Skip to Main Content
Remote Access Theory of Probability and Mathematical Statistics

Theory of Probability and Mathematical Statistics

ISSN 1547-7363(online) ISSN 0094-9000(print)

 
 

 

Fractional Stokes–Boussinesq–Langevin equation and Mittag-Leffler correlation decay


Authors: V. V. Anh and N. N. Leonenko
Journal: Theor. Probability and Math. Statist. 98 (2019), 5-26
MSC (2010): Primary 60G10; Secondary 82C31
DOI: https://doi.org/10.1090/tpms/1060
Published electronically: August 19, 2019
MathSciNet review: 3824676
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper presents some stationary processes which are solutions of the fractional Stokes–Boussinesq–Langevin equation. These processes have reflection positivity and their correlation functions, which may exhibit the Alder–Wainwright effect or long-range dependence, are expressed in terms of the Mittag-Leffler functions. These properties are established rigorously via the theory of the KMO–Langevin equation and a combination of Mittag-Leffler functions and fractional derivatives. A relationship to fractional Riesz–Bessel motion is also investigated. This relationship permits us to study the effects of long-range dependence and second-order intermittency simultaneously.


References [Enhancements On Off] (What's this?)

References
  • Milton Abramowitz and Irene A. Stegun (eds.), Handbook of mathematical functions, with formulas, graphs, and mathematical tables, Dover Publications, Inc., New York, 1966. MR 0208797
  • B. J. Alder and T. E. Wainwright, Velocity autocorrelations for hard spheres, Phys. Rev. Lett. 18 (1967), 988–990.
  • B. J. Alder and T. E. Wainwright, Decay of the velocity autocorrelation function, Phys. Rev. A 1 (1970), 18–21.
  • Elisa Alòs, Olivier Mazet, and David Nualart, Stochastic calculus with respect to fractional Brownian motion with Hurst parameter lesser than $\frac 12$, Stochastic Process. Appl. 86 (2000), no. 1, 121–139. MR 1741199, DOI https://doi.org/10.1016/S0304-4149%2899%2900089-7
  • V. V. Anh, J. M. Angulo, and M. D. Ruiz-Medina, Possible long-range dependence in fractional random fields, J. Statist. Plann. Inference 80 (1999), no. 1-2, 95–110. MR 1713795, DOI https://doi.org/10.1016/S0378-3758%2898%2900244-4
  • V. V. Anh, C. C. Heyde, and Q. Tieng, Stochastic models for fractal processes, J. Statist. Plann. Inference 80 (1999), no. 1-2, 123–135. MR 1713793, DOI https://doi.org/10.1016/S0378-3758%2898%2900246-8
  • V. V. Anh, N. N. Leonenko, and R. McVinish, Models for fractional Riesz–Bessel motion and related processes, Fractals 9 (2001), no. 3, 329–346.
  • L. Bachelier, Théorie de la spéculation, Ann. Sci. École Norm. Sup. (3) 17 (1900), 21–86 (French). MR 1508978
  • E. Barkai and R. J. Silbey, Fractional Kramers equation, J. Phys. Chem. B 104 (2000), 3866–3874.
  • A. B. Basset, A Treatise on Hydrodynamics, vol. 2, Deighton Bell, Cambridge, 1888.
  • J. Boussinesq, Sur la résistence qu’oppose un liquid indéfini en repos, san pesanteur, au mouvement varié d’une sphère solide qu’il mouille sur toute sa surface, quand les faibles pour que leurs carrés et produits soient négligeables, C. R. Acad. Paris 100 (1885), 935–937.
  • R. Figueiredo Camargo, E. Capelas de Oliveira, and J. Vaz Jr., On anomalous diffusion and the fractional generalized Langevin equation for a harmonic oscillator, J. Math. Phys. 50 (2009), no. 12, 123518, 13. MR 2582614, DOI https://doi.org/10.1063/1.3269587
  • M. Caputo, Elasticità e Dissipazione, Zanichelli, Bologna, 1969.
