij(k, �, ε) = rλij(k, �, ε) + φir(0, �, ε) rφrj(k, �, ε),

where

(20) rλij(k, �, ε) = φij(k, �, ε) +
k−1∑
l=0

(
k

l

)
φir(k − l, �, ε) rφrj(l, �, ε).

Relation (19) yields the following formulas for moments rφrj(k, �, ε) and rφij(k, �, ε),
which can be used for every 0 ≤ � < ρ◦, k = 0, 1, . . . , r �= 0, i, j ∈ rX, and ε ∈ (0, ε0]:

(21)

⎧⎪⎪⎨
⎪⎪⎩

rφrj(k, �, ε) =
rλrj(k, �, ε)

1− φrr(0, �, ε)
,

rφij(k, �, ε) = rλij(k, �, ε) +
φir(0, �, ε) rλrj(k, �, ε)

1− φrr(0, �, ε)
.

Formulas (21) have recurrent character since expressions for functions rλrj(k, �, ε),

rλij(k, �, ε) include functions rφrj(l, �, ε), l = 0, 1, . . . , k − 1.
For k = 0, formulas (21) reduce to formulas (18).
Let us define the hitting times for the reduced semi-Markov processes for r �= 0,

(22) rτε,0 =

rνε,0∑
n=1

rκε,n, where rνε,0 = min(n ≥ 1: rηε,n = 0),

and the corresponding power-exponential moments for � ≥ 0, k = 0, 1, . . . , i ∈ X,

(23) rΦi(k, �, ε) = Ei rτ
k
ε,0 e

� rτε,0 .
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For every ε ∈ (0, ε0], the semi-Markov processes ηε(t) and rηε(t) and, in the sequel,
the hitting times τε,0 and rτε,0 are defined on the same probability space. This space
can, however, be different for different ε.

Moreover, the following proposition follows from the fact that hitting of state j ∈ rX

by the semi-Markov process rηε(t) can occur only at moments of hitting space rX by the
semi-Markov process ηε(t). Its proof can be found, for example, in [14] and [15].

Lemma 3. For every state r �= 0 and ε ∈ (0, ε0], the hitting times τε,0 and rτε,0 to the
state 0 for semi-Markov processes ηε(t) and rηε(t), respectively, coincide.

According to Lemma 3, τε,0 and rτε,0 are, in fact, the same random variable defined
in two different forms in terms, respectively, of processes ηε(t) and rηε(t). The following
lemma, which is an obvious corollary of Lemma 3, plays an important role in what
follows.

Lemma 4. The exponential moments

rΦi0(0, �, ε) = Φi0(0, �, ε) < ∞

for any 0 ≤ � ≤ ρ◦, r �= 0, i ∈ X, and ε ∈ (0, ε0], and the power-exponential moments

rΦi0(k, �, ε) = Φi0(k, �, ε) < ∞ for any 0 ≤ � < ρ◦, k = 0, 1, . . . , r �= 0, i ∈ X, and
ε ∈ (0, ε0].

Let us summarize the above remarks.

Lemma 5. Conditions A–Dρ◦ hold for the semi-Markov processes ηε(t), and also hold
for the reduced semi-Markov processes rηε(t).

Since condition Dρ◦ holds for reduced semi-Markov processes rηε(t), the following
inequalities also hold for ε ∈ (0, ε0]:

(24) rφii(0, ρ◦, ε) < 1, i �= 0, r.

5. Asymptotic expansions for power-exponential moments of hitting times

Let us now describe algorithms for the construction of asymptotic expansions for
power-exponential moments of hitting times.

