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A COMPARATIVE STUDY FOR TWO NEWLY DEVELOPED

ESTIMATORS FOR THE SLOPE

IN THE FUNCTIONAL EIV LINEAR MODEL

A. A. AL-SHARADQAH

Abstract. Two estimators were recently developed for the slope of a line in the
functional EIV model. Both are unbiased, up to order σ4, where σ is the error
standard deviation. One estimator was constructed as a function of the maximum
likelihood estimator (MLE). Therefore, it was called the Adjusted MLE (AMLE). The
second estimator was constructed using a completely different approach. Although
both the estimators are unbiased, up to the order σ4, the latter estimator is much
more accurate than the AMLE. We study these two estimators more rigorously here,
and we show why one estimator outperforms the other one.

1. Introduction

Regression models in which all the variables in the model are subject to errors are
known as errors-in-variables (EIV) models [8, 10, 14]. In the EIV linear model, the n
observed points {mi = (xi, yi)}ni=1 are considered as random perturbations of the true
points m̃1 = (x̃1, ỹ1)

�, . . . , m̃n = (x̃n, ỹn)
�, i.e.,

(1) xi = x̃i + δi, yi = ỹi + εi, i = 1, . . . , n,

where δi and εi for each i = 1, . . . , n are i.i.d. normal random variables with zero mean
and variances σ2

x and σ2
y, respectively. The true points are lying on the true line and are

defined by

(2) ỹi = α̃+ β̃x̃i, i = 1, . . . , n,

where α̃ and β̃ are the true values of the intercept α and the slope β. This paper
is a continuation of our work in [1]; therefore, we will adopt the same assumptions
about the true points. That is, we will use the functional model, in which the true
points are unknown but fixed. Here we will assume that the ratio λ = σ2

ε/σ
2
δ is known.

For simplicity, we write σ2
δ = σ2 and σ2

ε = λσ2. In this case, the maximum likelihood
estimator (MLE) of (α, β) in the functional model is equivalent to the orthogonal distance
regression that minimizes the following:

(3) F1(α, β) =
1

β2 + λ

n∑
i=1

d2i , di = yi − α− βxi.

To minimize this objective function, we first differentiate F1 with respect to α and
substitute its resulting expression α̂1 = ȳ − βx̄ back into the objective function (3).
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Therefore, we obtain the following:

(4) F1(β) =
1

β2 + λ

∑
d∗2i ,

where d∗i = y∗i − βx∗
i . The notation x∗

i and y∗i refer to the “centered” coordinates of xi

and yi, i.e.,

(5) x∗
i = xi − x̄, y∗i = yi − ȳ, i = 1, . . . , n.

Here, we use the standard notation for sample means x̄ = 1
n

∑n
i=1 xi, ȳ = 1

n

∑n
i=1 yi,

while for the components of the so-called “scatter matrix” we use the following:

(6) sxx =
∑

(xi − x̄)2, syy =
∑

(yi − ȳ)2, sxy =
∑

(xi − x̄)(yi − ȳ).

Therefore, differentiating (4) with respect to β gives the following quadratic equation:

(7) sxyβ
2 − (syy − λsxx)β − λsxy = 0.

Equation (7) has two distinct roots, but the one that minimizes F1(β) is

(8) β̂1 =
syy − λsxx +

√
(syy − λsxx)2 + 4s2xy

2sxy
,

if sxy �=0 (which is true almost surely). Then, we find α̂1 = ȳ − β̂1x̄ [8].

A family of objective functions. Instead of restricting ourselves with only one ob-
jective function that led to the MLE, we considered in [1] a general class of objective
functions

(9) F(α, β) = g(β)
∑

d2i , di = yi − α− βxi,

where g(β) is an arbitrary, smooth positive function of β. This class of objective functions
produces two popular estimators. The first estimator is the MLE that minimizes (9)
whenever g(β) = (β2+λ)−1 =: g1(β) (say), and the second estimator is the least squares
(LS) estimator that minimizes F in (9) whenever the weight function g(β) = 1 =: g0(β)
(say). It should be clear that α = ȳ − βx̄ and

(10) F(β) = g(β)
∑

d∗2i .

Another estimator, β̂2, that will be discussed in this paper was developed in [1]. The

estimator β̂2 is the solution that minimizes the objective function F in (10) with the
weight

g(β) =
(
β2 + λ

)−n−3
n−2 =: g2(β).

With this weight, the new objective function leads to a new estimator β̂2. That is, it is
the solution that minimizes (10) with the weight g2(β), and it is one of the roots of the
cubic equation

(11) sxxβ
3 + (n− 4)sxyβ

2 −
[
(n− 3)syy − λ(n− 2)sxx

]
β − λ(n− 2)sxy = 0.

The development of g2(β) comes after deriving the expression of the bias (up to the
second-order term) for the estimator that minimizes F in (10). The second-order bias
formula depends on g and its derivative, g′. Equating the second-order bias with zero
gives us an ordinary first-order linear differential equation (presented shortly). The
solution of this differential equation yields g2(β). We call this bias-correction the “pre-
bias elimination technique”, because we choose g = g2 that eliminates the second-order
bias in advance.

Moreover, we addressed another bias-correction technique, where the bias is eliminated
by subtracting the noisy version of the bias from the estimator itself. This bias-correction
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technique is well known in the literature, but we refer to it here as the “post-bias elim-
ination technique”. The new estimator comes as an adjustment of the MLE for its
second-order bias. Indeed, it is a function of the MLE and has the following form:

(12) β̌1 =

(
1− σ̂2

‖x∗‖2

)
β̂1,

where

σ̂2 =
1

(β̂2
1 + λ)(n− 2)

∥∥∥y∗ − β̂1x
∗
∥∥∥2
2
;

here x∗ = (x1 − x̄, . . . , xn − x̄)
�
, y∗ = (y1 − ȳ, . . . , yn − ȳ)

�
. Since it is a modified

version of the MLE, we call β̌1 the “Adjusted Maximum Likelihood Estimator” (AMLE).
Even though we have derived the general formulas for the bias and the mean squared

errors (MSE) in [1], those formulas work only for estimators minimizing the objective
function given in (9). The AMLE does not minimize any objective function, so those
general formulas cannot be applied. Therefore, the higher-order bias and the higher-order
MSE shall be derived for the AMLE using a completely different approach.

The numerical experiments in [1] show that the AMLE, β̌1, outperforms the MLE,

but it still falls behind β̂2, although both β̂2 and β̌1 were developed to eliminate the
second-order bias. They behave differently in practice. This motivates us to study them
further. To do so, we will derive the higher-order terms for the bias and the MSE of β̌1

and β̂2, and then we will compare them.
This paper is organized as follows. Section 2 states some statistical assumptions and

presents previous results. Those results pave the road for Section 3, where we present
the higher-order expansions of the bias as well as the MSE of the AMLE, and then we

compare between β̂2 and the AMLE, β̌1. This paper involves many technical derivations
that are deferred to the appendix.

In this paper, we use vector notation. Accordingly, (1) can be expressed as x = x̃+ δ
and y = ỹ+ε, where δ and ε represent the vectors of all noisy errors that corrupt the first
and the second coordinates of the true vectors x̃ = (x̃1, . . . , x̃n)

� and ỹ = (ỹ1, . . . , ỹn)
�,

respectively.

2. Previous results

Anderson [5] proved that the MLEs of (α, β), i.e., α̂1 and β̂1, do not have finite

moments, i.e., E(|α̂1|) = ∞ and E(|β̂1|) = ∞; see also [13]. The infinite first moment’s
phenomenon is very common in EIV models. For instance, Chernov [11] proved that
the most accurate estimators, the MLEs, for the center and the radius of a circle in
the circle fitting problem have infinite moments too, while Zelniker and Clarkson [21]
proved that the “awkward” Delogne–K̊asa method returns estimators with finite first
moments. Moreover, Al-Sharadqah et al. show that the first moment for several accurate
estimators do not exist [3] either. The infinite first moment problem also appears in
other EIV models, such as ellipse fitting [3] and the multivariate EIV linear model [9].

Therefore, there is no direct approach to study the statistical properties of these
estimators. Traditionally, statisticians investigate the properties of estimators if their
moments are finite. If the moments are finite but have complicated formulas, statisticians
use the first few terms of the Taylor expansions of their means and their variances. That

is, before Anderson’s discovery, statisticians employed the Taylor expansion of (α̂1, β̂1)

in order to derive some “approximate” formulas for the moments of α̂1 and β̂1 (including
their means and variances). Anderson demonstrated that all those formulas should be
regarded as moments of some approximations rather than “approximate moments”.
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The MLEs of (α1, β1) here have infinite variances and infinite mean squared errors!
This poses immediate methodological questions: (1) How can we characterize, in practical
terms, the accuracy of estimates whose theoretical MSE is infinite (and whose bias is
undefined)? (2) Is there any precise meaning to the widely accepted notion that the

MLEs α̂1 and β̂1 are best? To answer these questions, we would rather study the moments
of their approximations rather than the approximations of their moments. With the aid

of Taylor approximation, we will take advantage of the first few terms of β̂1. These
few terms have finite moments because they are either the quadratic or cubic form of

Gaussian vectors. That is, we can write β̂1 as β̂1 = β̂Approx + OProb(σ
4). Here β̂Approx

has finite moments while the reminder OProb does not.
The issue of the infinite moments for the MLEs was ignored by practitioners because

of the excellent behavior of these estimators in real-life applications. Indeed, the infinite
moment of the estimators is barely seen in practice [2, 6, 7, 10] except when the noise
level is relatively large. Therefore, Chernov [10, p. 17] experimentally investigated this
issue and discovered that if a set of n observations is distributed around a line segment
of length L, then the infinite first moment occurs whenever σ/L is greater than or equal
to 0.24. This value is unrealistically high for computer vision and image processing;
therefore, the infinite first moment’s issue is rarely observed.