  • M. Caputo and F. Mainardi, Linear models of dissipation in anelastic solids, Riv. Nuovo Cimento, (ser. II) 1 (1971), 161–198.
  • Patrick Cheridito, Hideyuki Kawaguchi, and Makoto Maejima, Fractional Ornstein-Uhlenbeck processes, Electron. J. Probab. 8 (2003), no. 3, 14. MR 1961165, DOI https://doi.org/10.1214/EJP.v8-125
  • F. Comte and E. Renault, Long memory continuous time models, J. Econometrics 73 (1996), no. 1, 101–149. MR 1410003, DOI https://doi.org/10.1016/0304-4076%2895%2901735-6
  • Mkhitar M. Djrbashian, Harmonic analysis and boundary value problems in the complex domain, Operator Theory: Advances and Applications, vol. 65, Birkhäuser Verlag, Basel, 1993. Translated from the manuscript by H. M. Jerbashian and A. M. Jerbashian [A. M. Dzhrbashyan]. MR 1249271
  • M. M. Džrbašjan and A. B. Nersesjan, Fractional derivatives and the Cauchy problem for differential equations of fractional order, Izv. Akad. Nauk Armjan. SSR Ser. Mat. 3 (1968), no. 1, 3–29 (Russian, with Armenian and English summaries). MR 0224984
  • William F. Donoghue Jr., Distributions and Fourier transforms, Pure and Applied Mathematics, vol. 32, Academic Press, New York, 1969. MR 3363413
  • James W. Dufty, Gaussian model for fluctuation of a Brownian particle, Phys. Fluids 17 (1974), 328–333. MR 351271, DOI https://doi.org/10.1063/1.1694718
  • H. Dym and H. P. McKean, Gaussian processes, function theory, and the inverse spectral problem, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976. Probability and Mathematical Statistics, Vol. 31. MR 0448523
  • A. Einstein, Über die von der molekularkinetichen Teorie der Wärge geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen, Drudes Ann. 17 (1905), 549–560.
  • Kwok Sau Fa, Anomalous diffusion in a generalized Langevin equation, J. Math. Phys. 50 (2009), no. 8, 083301, 8. MR 2554424, DOI https://doi.org/10.1063/1.3187218
  • M. Burak Erdoğan and I. V. Ostrovskii, Analytic and asymptotic properties of generalized Linnik probability densities, J. Math. Anal. Appl. 217 (1998), no. 2, 555–578. MR 1492105, DOI https://doi.org/10.1006/jmaa.1997.5734
  • K. S. Fa, Generalized Langevin equation with fractional derivative and long-time correlation function, Phys. Rev. E 061104 (2006), 1–4.
  • William Feller, An Introduction to Probability Theory and Its Applications. Vol. I, John Wiley & Sons, Inc., New York, N.Y., 1950. MR 0038583
  • Uriel Frisch, Turbulence, Cambridge University Press, Cambridge, 1995. The legacy of A. N. Kolmogorov. MR 1428905
  • James Glimm and Arthur Jaffe, Quantum physics, 2nd ed., Springer-Verlag, New York, 1987. A functional integral point of view. MR 887102
  • E. H. Hauge and A. Martin-Löf, Fluctuating hydrodynamics and Brownian motion, J. Statist. Phys. 7 (1973), 259–281. MR 426748, DOI https://doi.org/10.1007/BF01030307
  • Gerhard C. Hegerfeldt, From Euclidean to relativistic fields and on the notion of Markoff fields, Comm. Math. Phys. 35 (1974), 155–171. MR 349175
  • T. Hida and L. Streit, On quantum theory in terms of white noise, Nagoya Math. J. 68 (1977), 21–34. MR 503263
  • E. Iglói and Gy. Terdik, Bilinear stochastic systems with fractional Brownian motion input, Ann. Appl. Probab. 9 (1999), no. 1, 46–77. MR 1682600, DOI https://doi.org/10.1214/aoap/1029962597
  • Akihiko Inoue, On the equations of stationary processes with divergent diffusion coefficients, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 40 (1993), no. 2, 307–336. MR 1255045
  • Akihiko Inoue and Yukio Kasahara, On the asymptotic behavior of the prediction error of a stationary process, Trends in probability and related analysis (Taipei, 1998) World Sci. Publ., River Edge, NJ, 1999, pp. 207–218. MR 1819207