The proofs of Theorems 1 and 2 presenting these algorithms are based on recurrent
application of operational rules for Laurent asymptotic expansions given in Lemma 1
to the reduced semi-Markov processes constructed with the use of the recurrent time-
space screening procedures of phase space reduction described below. In fact, one should
correctly describe which functions, in which order, and which operational rules should
be applied for getting the corresponding expansions (their parameters, coefficients, and
parameters of upper bounds for remainders) as well as to indicate some particular cases
where the corresponding computational steps should be modified. This is exactly what
is done in the proofs of Theorems 1 and 2. An explicit writing down of the corresponding
operational formulas representing the recurrent algorithms described below (which could
be given as corollaries of the above theorems) would, in fact, replicate the above proofs
in the formal form, require implementation of a huge number of intermediate notation,
take too much space, etc., but would not add any new essential information about the
corresponding algorithms. That is why the decision was made to just say in each the-
orem that the description of the corresponding algorithm is given in its proof. This
makes formulations slightly unusual. But, as we think, this is the most compact way for
presentation of the corresponding asymptotic results and algorithms.
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Theorem 1. The following propositions take place:

(i) If conditions A–Fρ hold for the semi-Markov processes ηε(t), then these condi-
tions also hold for the reduced semi-Markov processes rηε(t) for every r �= 0.
The corresponding pivotal (rh

−
ij [k, ρ], rh

+
ij [k, ρ])-expansions for the mixed power-

exponential moments rφij(k, ρ, ε), k = 0, . . . , d, j ∈ rYi, i ∈ X, are given by the
algorithm described below in the proof of the theorem.

(ii) If, additionally, condition Gd,ρ holds for the semi-Markov processes ηε(t), then
this condition also holds for the reduced semi-Markov processes rηε(t). In this
case, the above

(
rh

−
ij [k, ρ], rh

+
ij [k, ρ]

)
-expansions are also the pivotal(

rh
−
ij [k, ρ], rh

+
ij [k, ρ], rδij [k, ρ], rGij [k, ρ]rεij [k, ρ]

)
-expansions,

with parameters rδij [k, ρ], rGij [k, ρ], rεij [k, ρ] given by the algorithm described
below in the proof of the theorem.

Proof. Lemma 5 implies that conditions A–Dρ◦ hold for the semi-Markov processes

rηε(t), with the same parameter ε0 as for the semi-Markov processes ηε(t), and the
transition sets rYi, i ∈ rX, given by relation (14).

In order to prove that condition Ed,ρ also holds for semi-Markov processes rηε(t), with
the same parameter ε0 and the transition sets rYi, i ∈ rX, given by relation (14), let us
construct the corresponding asymptotic expansions appearing in this condition.

Let r �= 0, i ∈ X, and j, r ∈ Yi ∩ Yr.
At the initial step, we construct the asymptotic expansions for exponential moments

rφrj(1, ρ, ε) and rφij(0, ρ, ε) using formulas (18) and the corresponding asymptotic ex-
pansions appearing in condition Ed,ρ.

First, proposition (vi) (the multiplication rule) of Lemma 1 should be applied to the
product φir(0, ρ, ε)φrj(0, ρ, ε).

Second, proposition (vii) (the division rule) of Lemma 1 should be applied to the
quotient

φir(0, ρ, ε)φrj(0, ρ, ε)

1− φrr(0, ρ, ε)
.

Here, the asymptotic expansion for the function 1 − φrr(0, ρ, ε) given in relation (8)
should be used.

Third, proposition (iii) (the summation rule) of Lemma 1 should be applied to the
sum

φij(0, ρ, ε) +
φir(0, ρ, ε)φrj(0, ρ, ε)

1− φrr(0, ρ, ε)
.

If j /∈ Yi, then φij(0, ρ, ε) ≡ 0; if j /∈ Yr, then φrj(0, ρ, ε) ≡ 0; if r /∈ Yi, then
φir(0, ρ, ε) ≡ 0; and if r /∈ Yr, then 1 − φrr(0, ρ, ε) ≡ 1. In these cases, the above
algorithm is readily simplified.