To investigate how close β̂Approx is to β̂1, one could imagine an artificial example,
where the probability distribution function (CDF) of the MLE could be expressed as a
mixture distribution of the two distributions FX and FY with weight 1 − p and p for
some p ∈ (0, 1), respectively. Here, the random variable X has finite moments, and Y

has an infinite first moment. That is, Fβ̂1
= (1− p)FX + pFY , thus E(|β̂1|) = ∞ even if

p = 10−6. Here p = 10−6 means that if one million samples were generated and the MLE
was computed for each sample, then, on average, only one sample would come from the
“bad” distribution (as the Cauchy distribution) Y , while all other samples would come
from the “good” distribution X. This justifies how a very accurate estimator, such as
the MLE, has infinite first moment.

Al-Sharadqah and Chernov [2] investigated the issue of having an accurate estimator
with infinite moments in EIV models. They experimentally investigated the MLE for
both linear and circular regressions using this criterion. That is, the probability distri-
bution function of its approximation, say FApprox(x), is good enough, if it accounts for
“almost all” of Fβ̂1

(x) that can be represented as

(13) Fβ̂1
(x) = (1− p)FApprox(x) + pFR(x), −∞ < x < ∞,

where FR(x) is some other probability distribution function (the “remainder”) and p is

a sufficiently small positive real number. According to (13), the realizations of β̂1 are
taken from the “good” distribution FApprox with probability 1 − p and from the “bad”
distribution fR with probability p.

Thorough intensive numerical experiments have been conducted and it was found that
the values of p for both linear and quadratic approximations are indeed very small as
long as σ/L lies below some typical values, such as 0.1. Therefore, under the small-noise
model adopted here, the MLE and its approximations are “virtually” equal.

This paper is tailored for image processing applications, where the number of observ-
able points (pixels) is limited, and the noise is small. The typical value of the noise
level σ does not exceed 0.05L. Accordingly, we will study estimators whenever σ → 0,
which is known as the small-sigma model.

The small-sigma model has a great impact on many research topics in image pro-
cessing, signal processing, computer vision, and many other research topics [10]. Its
importance stems from the following reason. On an image, the number of observed
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Table 1. The order of magnitudes of the four terms in the MSE.

σ2/n σ4 σ4/n σ6

Small samples (n ∼ 1/σ) σ3 σ4 σ5 σ6

Large samples (n ∼ 1/σ2) σ4 σ4 σ6 σ6

points (pixels on a computer screen) n is usually strictly limited, but the noise level σ is
small. The small-noise model was first introduced by Kadane in the early 1970s and used
later by Anderson [7] and Kanatani [15] (see also [17] for a more persuasive discussion).
Such models were also studied by Amemiya, Fuller, and Wolter [4,20], who made a more
rigid assumption that n ∼ σ−a for some 0 < a < 2.

This paper focuses on comparing the two estimators according to their order of mag-
nitudes. We distinguish between terms of order σ2 and σ2/n. In typical computer vision
and imaging processing applications, the number of points typically lies between 10–20
(∼ 1/σ) and up to a few hundred (∼ 1/σ2). Table 1 classifies terms according to their
dependence on n. For example, terms with order of magnitude σ2/n are comparable with
terms of order σ3 or even σ4 (for relatively large n). Therefore, we will call the second-
order bias of order σ2 and σ2/n the “essential second-order bias” and the “nonessential
second-order bias”, respectively. Indeed, the nonessential bias vanishes for large n while
the essential bias persists.

In the analog of consistency of an estimator, we call an estimator geometrically consis-
tent if it returns the true values of the parameters whenever all the points are observed

without error (i.e., the data set is noiseless). Informally, limσ→0 θ̂(m1, . . . ,mn) = θ̃,

where θ̃ is the true value of the parameter vector. We should mention here that the
geometric consistency requirement is considered as the minimal requirement for any es-
timator in geometric estimation problems.

This paper is a continuation of our work in [1], where the error analysis has been
developed to study the statistical properties for any geometrically consistent estimator

minimizing F . Firstly, for an estimator, say β̂, we have used its Taylor expansion around
the true value β̃, i.e.,

(14) β̂ = β̃ +Δ1β̂ +Δ2β̂ +Δ3β̂ +Δ4β̂ +OProb

(
σ5

)
,

where β̃ is the true value of β and

Δ1β̂ =
∑

βxi
δi +

∑
βyi

εi,

Δ2β̂ =
1

2

[∑
i,j

βxixj
δiδj +

∑
i,j

βxiyj
δiεj +

∑
i,j

βyiyj
εiεj

]

are the first- and the second-order errors, respectively. Also, the formal expressions

of the higher-order error terms, i.e., Δ3β̂ and Δ4β̂, will be presented later. The sym-

bol βxi
represents the first partial derivative of the estimator β̂ with respect to xi, i.e.,

β̂xi
= ∂β̂/∂xi, evaluated at β̃ and (x̃k, ỹk) for all k = 1, . . . , n. Similarly, βxiyj

is the

second partial derivative of β̂ with respect to xi and yj i.e., β̂xiyj
= ∂2β̂/(∂xi∂yj), eval-

uated at β̃ and (x̃k, ỹk) for all k = 1, . . . , n. Accordingly, the following results have been
established in [1].

Theorem 2.1. Let κ(β) = (β2 + λ)g(β) and S = ‖x̃∗‖2/n. Then

E
(
β̂
)
= β̃ + E

(
Δ2β̂

)
+ E

(
Δ4β̂

)
+O

(
σ6

)
,
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where

E
(
Δ2β̂

)
=

−κ̃′σ2

2g̃S
+

(
κ̃′ + β̃g̃

)
σ2

g̃nS
+O

(
σ4

)
,(15)

E
(
Δ4β̂

)
=

σ4κ̃′

4g̃2S2

[
2κ̃′′ − 3g̃′κ̃′

g̃

]
+O

(
σ4/n

)
;(16)

here g̃ = g
(
β̃
)
, and κ̃′ and κ̃′′ are the first and the second derivatives of κ evaluated at

the true values of the set of observations and the true parameter β̃.

Analogously, we call every term of order of magnitude σ4 “the fourth-order essen-
tial bias”, while we call all other terms of order of magnitude σ4/na the fourth-order
nonessential bias for any a > 0.

Next, we turn our attention to the leading term of the bias. If we split the O(σ2)
terms into the essential second-order bias of order σ2 and nonessential terms of order
O(σ2/n), we obtain

(17) biasess(β̂) =
−κ̃′σ2

2g̃S
.

One might be interested in eliminating the essential second-order bias. This problem
can be accomplished by solving the ordinary differential equation (ODE) κ′(β̃) = 0, i.e.,

(18)
(
β̃2 + λ

)
g̃′ + 2β̃g̃ = 0,

where n ≥ 3. Solving the ODE given in (18) yields g = g1. Accordingly, the minimum

value of the corresponding objective function can be achieved at the MLE, β̂1.
Furthermore, one can obtain a more accurate estimator whose entire second-order bias

equals zero (i.e., its bias terms of magnitudes σ2 and σ2/n are both zero). Then we need
to find the weight that solves the ODE

(19) (n− 2)
(
β̃2 + λ

)
g′ + 2(n− 3)β̃g = 0,

which leads to

g
(
β̃
)
=

(
β̃2 + λ

)−n−3
n−2 =: g2

(
β̃
)

as a solution of the ODE (19). This justifies the rationale of choosing g2. Based on that,

β̂2 is an estimator of β and it minimizes the objective function Fg2 (i.e., F when g = g2).
This gives us an estimator with a zero second-order bias. It is the only estimator that
eliminates the second-order bias. To compute this estimator, we solve

∂Fg2

∂β
= 0,

which is reduced to solving the cubic equation given in (11). It is worth mentioning here
that the MLE given in (8) is the solution of the quadratic equation (7). Therefore, we
can consider (11) as a “correction” of (7), and as such we can solve (11) numerically by
using the solution (8) of (7) as an initial guess. Alternatively, we might just solve the
cubic equation (11) by exact formulas, and select the root that minimizes the objective
function. We summarize these results in the following theorem.

Theorem 2.2. Up to an irrelevant scalar factor, the fit (10) has a zero-essential bias if
and only if

g = g1(β) =
1

β2 + λ
.

Moreover, for n ≥ 4, the fit given in (10) has a zero second-order bias if and only if
g = g2 (up to an irrelevant scalar factor). Furthermore, without loss of generality, if we
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set S = 1, then:

• For g(β) = g1(β); β̂ = β̂1 and

(20) E
(
Δ2β̂1

)
=

σ2

n
β̃ and E

(
Δ4β̂1

)
= 0 +O

(
σ4/n

)
• For g(β) = g2(β) and n ≥ 3; β̂ = β̂2, nS = ‖x̃∗‖2 = sx̃x̃, and

(21) E
(
Δ2β̂2

)
= 0 and E

(
Δ4β̂2

)
=

2
(
n− 2 + (2n− 5)β̃2

)
β̃

(n− 2)3
(
1 + β̃2

) σ4 +O
(
σ4/n2

)
.