  • S. C. Kou and X. S. Xie, Generalized Langevin equation with fractional Gaussian noise: Subdiffusion within a single protein molecule, Phys. Rev. Lett. 93 (2004), 180603.
  • R. Kubo, The fluctuation-dissipation theorem, Report on Progress in Physics. Part I 29 (1966), 255–284.
  • R. Kubo, M. Toda, and N. Hashitsume, Statistical physics. II, 2nd ed., Springer Series in Solid-State Sciences, vol. 31, Springer-Verlag, Berlin, 1991. Nonequilibrium statistical mechanics. MR 1295243
  • P. Langevin, Sur la théorie du mouvement brownien, C. R. Acad. Sci. Paris 146 (1908), 530–533.
  • S. C. Lim and L. P. Teo, Modeling single-file diffusion with step fractional Brownian motion and a generalized fractional Langevin equation, J. Stat. Mech. P08015 (2009).
  • E. Lutz, Fractional Langevin equation, Phys. Rev. E 64 (2001), 051106.
  • F. Mainardi and P. Pironi, The fractional Langevin equation: Brownian motion revisited, Proceedings of the Third Meeting on Current Ideas in Mechanics and Related Fields (Segovia, 1995), 1996, pp. 140–154. MR 1424751
  • M. R. Maxey and J. J. Riley, Equation of motion for a small rigid sphere in a nonuniform flow, Phys. Fluids 26 (1983), 883–889.
  • Ralf Metzler, Generalized Chapman-Kolmogorov equation: a unifying approach to the description of anomalous transport in external fields, Phys. Rev. E (3) 62 (2000), no. 5, 6233–6245. MR 1796441, DOI https://doi.org/10.1103/PhysRevE.62.6233
  • E. Barkai, R. Metzler, and J. Klafter, From continuous time random walks to the fractional Fokker-Planck equation, Phys. Rev. E (3) 61 (2000), no. 1, 132–138. MR 1736459, DOI https://doi.org/10.1103/PhysRevE.61.132
  • Kenneth S. Miller and Bertram Ross, An introduction to the fractional calculus and fractional differential equations, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1993. MR 1219954
  • W. Min, G. Luo, B. J. Cherayil, S. C. Kou and X. S. Xie, Observation of a power-law memory kernel for fluctuations within a single protein molecule, Phys. Rev. Lett. 94 (2005), 198302.
  • Yuliya S. Mishura, Stochastic calculus for fractional Brownian motion and related processes, Lecture Notes in Mathematics, vol. 1929, Springer-Verlag, Berlin, 2008. MR 2378138
  • Edward Nelson, Dynamical theories of Brownian motion, Princeton University Press, Princeton, N.J., 1967. MR 0214150
  • Edward Nelson, Construction of quantum fields from Markoff fields, J. Functional Analysis 12 (1973), 97–112. MR 0343815, DOI https://doi.org/10.1016/0022-1236%2873%2990091-8
  • Yasunori Okabe, On a stationary Gaussian process with $T$-positivity and its associated Langevin equation and $S$-matrix, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 26 (1979), no. 1, 115–165. MR 539776
  • Yasunori Okabe, On a stochastic differential equation for a stationary Gaussian process with $T$-positivity and the fluctuation-dissipation theorem, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), no. 2, 169–213. MR 632995
  • Yasunori Okabe, On the theory of Brownian motion with the Alder-Wainwright effect, J. Statist. Phys. 45 (1986), no. 5-6, 953–981. MR 881317, DOI https://doi.org/10.1007/BF01020584
  • Konrad Osterwalder and Robert Schrader, Axioms for Euclidean Green’s functions, Comm. Math. Phys. 31 (1973), 83–112. MR 329492
  • Vladas Pipiras and Murad S. Taqqu, Integration questions related to fractional Brownian motion, Probab. Theory Related Fields 118 (2000), no. 2, 251–291. MR 1790083, DOI https://doi.org/10.1007/s440-000-8016-7