According to Lemma 1, the
(
rh

−
ij [0, ρ], rh

+
ij [0, ρ]

)
-expansions

(25) rφij(0, ρ, ε) =

rh
+
ij [0,ρ]∑

l=rh
−
ij [0,ρ]

rgij [0, ρ, l]ε
l + ro0,ρ,ij

(
εrh

+
ij [0,ρ]

)

yielded by the above algorithm for r �= 0, i ∈ X, j ∈ rYi are pivotal.
Steps of the algorithm described above should be recurrently repeated for k = 1, . . . , d.
Let us assume that the corresponding pivotal asymptotic expansions for power-exponen-

tial moments rφrj(l, ρ, ε), rφij(l, ρ, ε), l = 0, . . . , k − 1, have already been constructed
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with the use of formulas (20)–(21). In this case, the asymptotic expansions for mo-
ments rφrj(k, ρ, ε), rφij(k, ρ, ε) can be constructed using the above asymptotic expan-
sions, formulas (20)–(21), and the corresponding asymptotic expansions appearing in
condition Ed,ρ, in the following way.

First, propositions (i) (the multiplication by constant rule) and (v) (the multiplication

rule) of Lemma 1 should be applied to the products
(
k
l

)
φqr(k − l, ρ, ε) rφrj(l, ρ, ε) for

l = 0, . . . , k − 1 and q = i, r.
Second, proposition (iii) (the summation rule) of Lemma 1 should be recurrently

applied to the sum

rλqj(n, k, ρ, ε) = φqj(k, ρ, ε) +

n∑
l=0

(
k

l

)
φqr(k − l, ρ, ε) rφrj(l, ρ, ε)

= rλqj(n− 1, k, ρ, ε) +

(
k

n

)
φqr(k − n, ρ, ε) rφrj(n, ρ, ε)

for n = 1, . . . , k − 1, in order to get the asymptotic expansion for the sum

rλqj(k, �, ε) = rλqj(k − 1, k, ρ, ε) = φqj(k, �, ε) +
k−1∑
l=0

(
k

l

)
φq,r(k − l, �, ε) rφrj(l, �, ε)

for q = i, r.
Third, proposition (v) (the multiplication rule) of Lemma 1 should be applied to the

product φir(0, �, ε) rλrj(k, �, ε).
Fourth, proposition (vii) (the division rule) of Lemma 1 should be applied to the

quotient
φir(0, �, ε) rλrj(k, �, ε)

1− φrr(0, �, ε)
.

Here, the asymptotic expansion for the function 1 − φrr(0, ρ, ε) given in relation (8)
should be used.

Fifth, proposition (i) (the summation rule) of Lemma 1 should be applied to the sum

rλij(k, �, ε) +
φir(0, �, ε) rλrj(k, �, ε)

1− φrr(0, �, ε)
.

As was already mentioned above, the five steps of the above algorithm should be
recurrently repeated for k = 1, 2, . . . , d.

If j /∈ Yi, then φij(k, ρ, ε) ≡ 0, k = 0, . . . , d; if j /∈ Yr, then φrj(k, ρ, ε) ≡ 0, k =
0, . . . , d; if r /∈ Yi, then φir(k, ρ, ε) ≡ 0, k = 0, . . . , d; and if r /∈ Yr, then φrr(k, ρ, ε) ≡ 0,
k = 1, . . . , d and 1 − φrr(0, ρ, ε) ≡ 1. In these cases, the above recurrent algorithm is
readily simplified.

Note that the parameter ε0 does not change in the multiplication and summation
steps as well as in the division step, since 1− φrr(0, ρ, ε) > 0, ε ∈ (0, ε0].

According to Lemma 1, the
(
rh

−
ij [k, ρ], rh

+
ij [k, ρ]

)
-expansions

(26) rφij(k, ρ, ε) =

rh
+
ij [k,ρ]∑

l=rh
−
ij [k,ρ]

rgij [k, ρ, l]ε
l + rok,ρ,ij

(
εrh

+
ij [k,ρ]

)

yielded by the above recurrent algorithm for k = 1, . . . , d, r �= 0, i ∈ X, j ∈ rYi are
pivotal.