Note here that β̂2 has zero second-order bias, while the MLE, β̂1, has a nonzero

essential second-order bias. This demonstrates why β̂2 outperforms β̂1 for intermediate
values of n, while both the estimators are comparably equal for large n. On the other
hand, we have derived a general formula for the MSE of all estimators solving (10). The
formula depends on the weight function g and its formal expression is

MSE
(
β̂
)
=

(
β̃2 + λ

)
σ2

nS
+

σ4

nS2

(
λ+

2β̃2 − λ

n

)

+
σ4

4g̃2nS2

[
(τ̃ ′ − 2β̃g̃)κ̃′

+ 4

(
1− 2

n

)(
−
(
β̃2 + λ

)
g̃κ̃′′ −

(
2β̃g̃ −

(
β̃2 + λ

)
g̃′
)
κ̃′
)

+
8β̃g̃κ̃′ + 4

(
7β̃2 + 2λ

)
g̃2

n

]
,

(22)

up to order σ6.
As a standard statistical measure, the efficiency of any unbiased estimator can be

determined by the Cramér–Rao lower bound (CRB). Kanatani [16] in 1998 derived a
general CRB for arbitrary curves for any unbiased estimators. In geometric fitting prob-
lems, however, all estimators are biased. This makes the natural bound, CRB, not
helpful.

In the early 2000’s, Chernov and Lesort [12] realized that Kanatani’s formula does not
work for any practical estimator in curve fitting problems. To overcome this situation,
Chernov and Lesort [12] employed first-order analysis for any geometrically consistent
estimators. They showed that Kanatani’s formula works for all geometrically consistent
estimators, up to the leading order. Thus, Chernov and Lesort called it the Kanatani–
Cramér–Rao lower bound (KCR). From that time, the KCR has been used as a measure
for the efficiency for any meaningful estimator.

In the course of linear regression, the KCR lower bound means that the first leading
term of the “approximate” covariance matrix has a natural bound given by

(23) V ≥ σ2Vmin, Vmin =
λ+ β̃2

sxx

[
x̃x̃ −¯̃x
−¯̃x 1

]
,

and hence,

Vmin

(
β̂
)
=

λ+ β̃2

sxx
=

λ+ β̃2

nS
.

This general formula for the MSE produces the MSE of the MLEs β̂1 and β̂2. Their
MSE can be simply computed in terms of ‖x̃∗‖2 = nS. For the MLE, since κ̃′ = κ̃′′ = 0,
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Table 2. The components of the mean squared error for each of the

three estimators: least-squares estimator β̂0, the MLE β̂1, and the new

proposed estimator β̂2.

Method E(Δ1β̂)2 E(Δ2β̂)2 = Bias(Δ2β̂) + Var(Δ2β̂) 2 E(Δ1β̂Δ3β̂)

β̂0
(β̃2+λ)σ2

nS
σ4

nS2

[
λ+ 2β̃2−λ

n

]
+ σ4β̃2

nS2

[
n− 4 + 5

n

]
− 2σ4

nS2

(
1− 3

n

) (
3β̃2 + λ

)

β̂1
(β̃2+λ)σ2

nS
σ4

nS2

[
λ+ 2β̃2−λ

n

]
+ σ4β̃2

n2S2
2σ4(3β̃2+λ)

n2S2

β̂2 (τ̃ ′ = 0, κ̃′ = 2βg2
n−2

)
(β̃2+λ)σ2

nS
σ4

nS2

[
λ+ 2β̃2−λ

n

]
+ 2σ4β̃2

n2(n−2)S2 0

one obtains

(24) MSE
(
β̂1

)
=

(
β̃2 + λ

)
σ2

‖x̃∗‖2 +

(
nλ+ 9β̃2 + λ

)
σ4

‖x̃∗‖4
λ=1
=

(
β̃2 + 1

)
σ2

‖x̃∗‖2 +

(
n+ 9β̃2 + 1

)
σ4

‖x̃∗‖4 ,

while the MSE of β̂2 is

MSE
(
β̂2

)
=

(
β̃2 + λ

)
σ2

‖x̃∗‖2 +
σ4

nS2

(
λ+

2β̃2 − λ

n

)
+

2σ4β̃2

n2(n− 2)S2

λ=1
=

(
β̃2 + 1

)
σ2

‖x̃∗‖2 +

(
1 +

2β̃2

n− 2

)
(n− 1)σ4

‖x̃∗‖4 ,

(25)

where we used here τ̃ ′ = 0 and κ̃′ = 2β̃g̃2
n−2 .

It is worth mentioning here that the MSE of any estimator can be decomposed into

MSE
(
β̂
)
= E

[(
Δ1β̂

)2]
+ E

[(
Δ2β̂

)2]
+ 2 E

(
Δ1β̂Δ3β̂

)
.

The most significant term in this expansion is E
[(
Δ1β̂

)2 ]
and it is of order σ2. This

term does not depend on g so the leading terms of the MSE for all methods minimiz-
ing F are equal, and they all coincide with the KCR lower bound. Thus, all methods
minimizing (10) are statistically efficient in the KCR sense.

The second important term in the MSE comes from the essential bias. Its contribution

can be seen as part of E
[(
Δ2β̂

)2 ]
(i.e., (essential bias + nonessential bias)2 + var

(
Δ2β̂

)
).

These expressions are stated in Table 2. After a careful look at this table, one can easily

see why the MLE outperforms the LS, but both estimators still fall behind β̂2.

3. Main results

In [1], it was shown that the newly developed estimator β̂2 is the best estimator among

all other estimators minimizing F in (10) including the least squares β̂0 and the MLE β̂1.
Moreover, the numerical experiments of [1] showed that the AMLE β̌1 outperforms the

MLE, but the AMLE still falls behind β̂2.
Although both estimators eliminate the second-order bias, they behave quite differ-

ently in numerical experiments and their accuracy is quite different. Therefore, we devote
this paper to investigating why these estimators are quite different. In this paper, we
will derive the bias and the MSE of their approximations, and then we will discuss our
findings.

Even though general formulas for the bias and the MSE have been derived in [1], those
formulas work only for an estimator minimizing such an objective function (as we have

seen for the geometric fit β̂1 and β̂2 when substituting g = g1 and g = g2, respectively,
in F). However, these general formulas cannot be applied to the AMLE because it does
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not minimize any objective function. Therefore, we need to derive them directly. To
keep our calculations simple, we will only consider λ = 1.

To understand how this estimator works, we need to study the MLE first. Most of the
upcoming expressions in this section can be written in terms of the Kronecker product,
and as such, we use some of its handy properties. These tools are presented below in
Definition 3.1, Proposition 3.1, and Theorem 3.1.

Definition 3.1. Let A be an m × n matrix and let B be a p × q matrix. Then the
Kronecker product of A and B is the (mp)× (nq) matrix defined by

A⊗B =

⎡
⎢⎢⎢⎣

a11B a12B · · · a1nB
a21B a22B · · · a2nB
...

...
...

...
am1B am2B · · · amnB

⎤
⎥⎥⎥⎦ .

Furthermore, tr(A⊗B) = tr(A)tr(B).

Proposition 3.1. Let A1, B1, C1 be square matrices of size p and let A2, B2, and C2

be square matrices of size q. Then

tr(A1 ⊗A2(B1 ⊗B2 +C1 ⊗C2)) = tr(A1B1)tr(A2B2) + tr(A1C1)tr(A2C2).

Theorem 3.1 ([19]). Let ζ be an n-dimensional random vector with mean μ and covari-
ance matrix Σ and let A and B be symmetric matrices of size n. Then

(26) E
(
ζ�Aζ

)
= tr(AΣ) + μ�Aμ.

Moreover, if ζ ∼ N(0,Σ), where Σ is a positive definite matrix, then

E
(
ζ�Aζ · ζ�Bζ

)
= tr(AΣ) tr(BΣ) + 2tr(AΣBΣ).

3.1. MLE and its approximations. Here we will derive the first four order error terms

of the MLE, namely Δiβ̂1 for each i = 1, . . . , 4. This is a crucial step for studying the
AMLE. Moreover, one can use the results obtained in this section to validate Theorem 2.1.

Linear approximation and the KCR lower bound. We start our analysis with the

linear approximation, i.e., β̂L = β̃ + Δ1β̂1. Here, the first-order error term Δ1β̂1 is a
linear combination of δ and ε that represents the vectors of all noisy errors corrupting
the first and the second coordinates of the vectors x̃ and ỹ. Using the first-order Taylor
expansion of (4) about the true value β̃ and keeping only terms of order σ2 yield

(27)

F1

(
β̂
)
=

1

1 + β̃2

∑(
ỹ∗i + ε∗i −

(
β̃ +Δ1β̂1

)
(x̃∗

i + δ∗i )
)2

+OProb

(
σ3

)
=

1

1 + β̃2

∑(
ε∗i − β̃δ∗i − x̃∗

i Δ1β̂1

)2
+OProb

(
σ3

)
,

where both δ∗i = δi − δ̄ and ε∗i = εi − ε̄ denote the “‘centered”’ errors. Accordingly, F1

attains its minimum at

(28) Δ1β̂1 =
(x̃∗)�

(
ε∗ − β̃δ∗

)
‖x̃∗‖2 ,

where δ∗ and ε∗ denote the vectors of δ∗i ’s and ε∗i ’s, respectively. Let h∗ denote the

combined vector of δ∗i ’s and ε∗i ’s; i.e., h∗ =
(
δ∗�, ε∗�

)�
. The components of h∗ are
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not independent random variables, but h and h∗ are related by h∗ = Nh, where N is a
(2n)× (2n) matrix defined by

(29) N =

[
Nn 0n

0n Nn

]
, Nn = In − 1

n
1n.