  • Igor Podlubny, Fractional differential equations, Mathematics in Science and Engineering, vol. 198, Academic Press, Inc., San Diego, CA, 1999. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. MR 1658022
  • Stefan G. Samko, Anatoly A. Kilbas, and Oleg I. Marichev, Fractional integrals and derivatives, Gordon and Breach Science Publishers, Yverdon, 1993. Theory and applications; Edited and with a foreword by S. M. Nikol′skiĭ; Translated from the 1987 Russian original; Revised by the authors. MR 1347689
  • Gennady Samorodnitsky and Murad S. Taqqu, Stable non-Gaussian random processes, Stochastic Modeling, Chapman & Hall, New York, 1994. Stochastic models with infinite variance. MR 1280932
  • T. Sandev, Z. Tomovski, and J. Dubbeldam, Generalized Langevin equation with a three parameter Mittag-Leffler noise, Physica A 390 (2011), 3627–3636.
  • Trifce Sandev, Ralf Metzler, and Živorad Tomovski, Velocity and displacement correlation functions for fractional generalized Langevin equations, Fract. Calc. Appl. Anal. 15 (2012), no. 3, 426–450. MR 2944109, DOI https://doi.org/10.2478/s13540-012-0031-2
  • Albert N. Shiryaev, Essentials of stochastic finance, Advanced Series on Statistical Science & Applied Probability, vol. 3, World Scientific Publishing Co., Inc., River Edge, NJ, 1999. Facts, models, theory; Translated from the Russian manuscript by N. Kruzhilin. MR 1695318
  • M. R. V. Smoluchowski, Zur kinetshen Theorie der Brownschen Molekularbewegung und der Suspensionen, Ann. Phys. 21 (1906), 756–780.
  • George Gabriel Stokes, Mathematical and physical papers. Volume 1, Cambridge Library Collection, Cambridge University Press, Cambridge, 2009. Reprint of the 1880 original. MR 2858161
  • G. E. Uhlenbeck and L. S. Ornstein, On the theory of Brownian motion, Physical Review 36 (1930), 823–841.
  • A. Widom, Velocity fluctuation of a hard-core Brownian particle, Phys. Rev. A 3 (1971), 1394–1396.
  • Norbert Wiener, Generalized harmonic analysis, Acta Math. 55 (1930), no. 1, 117–258. MR 1555316, DOI https://doi.org/10.1007/BF02546511
  • Eugene Wong and Bruce Hajek, Stochastic processes in engineering systems, Springer Texts in Electrical Engineering, Springer-Verlag, New York, 1985. MR 787046

Similar Articles

Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2010): 60G10, 82C31

Retrieve articles in all journals with MSC (2010): 60G10, 82C31


Additional Information

V. V. Anh
Affiliation: School of Mathematical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane QLD 4001, Australia
Address at time of publication: School of Mathematics and Computational Science, Xiangtan University, Hunan 411105, People’s Republic of China
Email: v.anh@qut.edu.au

N. N. Leonenko
Affiliation: Cardiff School of Mathematics, Cardiff University, Senghennydd Road, Cardiff CF24 4AG, United Kingdom
Email: LeonenkoN@Cardiff.ac.uk

Keywords: Anomalous diffusion, Stokes–Boussinesq–Langevin equation, Langevin equation with delay, long-range dependence, Mittag-Leffler function
Received by editor(s): September 15, 2017
Published electronically: August 19, 2019
Additional Notes: This research was partially supported by the Australian Research Council grant DP160101366. We wish to thank Professor Akihiko Inoue and a referee for many suggestions to rectify some earlier results and improve the paper
Dedicated: This contribution is dedicated to the 85th birthday of Professor Mykhailo Iosipovych Yadrenko
Article copyright: © Copyright 2019 American Mathematical Society