It remains to note that condition Ed,ρ and inequalities (24) imply that condition Fρ

also holds for the reduced semi-Markov process rηε(t) for every r �= 0.
This completes the proof of proposition (i) of Theorem 1.
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In order to prove proposition (ii) of Theorem 1, one should repeat the same sequence
of recurrent steps described above and, additionally, apply to every intermediate asymp-
totic expansion obtained with the use of the operational rules given in propositions (i),
(iii), (v), or (vii) of Lemma 1 the corresponding additional operational rules given,
respectively, in propositions (ii), (vi), (vi), or (viii), for computing parameters of the
corresponding upper bounds for remainders. �

Remark 1. It is worth noting that the above algorithm yields the asymptotic expan-
sions for mixed power-exponential moments rφij(k, ρ, ε) for k = 1, . . . , d, r �= 0, i ∈ X,
j ∈ rYi, i.e., for the corresponding transition characteristics of the reduced semi-Markov
processes rηε(t) with transition period defined in Section 4.

Let us choose some state q �= 0 and let r̄q,m = 〈rq,0, . . . , rq,m〉 = 〈rq,0, . . . , rq,m〉
be a permutation of the sequence 〈0, . . . ,m〉 such that rq,m−1 = q, rq,m = 0, and let
r̄q,n = 〈rq,0, . . . , rq,n〉, n = 0, . . . ,m, be the corresponding chain of growing sequences of
states from space X.

Theorem 2. The following propositions take place:

(i) Let conditions A–Fρ hold for the semi-Markov processes ηε(t). Then, for ev-

ery i ∈ X, the pivotal
(
ḣ−
i0[k, ρ], ḣ

+
i0[k, ρ]

)
-expansions for the power-exponential

moments of hitting times Φi0(k, ρ, ε), k = 1, . . . , d, i = q, 0, are given, for ev-
ery q �= 0, by the recurrent algorithm based on the sequential exclusion of states
rq,0, . . . , rq,m−2, q from the phase space X of the processes ηε(t). This algorithm is

described below in the proof of the theorem. The above
(
ḣ−
i0[k, ρ], ḣ

+
i0[k, ρ]

)
-expan-

sions are invariant with respect to any permutation r̄q,m = 〈rq,0, . . . , rq,m−2, q, 0〉
of the sequence 〈0, . . . ,m〉.

(ii) If, additionally, condition Gd,ρ holds for the semi-Markov processes ηε(t), then

the above
(
ḣ−
i0[k, ρ], ḣ

+
i0[k, ρ]

)
-expansions for the power-exponential moments of

hitting times Φi0(k, ρ, ε), k = 1, . . . , d, i = q, 0, also are, for every q �= 0,

pivotal
(
ḣ−
i0[k, ρ], ḣ

+
i0[k, ρ], r δ̇i0[k, ρ], rĠi0[k, ρ], r ε̇i0[k, ρ]

)
-expansions, with param-

eters r̄i,mδi0[k, ρ], r̄i,mGi0[k, ρ], r̄i,mεi0[k, ρ] given by the algorithm described below
in the proof of the theorem.

Proof. Let us exclude the state ri,0 from the phase space of the semi-Markov process ηε(t)
using the time-space screening procedure described in Section 4. Let ηε,r̄q,0 (t) = rq,0ηε(t)

be the corresponding reduced semi-Markov process, with the phase space

r̄q,0X = X \ {rq,0}.
The above procedure can be repeated. The state rq,1 can be excluded from the phase
space of the semi-Markov process ηε,r̄q,0(t). Let ηε,r̄q,1(t) = rq,1ηε,r̄q,0(t) be the corre-
sponding reduced semi-Markov process, with the phase space r̄q,1X = X \ {rq,0, rq,1}. By
continuing the above procedure for states rq,2, . . . , rq,n, we construct the reduced semi-
Markov process ηε,r̄q,n(t) = rq,nηε,r̄q,n−1

(t). This semi-Markov process has the phase
space r̄q,nX = X \ {rq,0, rq,1, . . . , rq,n}.

Let r̄q,nYi, i ∈ r̄q,n−1
X, and r̄q,nφij(k, ρ, ε), j ∈ r̄q,nYi, i ∈ r̄q,n−1

X, be, respectively, the
transition sets and transition power-exponential moments for the process

ηε,r̄q,n(t) = rq,nηε,r̄q,n−1
(t)

defined in the same way as the transition sets rYi, i ∈ X, and the transition power-
exponential moments rφij(k, ρ, ε), j ∈ rYi, i ∈ X, for the process rηε(t).