(Here 0n and 1n denote n×n matrices consisting of zeros and ones, respectively.) Thus,

we can express Δ1β̂1 as a linear function of the random vector h whose components are
independent:

(30) Δ1β̂1 =

(
−β̃(x̃∗)�, (x̃∗)�

)�
Nnh

‖x̃∗‖2 =

(
−β̃(x̃∗)�, (x̃∗)�

)�
h

‖x̃∗‖2 = G�h,

where we used the relation (x̃∗)�Nn = (x̃∗)� and the ith component of G is

(31) Gi =

{
−β̃x̃∗

i /‖x̃∗‖2 for 1 ≤ i ≤ n,

x̃∗
i−n/‖x̃∗‖2 for n+ 1 ≤ i ≤ 2n.

Therefore, the linear approximation is

(32) β̂L = β̃ +Δ1β̂1.

Example 3.1 (Variance and bias of linear approximation). From (30), we can

find the variance of β̂L. Since E(Δ1β̂1) = 0, the linear approximation β̂L is an unbiased

estimator of β̃ (i.e., E(β̂L) = β̃). Thus,

(33) Var
(
β̂L

)
= E

(
h�GG�h

)
= σ2tr

(
GG�) =

(
1 + β̃2

)
σ2

‖x̃∗‖2 .

This follows from writing GG� as

(34) GG� = a1 ⊗Bn, where a1 =
1

‖x̃∗‖4
(
−β̃, 1

)�(−β̃, 1
)
, Bn = x̃∗(x̃∗)�,

and using Definition 3.1 and the fact tr(Bn) = ‖x̃∗‖2 = sx̃x̃.

Example 3.1 shows that Var(β̂L) is of order σ
2/n, which also attains the KCR. It also

indicates that the linear approximation is an unbiased estimator of β̂1! Only in 1976,

explicit formulas for the density functions of the estimators α̂1 and β̂1 were derived;
see [5, 7]. It turns out that those densities are not normal and do not belong to any
standard family of probability densities. Those formulas are overly complicated and
involve double-infinite series. It was promptly noted [5] that they were not very useful

for practical purposes. Moreover, the probability density function of β̂1 is skewed except

when β̃ = 0. Therefore, the linear approximation β̂L (whose pdf is normal!) is not
a good approximation for the MLE. Accordingly, we will go further in our analysis by
considering the quadratic and the cubic approximations.

Quadratic and cubic approximations. The quadratic and the cubic approximations
of the MLE are given by the following general formulas:

(35) β̂Q = β̃ +Δ1β̂1 +Δ2β̂1 and β̂C = β̂Q +Δ3β̂1,

where Δ3β̂1 involves all random terms of order OProb(σ
3).
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Before presenting the formal expressions of these approximations, we introduce the
following terms:

α1 =
−r1 + 2β̃

2‖x̃∗‖4 , γ1 = −r1β̃
2 + 2β̃

2‖x̃∗‖2 ,(36)

α2 = −r1β̃ + 2

2‖x̃∗‖4 , γ2 =
r1β̃ + 1

2‖x̃∗‖2 ,(37)

α3 =
r1

2‖x̃∗‖4 , γ3 =
−r1

2‖x̃∗‖2 ,(38)

where

(39) r1 =
−2β̃

1 + β̃2
, r2 =

3β̃2 − 1

(1 + β̃2)2
.

Also, let a and b be 2-by-2 symmetric matrices defined as

(40) a =

[
α1 α2

α2 α3

]
and b =

[
γ1 γ2
γ2 γ3

]
.

Theorem 3.2. Let β̂1 be the MLE of the slope β of the line y = α + βx and let

Bn = x̃∗(x̃∗)�. Then the second-order term Δ2β̂1 is a quadratic form of the combined
error h and it takes the formal expression

(41) Δ2β̂1 = h�N�QNh,

where N = I2 ⊗Nn (cf. (29)) and Q is a (2n)× (2n) matrix defined by

(42) Q = a⊗Bn + b⊗ In.

Furthermore, the third-order term Δ3β̂1 is a tensor product of the centered-combined
error h∗ and it takes the form

(43)

Δ3β̂1 = − 1

‖x̃∗‖2
[
G�h∗(h∗)�Ah∗ − r2‖x̃∗‖2(h∗)�GG�h∗G�h∗

+ r1‖x̃∗‖2G�h∗ · (h∗)�Qh∗

+ 3r1E
�h∗(h∗)�GG�h∗ + 2E�h∗(h∗)�Qh∗

]
,

where E = (x̃�,0�)�, A = γ̂1 ⊗ In, and

(44) γ̂1 =

[
r2β̃

2 + 2r1β̃ + 1 −(r2β̃ + r1)

−(r2β̃ + r1) r2

]
.

Example 3.2 (Variance and bias of the quadratic approximation). As a con-

sequence of Theorem 3.2, we find the components of the MSE of β̂Q. Since N is an
idempotent matrix,

(45) tr (N�QN) = tr (QN), where QN = a⊗ (BnNn) + b⊗Nn.

Then, by Definition 3.1, we have

(46) tr (QN) = tr(a)tr(BnNn) + tr(b)tr(Nn) =
β̃

‖x̃∗‖2 .

Here we used tr(Nn) = n − 1, tr(BnNn) = ‖x̃∗‖2, tr(b) = 0, and tr(a) = β̃/‖x̃∗‖4.
Consequently, Theorems 3.1 and 3.2 show that

(47) bias(β̂Q) = σ2 tr (N�QN) =
β̃σ2

‖x̃∗‖2 .
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To compute the variance of β̂Q, we only need to compute the variance of Δ2β̂1. Being a
quadratic form of h,

Var(Δ2β̂) = 2σ4tr
(
(N�QN)2

)
= 2σ4tr

(
(QN)2

)
,

where

tr
[
(QN)2

]
= tr(a2)tr(B2

nNn) + 2tr(ab)tr(BnNn) + tr(b2)tr(Nn) =
n+ 2β̃2 − 1

2‖x̃∗‖4 .

Here we used

tr(B2
nNn) = ‖x̃∗‖4, tr(a2) =

4(β̃2 + 2)

4‖x̃∗‖8 , tr(ab) =
−4

4‖x̃∗‖6 ,

and

tr(Nn) = n− 1, tr(b2) =
2

4‖x̃∗‖4 .

By Theorem 3.1, we have

(48) Var(Δ2β̂1) =
n+ 2β̃2 − 1

‖x̃∗‖4 σ4, Var(β̂Q) =
(1 + β̃2)σ2

‖x̃∗‖2 +
n+ 2β̃2 − 1

‖x̃∗‖4 σ4.

Example 3.2 shows that the leading term of Var(β̂Q) is of order σ
2/n and attains the

KCR. Furthermore, the bias is a linear function of β̃. In particular, it overestimates the

true value of the parameter if β̃ > 0 and underestimates β̃ if β̃ < 0. The bias of β̂Q has
typical values of order σ2/n, so its contribution to the MSE is negligible (i.e., σ4/n2)

when n is large enough. This shows the MLE β̂1 has only a nonessential second-order
bias of order σ2/n.

Before going further, we need the following lemma.

Lemma 3.1. We have the following properties:

tr (GG�N) =
1 + β̃2

‖x̃∗‖2 , tr (Γ1N) =
1 + 3β̃2

1 + β̃2
, tr (Γ2N) = −4β̃.

Moreover,

tr(Γ1GG�N) =
3β̃2

‖x̃∗‖2 , tr(Γ2NQN) = −4β̃2 + 1

‖x̃∗‖2 .

Proof of Lemma 3.1. Recall that N = I2 ⊗Nn and GG� = a1 ⊗Bn (see (34)). Also we
will use (x̃∗)�Nn = (x̃∗)� and tr(BnNn) = ‖x̃∗‖2. Thus,

tr(GG�N) = tr(a1)tr(BnNn) =
1 + β̃2

‖x̃∗‖2 .

This proves the first assertion.
The second assertion follows from the definitions of Γ1 and N. Since tr(γ̂1) = 0 and

tr(γ1) =
1 + 3β̃2

‖x̃∗‖2(1 + β̃2)
,

we obtain

tr(Γ1N) = tr(γ1) tr(BnNn) + tr(γ̂1)tr(Nn) =
1 + 3β̃2

1 + β̃2
.

In the same manner, if one uses r1(1 + β̃2) = −2β̃, then the third assertion follows
immediately.

Next, we write GG�NΓ1N as

(49) GG�NΓ1N = (a1 ⊗ (BnNn))
(
γ1 ⊗ (BnNn) + γ̂1 ⊗ (Nn)

)
.
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Since tr(a1γ̂1) = −1/‖x̃∗‖4 and tr(a1γ1) = 3β̃2 + 1/‖x̃∗‖6, we have

tr(Γ1GG�N) = tr(a1γ1) tr(BnNnBn) + tr(a1γ̂1) tr(BnNn) =
3β̃2

‖x̃∗‖2 .

Finally, we prove the last assertion. The matrix Γ2NQN can be expressed as

Γ2NQN = γ2 ⊗ (BnNn) (a⊗Bn + b⊗ In).

Since tr(aγ2) = −4β̃2 + 2/‖x̃∗‖6 and tr(bγ2) = 1/‖x̃∗‖4, we have

tr(Γ2NQ) = tr(γ2a)tr(B
2
nNn) + tr(γ2b)tr(BnNn) = −4β̃2 + 1

‖x̃∗‖2 .

This completes the proof of the lemma. �

The following theorem summarizes the final expression of the MSE of β̂1, up to or-
der σ4/n2. Its proof is deferred to the appendix.

Theorem 3.3. Let β̂1 be the MLE of β for the linear model y = α + βx and let β̂Q be
its quadratic approximation. Then

(50) MSE(β̂Q) =
(1 + β̃2)σ2

‖x̃∗‖2 +
(n+ 9β̃2 + 1)σ4

‖x̃∗‖4 ,

where bias2(β̂Q) = β̃2/‖x̃∗‖4σ4.

3.2. Comparison between β̌1 and β̂2. To theoretically compare β̌1 and β̂2 in terms
of their MSE, we will first find the MSE of β̌1. This step involves the expected values
of the product of two quadratic forms of h∗, δ∗, and γ∗ and it leads to many useful
identities. The identities are summarized in the following lemma while their derivations
are deferred to the appendix.

Lemma 3.2. Define ǎ1 = (−β̃, 1)�, γ∗ = ε∗ − β̃δ∗, and

r1 =

[
−β̃ .5
.5 0

]
.

Also, define Σ1 = (In ⊗ ǎ1)Vn(ǎ
�
1 ⊗ In) = (ǎ1ǎ

�
1 ) ⊗Vn and Σ2 = r1 ⊗Vn. Then the

following identities hold:

E
[
(γ∗�Vnγ

∗)2
]
= n(n− 2)(β̃2 + 1)2σ4,(51)

E
(
(γ∗�Vnγ

∗)(h∗�Qh∗)
)
= (n− 2)‖x̃∗‖−2β̃(β̃2 + 1)σ4,(52)

E[(γ∗�Vnγ
∗)(γ∗�Bnγ

∗)] = (n− 2)‖x̃∗‖2(β̃2 + 1)2σ4,(53)

E
[
(γ∗�Vnγ

∗)(γ∗�Bnδ
∗)
]
= −(n− 2)‖x̃∗‖2β̃(β̃2 + 1)σ4,(54)

E
(
h∗�((ǎ1ǎ1

�)⊗Bn)h
∗ · h∗�Σ1h

∗) = (n− 2)‖x̃∗‖2(β̃2 + 1)2σ4,(55)

E
(
h∗�((ǎ1ǎ1

�)⊗Bn)h
∗ · h∗�Σ2h

∗) = −(n− 2)‖x̃∗‖2β̃(β̃2 + 1)σ4,(56)

where Q = a⊗Bn + b⊗ In.

Now, we turn our attention to derive the MSE of β̌1, up to order σ6. For this purpose,
we will derive the explicit formulas for the second- and third-order error terms of σ̂2.
If σ̂2 is expanded about the true value β̃, then we have

(57) σ̂2 =
1

n− 2

∑
i

(
a2i + b2i + 2aibi + 2aici

)(
f0 + f1Δ1β̂1 + f1Δ2β̂1 + f2Δ1β̂

2
1

)
,
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where

f0 =
1

1 + β̃2
, f1 = − 2β̃

(1 + β̃2)2
, f2 = − 1− 3β̃2

(1 + β̃2)3
.

Thus, σ̂2 can be expressed as

(58) σ̂2 = Δ2σ̂
2 +Δ3σ̂

2 +Δ4σ̂
2 +OProb

(
σ5

)
.

The expressions of these terms are summarized in the following lemma, while their deriva-
tions are deferred to the appendix.

Lemma 3.3.

Δ2σ̂
2 =

f0(γ
∗�Vnγ

∗)

n− 2
.(59)

Δ3σ̂
2 =

Δ1β̂1

n− 2

(
f1(γ

∗�Vnγ
∗)− 2f0δ

∗�Vnγ
∗
)
.(60)

Δ4σ̂
2 =

1

n− 2

(
f1γ

∗�Vnγ
∗ − 2f0δ

∗�Vnγ
∗
)
Δ2β̂1

+
(
f2γ

∗�Vnγ
∗ − 2f1δ

∗�Vnγ
∗
)
Δ1β̂

2
1 .

(61)

Based on this lemma, we now write

(62)

MSE(β̌1) = E

([(
1− σ̂2

‖x∗‖2

)
β̂1 − β̃

]2)

= MSE(β̂1)− E

(
2Δβ̂1σ̂

2β̂1

‖x∗‖2

)
+ E

(
σ̂4

‖x∗‖4 β̂
2
1

)
+O

(
σ6

)
.

We will start with

(63) E

(
σ̂4

‖x∗‖4 β̂
2
1

)
= E

[
σ̂4β̃2

‖x̃∗‖4

]
=

β̃2

‖x̃∗‖4 E
[
(Δ2σ̂

2)2
]
.

Substituting Δ2σ̂
2 (see (59)) in (63) and using Lemma 3.2 give us

(64) E

[
σ̂4β̃2

‖x̃∗‖4

]
=

f2
0 β̃

2 E
[
(γ∗�Vnγ

∗)2
]

‖x̃∗‖4(n− 2)2
=

β̃2n

‖x̃∗‖4(n− 2)
+O

(
σ6

)
.

Next we find E
(
σ̂2β̂1Δβ̂1/‖x∗‖2

)
, which can be decomposed into three terms:

(65) E

(
σ̂2β̂1Δβ̂1

‖x∗‖2

)
= I + II + III,

where

I = E

(
β̃Δ2σ̂

2Δ2β̂1

‖x̃∗‖2

)
, II = E

(
Δ2σ̂

2Δ1β̂1β̂1

‖x∗‖2

)
, III = E

(
Δ3σ̂

2Δ1β̂1β̃

‖x̃∗‖2

)
.

The second-order error term of β̂1 was expressed in terms of the combined error vector h∗

(cf. (41) and (42)). Therefore,

I = E

(
β̃f0(γ

∗�Vnγ
∗)(h∗�Qh∗)

(n− 2)‖x̃∗‖2

)
=

β̃2σ4

‖x̃∗‖4 .
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Next, we find

(66)

II =
1

‖x̃∗‖2 E

[
Δ2σ̂

2Δ1β̂1

(
Δ1β̂1 −

2β̃(x̃∗)�δ∗

‖x̃∗‖2

)]

=
f0

(n− 2)‖x̃∗‖6 E
[
(γ∗�Vnγ

∗)
(
(γ∗�Bnγ

∗)− 2β̃(γ∗�Bnδ
∗)
)]

.

Substituting (53) and (54) into (66) leads to

(67) II =
σ4(3β̃2 + 1)

‖x̃∗‖4 .

Lastly, we will prove that III = 0. That is, using (60) in Lemma 3.3, we can rewrite

Δ1β̂1Δ3σ̂
2 as

(68) Δ1β̂1Δ3σ̂
2 =

Δ1β̂
2
1

n− 2

(
f1(γ

∗�Vnγ
∗)− 2f0δ

∗�Vnγ
∗
)
,

which is a product of two quadratic forms of h∗. Indeed, recall that γ∗ = (ǎ�1 ⊗ In)h
∗.

Then

Δ1β̂
2
1 =

γ∗�Bnγ
∗

‖x̃∗‖4 =
h∗�(ǎ1ǎ

�
1 ⊗Bn)h

∗

‖x̃∗‖4 .

Also Σ2 = r1 ⊗Vn, so then γ∗�Vnγ
∗ = h∗�Σ1h

∗ and δ∗�Vnγ
∗ = h∗�Σ2h

∗. Thus,

(69) E(Δ1β̂1Δ3σ̂
2) = E

[
h∗�((ǎ1ǎ1

�)⊗Bn)h
∗

(n− 2)‖x̃∗‖4
(
f1(h

∗�Σ1h
∗)− 2f0(h

∗�Σ2h
∗)
)]

,

where f1 = −2β̃/(β̃2 + 1)2.

Now, substituting (55) and (56) into (69) yields E(Δ1β̂Δ3σ̂
2) = 0, and as such, III = 0.

Combining I, II, and III leads to

(70) E

(
σ̂2β̂1Δβ̂1

‖x∗‖2

)
=

(4β̃2 + 1)σ4

‖x̃∗‖4 +O
(
σ6

)
.

Lastly,

MSE(β̌1) =
(1 + β̃2)σ2

‖x̃∗‖2 +

(
1 +

2β̃2

n− 2

)
(n− 1)σ4

‖x̃∗‖4 .

Elementary calculus can now help us to prove the following. For all values of n ≥ 3 and

σ > 0, k(β̃) = MSE(β̂1) − MSE(β̌1) is an increasing function in |β̃|. This shows that
post-bias elimination reduces the variation of the new estimator.

More importantly, the MSE both of the estimators β̌1 and β̂2 are equal, up to order
σ6. This means that both estimators differ in their third-order term of their MSE. Since
our analysis shows that indeed both methods eliminate O(σ2) bias, we will track their
higher-order terms.

We find the bias of β̌1, where

β̌1 = β̂1 −
σ̂2β̂1

‖x∗‖2 := β̂1 − C

up to order σ4/n2. Then we will compare the biases of β̂2 and β̌1. A smaller bias means
a better estimator.

To find the bias of β̌1, we only need to find E(C), where C is expressed as

C = C̃ +Δ1C +Δ2C +Δ3C +Δ4C +OProb

(
σ5

)
.
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Here C̃ = 0 since σ̂2 ∼ OProb(σ
2). The expected values of Δ1C and Δ3C are equal to

zero, and as such

E(Δ2C) = E

(
σ̂2β̂

‖x∗‖2

)
=

β̃ E(Δ2σ̂
2)

‖x̃∗‖2 =
σ2β̃

‖x̃∗‖2 .

The fourth-order error term of C is the complicated one. To track our sequel analysis
we present the following lemma that summarizes some needed expressions while their
derivations are deferred to the appendix.