Theorem 1 implies, by induction, that conditions A–Fρ hold for the reduced semi-
Markov processes ηε(t), ηε,r̄q,0(t), . . . , ηε,r̄q,n(t).
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Thus, the recurrent application of the algorithm described in Theorem 1 to processes
ηε,r̄q,0(t), . . . , ηε,r̄q,n(t) let us construct the pivotal Laurent asymptotic expansions for
transition power-exponential moments r̄q,nφij(k, ρ, ε), j ∈ r̄q,nYi, i ∈ r̄q,n−1

X.
Let us take n = m − 1. In this case, the semi-Markov process ηε,r̄q,m−1

(t) has the
phase space r̄q,m−1

X = {0}, which is a one-state set. Also, the space r̄q,m−2
X = {q, 0} is

a two-state set.
By Lemma 4, the power-exponential moments of hitting times, Φi0(k, ρ, ε), coincide

for the semi-Markov processes ηε(t), ηε,r̄q,0(t), . . . , ηε,r̄q,m−1
(t) for every k = 0, . . . , d,

i = q, 0.
Also, for the reduced semi-Markov process ηε,r̄q,m−1

(t) = qηε,r̄q,m−2
(t), the exponential

moment Φi0(k, ρ, ε) = r̄q,m−1
φi0(k, ρ, ε) for every k = 0, . . . , d, i = q, 0.

Thus, the recurrent algorithm of sequential phase space reduction described above al-
lows us to construct, for k = 1, . . . , d, i = q, 0, the pivotal

(
ḣ−
i0[k, ρ], ḣ

+
i0[k, ρ]

)
-expansions

(27) Φi0(k, ρ, ε) =

ḣ+
ij [k,ρ]∑

l=ḣ−
i0[k,ρ]

ġi0[k, ρ, l]ε
l + ȯk,ρ,0j

(
εḣ

+
i0[k,ρ]

)
.

The above Laurent asymptotic expansions coincide with the corresponding Laurent
asymptotic expansions for the transition power-exponential moments r̄q,m−1

φi0(k, ρ, ε).
The summation and multiplication operational rules for Laurent asymptotic expan-

sions presented in propositions (iii) and (v) of Lemma 1 possess commutative, asso-
ciative, and distributive properties, which should be understood as identities for the
corresponding Laurent asymptotic expansions, i.e., identities for the corresponding pa-
rameters h, k, coefficients and remainders of functions represented in two alternative
forms in the corresponding functional identities. We refer to works of the authors [14,15]
for the corresponding details.

This makes it possible to prove that the Laurent asymptotic expansions for power-
exponential moments r̄q,m−1

φi0(k, ρ, ε) are invariant with respect to any permutation
r̄q,m = 〈rq,0, . . . , rq,m−2, q, 0〉 of the sequence 〈0, . . . ,m〉.

This legitimates the notation (with omitted index r̄q,m−1
) used for parameters, coeffi-

cients, and remainders in the asymptotic expansions (27).
Let 0 ≤ n ≤ m − 2 and let r̄′q,n = 〈rq,0, . . . , r′q,n〉 be a permutation of the sequence

r̄q,n.
The corresponding reduced semi-Markov process ηε,r̄′q,n(t) is constructed as the se-

quence of states for the initial semi-Markov process ηε(t) at sequential moments of its
hitting into the same reduced phase space

r̄′q,nX = X \ {r′q,0, . . . , r′q,n} = r̄q,nX = X \ {rq,1, . . . , rq,n}.

The times between sequential jumps of the reduced semi-Markov process ηε,r̄′q,n(t) are
the times between sequential instants of hitting the above reduced phase space by the
initial semi-Markov process ηε(t).

This obviously implies that the transition power-exponential moment r̄q,nφij(k, ρ, ε)
is, for every k = 0, . . . , d, j ∈ r̄q,nYi, i ∈ r̄q,n−1

X, n = 0, . . . ,m−1, invariant (as functions
of ε) with respect to any permutation r̄′q,n of the sequence r̄q,n.