Lemma 3.4. Recall all definitions in Lemma 3.2 and define Σ3 = (s1s
�
1 ) ⊗ In, where

s1 = (1, 0)�. Then

E
(
(γ∗�Vnγ

∗)‖δ∗‖2
)
= σ4(n− 2)

(
(β̃2 + 1)(n− 1) + 2β̃2

)
,(71)

E
(
(γ∗�Vnγ

∗)(δ∗�Bnδ
∗)
)
= (n− 2)‖x̃∗‖2(β̃2 + 1)σ4,(72)

E
(
(δ∗�Vnγ

∗)(δ∗�Bnγ
∗)
)
= (n− 2)‖x̃∗‖2(β̃2 + 5)σ4,(73)

E
(
(δ∗�Vnγ

∗)(h∗�Qh∗)
)
= (n− 2)‖x̃∗‖−2(1− β̃2)σ4,(74)

E
(
(γ∗�Vnγ

∗)(δ∗�Bnγ
∗)
)
= −σ4(n− 2)‖x̃∗‖2β̃(β̃2 + 1).(75)

Now, to simplify our calculations, we write

E(Δ4C) = I′ + II′ + III′,

where

I′ =
1

‖x̃∗‖2 E

[
Δ2σ̂

2

(
Δ2β̂ − 2Δ1β̂〈x̃∗, δ∗〉

‖x̃∗‖2 + β̃

(
−‖δ∗‖2
‖x̃∗‖2 + 4

〈x̃∗, δ∗〉2
‖x̃∗‖4

))]
,

II′ =
1

‖x̃∗‖2 E

(
Δ1β̂Δ3σ̂

2 − 2β̃Δ3σ̂
2(x̃∗�δ∗)

‖x̃∗‖2

)
,

III′ =
β̃

‖x̃‖2 E(Δ4σ̂
2).

We start with I′. Here we have

(76)

I′ =
f0

(n− 2)‖x̃∗‖2

× E

[(
γ∗�Vnγ

∗)(Δ2β̂1 −
2Δ1β̂1(x̃

∗�δ∗)

‖x̃∗‖2 − β̃‖δ∗‖2
‖x̃∗‖2 +

4β̃(x̃∗�δ∗)2

‖x̃∗‖4

)]
.

After using the definition of Δ2β̂1, and as such, (52), the first term becomes

(77)
f0

(n− 2)‖x̃∗‖2 E
((

γ∗�Vnγ
∗)Δ2β̂1

)
=

σ4β̃

‖x̃∗‖4 .

Thus, we need to find

(78)

f0
(n− 2)‖x̃∗‖4 E

[(
γ∗�Vnγ

∗)(−2Δ1β̂1〈x̃∗, δ∗〉 − β̃‖δ∗‖2 + 4β̃〈x̃∗, δ∗〉2
‖x̃∗‖2

)]

=
f0

(n− 2)‖x̃∗‖4

× E

[
γ∗�Vnγ

∗

‖x̃∗‖2 ·
(
−2γ∗TBnδ

∗ + 4 β̃δ∗�Bnδ
∗
)
− β̃(γ∗�Vnγ

∗)‖δ∗‖2
]
.
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With the aid of identities (54), (71), and (72), one can show that

(79)

f0
(n− 2)‖x̃∗‖4 E

[(
γ∗�Vnγ

∗)(−2Δ1β̂1〈x̃∗, δ∗〉 − β̃‖δ∗‖2 + 4β̃〈x̃∗, δ∗〉2
‖x̃∗‖2

)]

=
σ4

‖x̃∗‖4
(
(7− n)β̃ − 2f0β̃

3
)
.

Substituting (77) and (79) in (76) yields

(80) I′ =
σ4

(
(8− n)β̃ − 2f0β̃

3
)

‖x̃∗‖4 .

Similarly, we will compute II′. Since E(Δ3σ̂
2Δ1β̂1) = 0, we have

II′ = −2β̃‖x̃∗‖−4 E[Δ3σ̂
2(x̃∗�δ∗)].

Substitute (60) in II′ and use (54) and (73) to get

(81)

II′ =
−2β̃

(n− 2)‖x̃∗‖4 E
[
Δ1β̂1

(
f1(γ

∗�Vnγ
∗)− 2f0δ

∗�Vnγ
∗
)
(x̃∗�δ∗)

]

=
−2β̃

(n− 2)‖x̃∗‖6 E
[
δ∗�Bnγ

∗
(
f1(γ

∗�Vnγ
∗)− 2f0 δ

∗�Vnγ
∗
)]

=
2β̃f0σ

4

‖x̃∗‖4 .

Finally, we compute III′. From (61) and Δ2β̂1 = h∗�Qh∗ and Δ1β̂
2
1 = ‖x̃∗‖−4γ∗�Bnγ

∗

III′ =
β̃

(n− 2)‖x̃‖2 E
[
(f1γ

∗�Vnγ
∗ − 2f0δ

∗�Vnγ
∗)Δ2β̂1

+ (f2γ
∗�Vnγ

∗ − 2f1δ
∗�Vnγ

∗)Δ1β̂
2
]

=
β̃

(n− 2)‖x̃‖2 E

[
(f1γ

∗�Vnγ
∗ − 2f0δ

∗�Vnγ
∗)h∗�Qh∗

+
1

‖x̃∗‖4 (f2γ
∗�Vnγ

∗ − 2f1δ
∗�Vnγ

∗)γ∗�Bnγ
∗
]
.

Now using (52), (53), (74), and (75), one has

(82) III′ =
−β̃(2f0 + 1)

‖x̃‖4 .

Combining (80)–(82) gives us

(83) E(Δ4C) = − (2f0β̃
3 + (n− 7)β̃)σ4

‖x̃∗‖4 .

Hence,

E(β̌1) = β̃ +
σ2β̃

‖x̃∗‖2 −
(

σ2β̃

‖x̃∗‖2 − (2f0β̃
3 + (n− 7)β̃)σ4

‖x̃∗‖4

)
= β̃ +

(2f0β̃
3 + (n− 7)β̃)σ4

‖x̃∗‖4 .

Accordingly, our results can be summarized in the following theorem.

Theorem 3.4. Let β̂ be the MLE of β and let

β̌ =

(
1− σ̂2

‖x∗‖2

)
β̂.



228 A. A. AL-SHARADQAH

β

n

0 2 4 6 8 10

50
10
0

15
0

20
0

Figure 1. The contour map of the ratio of the fourth-order bias of β̌1

to the fourth-order bias of β̂2 over the region (n, β̃) ∈ (15, 200)× (0, 10).

Then

bias(β̌1) =
(2f0β̃

3 + (n− 7)β̃)σ4

‖x̃∗‖4 ,

MSE(β̌1) =
(1 + β̃2)σ2

‖x̃∗‖2 +

(
1 +

2β̃2

n− 2

)
(n− 1)σ4

‖x̃∗‖4 .

Note that, here, the bias of β̌1 presented in Theorem 3.4 depends on

‖x∗‖2 =
n∑

i=1

(xi − x̄)2,

and as such, it is of order n. A simple comparison between the results in Theorem 3.4

and equation (21) shows that bias(β̌1) ∼ σ4/n while bias(β̂2) ∼ σ4/n2. Therefore,
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bias(β̂2) ∼ bias(β̌1)/n. Figure 1 represents the contour map of the ratio of the fourth-

order bias of β̌1 to the fourth-order bias of β̂2 over the region β̃ ∈ (0, 10) and n ∈ (15, 200).
It is clear that this ratio is always more than 2 and it reaches 71 in some parts of this

region. These observations demonstrate that the bias of β̂2 is much smaller than the bias

of β̌1. Accordingly, β̂2 outperforms the AMLE β̌1.
Finally, we should emphasize here that these results are valid whenever σ/L is small.

4. Appendix

Proof of Theorem 3.2. At first, we will expand 1/(1 + β̂2
1) about the true value β̃ to

obtain

1

1 + β̂2
1

= f0 + f1 Δ1β̂1 + f1 Δ2β̂1 + f2 Δ1β̂
2
1 +OProb

(
σ3

) def
= h(β̂1) +OProb

(
σ3

)
,

where

f0 =
1

1 + β̃2
, f1 = − 2β̃

(1 + β̃2)2
, f2 = − 1− 3β̃2

(1 + β̃2)3
.

Keeping only terms of order σ4 yields

(84) F(β̂1) = h(β̂1)
∑

z2i +OProb

(
σ5

)
,

where zi = ai + bi for each i = 1, . . . , n.
The random numbers ai and bi have typical values of order σ and σ2, respectively.

Their formal expressions are defined by

ai = β̃δ∗i + x̃∗
iΔ1β̂1 − ε∗i ,(85)

bi = x̃∗
iΔ2β̂1 + δ∗i Δ1β̂1.(86)

We can find Δ2β̂1 by setting the derivative ∂F/∂Δ2β̂1 to zero. Using the fact
∑

aix̃
∗
i = 0

yields

dF
dΔ2β̂1

= f1
∑

a2i + 2h(β̂1)
∑

zix̃
∗
i + 2h(β̂1)

∑
ziδ

∗
i

= f1
∑

a2i + 2f0‖x̃∗‖2Δ2β̂1 + 4f0
∑

x̃∗
i δ

∗
i Δ1β̂1 + 2f0

∑
δ∗i
(
β̃δ∗i − ε∗i

)
,

where we omitted the remainder OProb(σ
3) for brevity.

Let us denote

r1 =
f1
f0

=
−2β̃

1 + β̃2
.