Moreover, as follows from the recurrent algorithms presented above, the transition
power-exponential moment r̄q,nφij(k, ρ, ε) is a rational function of the initial transition
power-exponential moment φij(k, ρ, ε), j ∈ Yi, i ∈ X (quotients of sums of products for
some of these moments).

By using identity arithmetical transformations (disclosure of brackets, imposition of
a common factor out of the brackets, bringing a fractional expression to a common
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denominator, permutation of summands or multipliers, elimination of expressions with
equal absolute values and opposite signs in the sums, and elimination of equal expressions
in quotients) the rational functions r̄q,nφij(k, ρ, ε) can be transformed, respectively, into
the rational functions r̄′q,nφij(k, ρ, ε) and vice versa.

In fact, one should only check this for the case where the permutation r̄′q,n is obtained
from the sequence r̄q,n by exchange of a pair of neighbor states rq,l and rq,l+1 for some
0 ≤ l ≤ n − 1. Then, the proof can be repeated for a pair of neighbor states for the
sequence r̄′q,n, etc. In this way, the proof can be expanded to the case of an arbitrary
permutation r̄′q,n of the sequence r̄q,n. The above-mentioned poof of pairwise permutation
invariance involves processes r̄q,l−1

ηε(t) (for the moment, we denote as

r̄q,−1
ηε(t) = ηε(t)

the initial semi-Markov process), r̄q,lηε(t), and r̄q,l+1
ηε(t). It is absolutely analogous for

0 ≤ l ≤ n−1. Taking this into account, we just show how this proof can be accomplished
for the case l = 0.

The transition exponential moments r̄q,1φij(0, ρ, ε) and r̄′q,1
φij(0, ρ, ε) for the sequences

r̄q,1 = 〈r0, r1〉 and r̄′q,1 = 〈r1, r0〉 (here, i, j �= r0, r1) can be transformed into the same
symmetric (with respect to r0 and r1) rational function of the corresponding exponential
moments, using the identity arithmetical transformations listed above:
(28)

r̄q,1φij(0, ρ, ε) = r0φij(0, ρ, ε) + r0φir1(0, ρ, ε)
r0φr1j(0, ρ, ε)

1− r0φr1r1(0, ρ, ε)

= φij(0, ρ, ε) + φir0(0, ρ, ε)
φr0j(0, ρ, ε)

1− φr0r0(0, ρ, ε)

+ (φir1(0, ρ, ε) + φir0(0, ρ, ε)
φr0r1(0, ρ, ε)

1− φr0r0(0, ρ, ε)
)

×
(φr1j(0, ρ, ε) + φr1r0(0, ρ, ε)

φr0j(0,ρ,ε)

1−φr0r0
(0,ρ,ε) )

1− φr1r1(0, ρ, ε)− φr1r0(0, ρ, ε)
φr0r1

(0,ρ,ε)

1−φr0r0
(0,ρ,ε)

= φij(0, ρ, ε)

+
φir0(0, ρ, ε)φr0j(0, ρ, ε)(1− φr1r1(0, ρ, ε))

(1− φr0r0(0, ρ, ε))(1− φr1r1(0, ρ, ε))− φr0r1(0, ρ, ε)φr1r0(0, ρ, ε)

+
φir0(0, ρ, ε)φr0r1(0, ρ, ε)φr1j(0, ρ, ε)

(1− φr0r0(0, ρ, ε))(1− φr1r1(0, ρ, ε))− φr0r1(0, ρ, ε)φr1r0(0, ρ, ε)

+
φir1(0, ρ, ε)φr1j(0, ρ, ε)(1− φr0r0(0, ρ, ε))

(1− φr0r0(0, ρ, ε))(1− φr1r1(0, ρ, ε))− φr0r1(0, ρ, ε)φr1r0(0, ρ, ε)

+
φir1(0, ρ, ε)φr1r0(0, ρ, ε)φr0j(0, ρ, ε)

(1− φr0r0(0, ρ, ε))(1− φr1r1(0, ρ, ε))− φr0r1(0, ρ, ε)φr1r0(0, ρ, ε)

= r1φij(0, ρ, ε) + r1φir0(0, ρ, ε)
r1φr0j(0, ρ, ε)

1− r1φr0r0(0, ρ, ε)

= r̄′q,1
φij(0, ρ, ε).

The above proof for the power-exponential moments r̄q,nφij(k, ρ, ε) is analogous.
Due to commutative, associative, and distributive properties of operations rules for

Laurent asymptotic expansions, the above arithmetical transformations do not affect
the corresponding asymptotic expansions for functions r̄q,nφij(k, ρ, ε) and, thus, these
expansions are invariant with respect to any permutation r̄′q,n of the sequence r̄q,n.
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Therefore, the Laurent asymptotic expansions for the transition power-exponential
moments r̄q,nφij(k, ρ, ε) and r̄′q,nφij(k, ρ, ε), given by the recurrent algorithm of sequential
phase space reduction described above, are identical.

We refer to the authors’ book [15], where one can find an analogous proof, concerning
the invariance property of the corresponding Laurent asymptotic expansions for transi-
tion power moments for hitting times, presented in a more detailed form.

The recurrent algorithm described above for construction of the Laurent asymptotic
expansions for power-exponential moments Φi0(k, ρ, ε), k = 0, . . . , d, i = q, 0, can be
repeated for every q �= 0.

This completes the proof of proposition (i) of Theorem 2.
In order to prove proposition (ii) of Theorem 2, one should repeat the same sequence of

recurrent steps described above and, additionally, apply to every intermediate asymptotic
expansion obtained above with the use of the operational rules given in propositions
(i), (iii), (v), and (vii) of Lemma 1 the corresponding additional operational rules
given, respectively, in propositions (ii), (vi), (vi), and (viii) of Lemma 1, for computing
parameters of the corresponding upper bounds for remainders.

Unfortunately, the summation and multiplication operational rules for Laurent asymp-
totic expansions with explicit upper bound for remainders, presented in propositions (iv)
and (vi) of Lemma 1, possess commutative but not associative and distributive prop-
erties. This makes the parameters r̄q,mδi0[k, ρ], r̄q,mGi0[k, ρ], r̄q,mεi0[k, ρ], k = 0, . . . , d,
i = q, 0, given by the algorithm described below dependent on the choice of the sequence
r̄q,m for q �= 0. �
Remark 2. Formulas for parameter δC given in Lemma 1 imply, however, that the fol-
lowing explicit inequalities take place for any sequence of states r̄q,m and k = 0, . . . , d,
i = q, 0, q �= 0:

(29) r̄i,mδi0[k, ρ] ≥ δ∗[k, ρ] = min
j∈Yi,i∈X,n=0,...,k

δij [n, ρ].

We would like to note that, despite bulky forms, the algorithms for computing coeffi-
cients in the asymptotic expansions and parameters for the upper bound for remainders
presented in Theorems 1 and 2 are computationally effective due to their recurrent char-
acter.

In conclusion, we would like to mention again that the power-exponential moments,
which are interesting objects themselves, play the central role in studies of so-called quasi-
stationary phenomena in stochastic systems. These phenomena describe the behavior of
stochastic systems with random lifetimes. The core of the quasi-stationary phenomenon
is that one can observe something that resembles a stationary behavior of the system
before the lifetime goes to the end. The corresponding quasi-stationary distribution can
be expressed via the exponential moments of sojourn times and the first-order power-
exponential moments of return times, with parameter ρ, which is the characteristic root
for the distributions of the corresponding return times. Related formulas, comments, and
examples of applications to asymptotic analysis of perturbed queuing systems and bio-
stochastic systems can be found in the book [4]. Also, related numerical examples can be
found in the book [15]. The asymptotic expansions for quasi-stationary distributions of
nonlinearly perturbed semi-Markov processes do involve higher-order power-exponential
moments of return times and asymptotic expansions for these moments. We hope to
publish the corresponding asymptotic results for nonlinearly and singularly perturbed
semi-Markov processes in the near future.
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