Then, we obtain

(87)

−2‖x̃∗‖2Δ2β̂1 = r1
∑

a2i + 4
∑

x̃∗
i δ

∗
i Δ1β̂1 + 2

∑
δ∗i (β̃δ

∗
i − ε∗i )

= r1

(
−2‖x̃∗‖2Δ1β̂

2
1 + ‖x̃∗‖2Δ1β̂

2
1 +

∑(
β̃δ∗i − ε∗i

)2)
+ 2

∑
δ∗i
(
β̃δ∗i − ε∗i

)
+ 4

∑
δ∗i x̃

∗
iΔ1β̂1

def
= I+ II+ III.
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The variables I, II, and III are defined and simplified below. In matrix notation, each
term in the above expression can be written as a quadratic form of h∗as follows:

I = −r1‖x̃∗‖2Δ1β̂
2
1 = (h∗)�Q1h

∗,(88)

II = r1
∑(

β̃δ∗i − ε∗i
)2

+ 2
∑

δ∗i (β̃δ
∗
i − ε∗i ) = (h∗)�Q2h

∗,(89)

III = 4
∑

δ∗i x̃
∗
iΔ1β̂1 = (h∗)�Q3h

∗,(90)

where

Q1 =

[ −r1β̃
2

‖x̃∗‖2 Bn
r1β̃

‖x̃∗‖2Bn

r1β̃
‖x̃∗‖2Bn

−r1
‖x̃∗‖2Bn

]
, Q2 =

[
(r1β̃

2 + 2β̃)In −(r1β̃ + 1)In
−(r1β̃ + 1)In r1In

]
,

and

Q3 =

[
− 4β̃

‖x̃∗‖2Bn
2

‖x̃∗‖2Bn
2

‖x̃∗‖2Bn 0n

]
.

Combining (87)–(90) gives

Δ2β̂1 = h∗�Qh∗ = h�N�
nQNnh,

where

Q =
1

2‖x̃∗‖2 (Q1 +Q2 +Q3) .

Next, we find Δ3β̂1 by expanding 1/(1 + β̂2
1) about the true value β̃, i.e.,

1

1 + β̂2
1

= f0 + f1 Δβ̂1 + f2 Δβ̂2
1 + f3 Δβ̂3

1 +OProb

(
σ4

) def
= h(β̂1) +OProb

(
σ4

)
,

where Δβ̂1 = Δ1β̂1+Δ2β̂1+Δ3β̂1+OProb(σ
4) and f3 = f (3)(β̃)/3!, while f0, f1, and f2

are defined earlier. The random variable h(β̂1) can be clearly rewritten as

h(β̂1) = h̃+Δ1h+Δ2h+Δ3h,

where h̃ = f0, Δ1h = f1Δ1β̂1, Δ2h = f1Δ2β̂1 + f2Δ1β̂
2
1 , and

Δ3h = f1Δ3β̂1 + 2f2Δ1β̂1Δ2β̂1 + f3Δ1β̂
3
1 .

Thus,

(91) F(β̂1) = h(β̂1)
∑

z2i +OProb

(
σ7

)
,

where

(92) zi = β̃δ∗i + x̃∗
iΔ1β̂1 − ε∗i + x̃∗

iΔ2β̂1 + δ∗iΔ1β̂1 + x̃∗
iΔ3β̂1 + δ∗iΔ2β̂1 + δ∗i Δ3β̂1.

Therefore, it is more appropriate to write zi = ai + bi + ci + di, where ai and bi are
defined in (85), while

ci = x̃∗
iΔ3β̂1 + δ∗i Δ2β̂1 and di = δ∗iΔ3β̂1

represent the cubic and the quadric forms of e∗i , respectively. Note that

∂h(β)

∂Δ3β̂1

= f1 + 2f2Δ1β̂1 +OProb(σ
2),
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hence differentiating F(β̂1) with respect to Δ3β̂1 yields

dF(β)

dΔ3β̂1

= (f1 + 2f2Δ1β̂1)
∑

z2i + 2h(β)
∑

zi(x̃
∗
i + δ∗i ) +OProb

(
σ7

)
= 2f2Δ1β̂1

∑
a2i + f1

∑
(a2i + 2aibi) + 2h̃

∑[
(ai + bi + ci)x̃

∗
i + (ai + bi)δ

∗
i

]
+ 2Δ1h

∑[
(ai + bi)x̃

∗
i + aiδ

∗
i

]
+ 2Δ2h

∑
aix̃

∗
i +OProb

(
σ4

)
.

Here dF(β̂1)/dΔ3β̂1 contains terms of order OProb(σ), OProb(σ
2), and OProb(σ

3). Pre-
dictably, terms of the first and the second leading orders vanish. This follows from∑

aix̃
∗
i = 0 and

2h̃
∑

bix̃i + 2h̃
∑

aiδ
∗
i + f1

∑
a2i = 0,

which follows (87). Thus, dF(β̂1)/dΔ3β̂1 becomes

dF(β̂1)

dΔ3β̂1

= 2f2Δ1β̂1

∑
a2i +2f1

∑
aibi+2f0

∑
(cix̃

∗
i +biδ

∗
i )+2f1Δ1β̂1

∑
(bix̃

∗
i +aiδ

∗
i ).

Equating dF(β̂1)/dΔ3β̂1 to zero, substituting the value of ci, and solving for Δ3β̂1 yield

Δ3β̂1 = − 1

‖x̃∗‖2

(
r2Δ1β̂1

∑
a2i + r1

∑
aibi +

∑
biδ

∗
i

+ r1Δ1β̂1

∑
(bix̃

∗
i + aiδ

∗
i ) +

∑
x̃∗
i δ

∗
i Δ2β̂1

)
,

where we set r2 = f2/f0 = −(1 − 3β̃2)/(1 + β̃2)2. Next, we substitute the values of ai
and bi in the previous equation to get

Δ3β̂1 = − 1

‖x̃∗‖2

(
Δ1β̂1

∑[
(r2β̃

2 + 2r1β̃ + 1)(δ∗i )
2 − 2(r2β̃ + r1)δ

∗
i ε

∗
i + r2(ε

∗
i )

2
]

− r2‖x̃∗‖2Δ1β̂
3
1 + 3r1

(∑
δ∗i x̃

∗
i

)
Δ1β̂

2
1

+ r1‖x̃∗‖2Δ1β̂1Δ2β̂1 + 2
(∑

δ∗i x̃
∗
i

)
Δ2β̂1

)
,

and further

Δ3β̂1 = − 1

‖x̃∗‖2

(
G�h∗ · (h∗)�Ah∗ − r2‖x̃∗‖2(h∗)�GG�h∗ ·G�h∗

+ r1‖x̃∗‖2G�h∗ · (h∗)�Qh∗

+ 3r1E
�h∗ · (h∗)�GG�h∗ + 2E�h∗ · (h∗)�Qh∗

)
,

where E = (x̃�,0�)� and A = γ̂1 ⊗ In with

γ̂1 =

[
(r2β̃

2 + 2r1β̃ + 1) −(r2β̃ + r1)

−(r2β̃ + r1) r2

]

(recall that Δ1β̂1 = G�h∗, Δ2β̂1 = (h∗)�Qh∗, and Bn = x̃∗ ∗ (x̃∗)�). This completes
the proof of the theorem. �

Proof of Theorem 3.3. To derive the MSE of β̂1. We need to compute E(Δ1β̂1Δ3β̂1).
We start first with defining

Γ1 = A− r2‖x̃∗‖2GG� + 3r1GE� = γ1 ⊗Bn + γ̂1 ⊗ In,

Γ2 = 2GE� + r1‖x̃∗‖2GG� = γ2 ⊗Bn,
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with

(93)

γ1 =
1

‖x̃∗‖2

[
−r2β̃

2 − 3r1β̃
3
2r1 + r2β̃

3
2r1 + r2β̃ −r2

]
,

γ2 =
1

‖x̃∗‖2

[
r1β̃

2 − 2β̃ 1− r1β̃

1− r1β̃ r1

]
.

Multiplying Δ3β̂1 by Δ1β̂1 yields

Δ1β̂1Δ3β̂1 = − 1

‖x̃∗‖2

(
(h∗)�GG�h∗ · (h∗)�Ah∗ − r2‖x̃∗‖2((h∗)�GG�h∗)2

+ r1‖x̃∗‖2(h∗)�GG�h∗ · (h∗)�Qh∗

+ 3r1(h
∗)�GE�h∗ · (h∗)�GG�h∗

+ 2(h∗)�GE�h∗ · (h∗)�Qh∗
)
.

Then, after simple algebra, we get

(94) Δ3β̂1Δ1β̂1 = − 1

‖x̃∗‖2
(
(h∗)�GG�h∗ · h∗Γ1h

∗ + (h∗)�Qh∗ · h∗Γ2h
∗
)
.

Based on the previous argument, one gets

E(Δ1β̂1Δ3β̂1) = − σ4

‖x̃∗‖2
[
tr(Γ1N)tr(GG�N) + tr(Γ2N)tr(QN)

+ 2tr(Γ1NGG�N) + 2tr(Γ2NQN)
]
,

(95)

which simply becomes

(96) E(Δ1β̂1Δ3β̂1) =
1 + 3β̃2

‖x̃∗‖4 σ4 .

Also it is easy to verify that

(97) E((Δ2β̂)
2) =

n+ 3β̃2 − 1

‖x̃∗‖4 σ4 .

Finally, if (33), (97), and (96) are substituted into

(98) MSE(β̂1) = E(Δ1β̂
2
1) + E(Δ2β̂

2
1) + 2 E(Δ1β̂1Δ3β̂1) +O

(
σ6

)
,

then the theorem will be established. �

Proof of Lemma 3.2. The proofs for all these identities are straightforward by using The-
orem 3.1. Starting with (51), we notice that both Vn and Nn are idempotent matrices

with tr(VnNn) = n− 2, and γ∗ ∼ N
(
0n, (1 + β̃2)σ2Nn

)
. Then

E
[
(γ∗�Vnγ

∗)2
]
= σ4(β̃2 + 1)2

(
[tr(VnNn)]

2 + 2 tr(VnNn)]
)
= n(n− 2)(β̃2 + 1)2σ4.

The second identity in (52) can be obtained after γ∗ is expressed in terms of h∗ (i.e.,
γ∗ = (ǎ�1 ⊗ In)h

∗). Therefore,

E
(
(γ∗�Vnγ

∗)(h∗�Qh∗)
)
= E

(
(h∗�Σ1h

∗)(h∗�Qh∗)
)
.

After simple calculations

tr(Σ1N) = tr(ǎ1ǎ
�
1 )tr(VnNn) = (β̃2 + 1)(n− 2),

and tr(QN) = β̃/‖x̃∗‖2. Besides,
tr(Σ1NQN) = tr

(
(ǎ1ǎ

�
1 )a

)
tr(VnNnBn) + tr

(
(ǎ1ǎ

�
1 )b

)
tr(VnNn) = 0.
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This follows immediately from tr((ǎ1ǎ
�
1 )b) = 0,

tr((ǎ1ǎ
�
1 )a) =

β̃(β̃2 + 1)

‖x̃∗‖4 ,

and VnNnBn = VnBn = 0n. As an immediate consequence,

E
(
(γ∗�Vnγ

∗)(h∗�Qh∗)
)
= σ4(β̃2 + 1) (tr(Σ1N)tr(QN) + 2 tr(Σ1NQN))

= (n− 2)‖x̃∗‖−2β̃(β̃2 + 1)σ4.

Next, we compute (53). Again, since VnNnBn = VnBn = 0n,

E[(γ∗�Vnγ
∗)(γ∗�Bnγ

∗)] = σ4tr
[
ǎ1ǎ

�
1 )

]2
tr(VnNn)tr(BnNn)

= (n− 2)‖x̃∗‖2(β̃2 + 1)2σ4.

In the same way, (54) follows by expressing both γ∗ and δ∗ in terms of h∗:

E
[
(γ∗�Vnγ

∗)(γ∗�Bnδ
∗)
]
= E

[
(h∗�Σ1h

∗)(h∗�(r1 ⊗Bn)h
∗)
]

= σ4tr(Σ1N)tr((r1 ⊗Bn)N),

where other terms equal zero because of VnBn = 0n. Thus,

E
[
(γ∗�Vnγ

∗)(γ∗�Bnδ
∗)
]
= σ4tr(ǎ1ǎ

�
1 )tr(r1)tr(VnNn)tr(BnNn)

= E
[
(h∗�Σ1h

∗)(h∗�(r1 ⊗Bn)h
∗)
]

= −β̃(β̃2 + 1)(n− 2)‖x̃∗‖2σ4.

(Here we used tr(ǎ1ǎ
�
1 ) = β̃2 + 1, tr(r1) = −β̃, and VnBn = 0n.)

Now, we derive (55), which becomes

E
(
h∗�((ǎ1ǎ1

�)⊗Bn)h
∗ · h∗�Σ1h

∗) = σ4[tr(ǎ1ǎ1
�)]2tr(Bn)tr(VnNn)

= (β̃2 + 1)2(n− 2)‖x̃∗‖2σ4.

Lastly, we prove (56), which can be expressed as

E
(
h∗�((ǎ1ǎ1

�)⊗Bn)h
∗ · h∗�Σ2h

∗) = σ4tr((ǎ1ǎ1
�))tr(r1)tr(Bn)tr(VnNn).

Thus,

E
(
h∗�((ǎ1ǎ1

�)⊗Bn)h
∗ · h∗�Σ2h

∗) = −β̃(β̃2 + 1)(n− 2)‖x̃∗‖2σ4.

This completes the proof of the lemma. �

Proof of Lemma 3.3. Using (57), we write

Δ2σ̂
2 =

f0
n− 2

n∑
i=1

a2i ,

where
n∑

i=1

a2i = ‖γ∗‖2 − 2(γ∗�x̃∗)Δ1β̂ + ‖x̃∗‖2Δ1β̂
2.

The identity ‖x̃∗‖2Δ1β̂ = γ∗�x̃∗ and Vn = In −Bn‖x̃∗‖−2 lead to

n∑
i=1

a2i = γ∗�Vnγ
∗,

and as such,

Δ2σ̂
2 =

f0(γ
∗�Vnγ

∗)

n− 2
.
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The third-order error term of σ̂2 is

Δ3σ̂
2 =

1

n− 2

∑
i

(f1Δ1β̂a
2
i + 2f0aibi),

but
n∑

i=1

aibi = Δ1β̂

n∑
i=1

aiδ
∗
i = Δ1β̂(Δ1β̂x̃

∗T δ∗ − γ∗�δ∗) = Δ1β̂

(
γ∗�Bnδ

∗

‖x̃∗‖2 − γ∗�δ∗
)
.

Therefore,
∑

i aibi = −δ∗�Vnγ
∗ and

Δ3σ̂
2 =

1

n− 2

∑
i

(f1Δ1β̂a
2
i + 2f0aibi) =

Δ1β̂

n− 2

(
f1(γ

∗�Vnγ
∗)− 2f0δ

∗�Vnγ
∗
)
.

Using the same approach, we get

(99) Δ4σ̂
2 =

1

n− 2

∑
i

a2i (f1Δ2β̂ + f2Δ1β̂
2) + 2f1aibiΔ1β̂ + 2f0aici.

Using the fact
∑

i aix̃
∗
i = 0 reduces this expression to

Δ4σ̂
2 =

1

n− 2

∑
i

a2i (f1Δ2β̂ + f2Δ1β̂
2) + 2f1aiδ

∗
i Δ1β̂

2 + 2f0aiδ
∗
iΔ2β̂

=
1

n− 2

∑
i

(f1a
2
i + 2f0aiδ

∗
i )Δ2β̂ + (f2a

2
i + 2f1aiδ

∗
i )Δ1β̂

2.

From the previous expressions and Δ1β̂
2 = γ∗�Bnγ

∗‖x̃∗‖−4, we get

Δ4σ̂
2 =

1

n− 2

(
f1γ

∗�Vnγ
∗ − 2f0δ

∗�Vnγ
∗
)
Δ2β̂

+
(
f2γ

∗�Vnγ
∗ − 2f1δ

∗�Vnγ
∗
)
Δ1β̂

2.

This completes the proof of the lemma. �

Proof of Lemma 3.4. Equation (71) follows immediately from

E
(
(γ∗�Vnγ

∗)‖δ∗‖2
)
= E

(
(h∗�Σ1h

∗) · (h∗�Σ3h
∗)
)

= σ4
(
tr(ǎ1ǎ

�
1 )tr(s1s

�
1 )tr(VnNn)tr(Nn) + 2tr(ǎ1ǎ

�
1 s1s

�
1 )tr(VnNn)

)
= σ4

(
(β̃2 + 1)(n− 2)(n− 1) + 2β̃2(n− 2)

)
= σ4(n− 2)

(
(β̃2 + 1)(n− 1) + 2β̃2

)
.

Next, we verify (72). Since γ∗�Vnγ
∗ = h∗�Σ1h

∗ and δ∗�Bnδ
∗ = h∗�(s1s

�
1 ⊗Bn)h

∗,
we have

E
[
(γ∗�Vnγ

∗)(δ∗�Bnδ
∗)
]
= E

[
(h∗�Σ1h

∗)(h∗�(s1s
�
1 ⊗Bn)h

∗)
]

= σ4
(
tr(Σ1N)tr((s1s

�
1 ⊗Bn)N) + 2 tr(Σ1(s1s

�
1 ⊗Bn)N)

)
= σ4

(
tr(ǎ1ǎ

�
1 )tr(VnNn)tr(BnNn) + 2 tr(ǎ1ǎ

�
1 s1s

�
1 )tr(VnBnNn)

)
= (n− 2)‖x̃∗‖2(β̃2 + 1)σ4.

Now, we verify (73). Since δ∗�Vnγ
∗ = h∗�(r1 ⊗Vn)h

∗ and

γ∗�Bnδ
∗ = h∗�(r1 ⊗Bn)h

∗,
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we have

E
[
(δ∗�Vnγ

∗)(γ∗�Bnδ
∗)
]
= E

[
(h∗�Σ2h

∗)(h∗�(r1 ⊗Bn)h
∗)
]

= σ4 (tr(Σ2N)tr((r1 ⊗Bn)N) + 2 tr(Σ2(r1 ⊗Bn)N))

= σ4
(
tr(r21)tr(VnNn)tr(BnNn) + 2 tr(r21)tr(VnBnNn)

)
= (β̃2 + 0.5)(n− 2)‖x̃∗‖2σ4.

Next, we verify (74). Note that

(δ∗�Vnγ
∗)(h∗�Qh∗) = h∗�(r1 ⊗Vn)h

∗ · h∗�(a⊗Bn + b⊗ In)h
∗.

Thus

E
(
(δ∗�Vnγ

∗)(h∗�Qh∗)
)
= tr(r1)tr (VnNn)(tr(a)tr(Bn) + tr(b)tr(Nn))

+ 2tr(r1b)tr(VnNn)

=
(n− 2)(1− β̃2)σ4

‖x̃∗‖2 ,

which follows from

tr(r1b) =
1

2‖x̃∗‖2 , tr(r1) = −β̃, tr(a) =
β̃

‖x̃∗‖4 , tr(b) = 0,

and VnBn = 0n (see (36)–(40)).
Lastly, we prove (75). Since

E
(
(γ∗�Vnγ

∗)(δ∗�Bnγ
∗)
)
= σ4

(
tr(ǎ1ǎ

�
1 )tr(r1)tr(VnNn)tr(Bn)

)
= −σ4(n− 2)‖x̃∗‖2β̃(β̃2 + 1).

This completes the proof of the lemma. �
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