Wavelet analysis of a multifractional process in an arbitrary Wiener chaos
Authors:
A. Ayache and Y. Esmili
Original publication:
Teoriya Imovirnostei ta Matematichna Statistika, tom 98 (2018).
Journal:
Theor. Probability and Math. Statist. 98 (2019), 27-49
MSC (2010):
Primary 60G17, 60G22
DOI:
https://doi.org/10.1090/tpms/1061
Published electronically:
August 19, 2019
MathSciNet review:
3824677
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: The well-known multifractional Brownian motion (mBm) is the paradigmatic example of a continuous Gaussian process with non-stationary increments whose local regularity changes from point to point. In this article, using a wavelet approach, we construct a natural extension of mBm which belongs to a homogeneous Wiener chaos of an arbitrary order. Then, we study its global and local behavior.
- [1] Benjamin Arras, On a class of self-similar processes with stationary increments in higher order Wiener chaoses, Stochastic Process. Appl. 124 (2014), no. 7, 2415–2441. MR 3192502, https://doi.org/10.1016/j.spa.2014.02.012
- [2] Antoine Ayache, Stéphane Jaffard, and Murad S. Taqqu, Wavelet construction of generalized multifractional processes, Rev. Mat. Iberoam. 23 (2007), no. 1, 327–370. MR 2351137, https://doi.org/10.4171/RMI/497
- [3] Antoine Ayache and Murad S. Taqqu, Multifractional processes with random exponent, Publ. Mat. 49 (2005), no. 2, 459–486. MR 2177638, https://doi.org/10.5565/PUBLMAT_49205_11
- [4] Albert Benassi, Serge Cohen, and Jacques Istas, Identifying the multifractional function of a Gaussian process, Statist. Probab. Lett. 39 (1998), no. 4, 337–345. MR 1646220, https://doi.org/10.1016/S0167-7152(98)00078-9
- [5] Albert Benassi, Stéphane Jaffard, and Daniel Roux, Elliptic Gaussian random processes, Rev. Mat. Iberoamericana 13 (1997), no. 1, 19–90 (English, with English and French summaries). MR 1462329, https://doi.org/10.4171/RMI/217
- [6] S. Bianchi, A. Pantanella, and A. Pianese, Modeling stock prices by multifractional Brownian motion: an improved estimation of the pointwise regularity, Quant. Finance 13 (2013), no. 8, 1317–1330. MR 3175906, https://doi.org/10.1080/14697688.2011.594080
- [7] S. Bianchi and A. Pianese, Multifractional properties of stock indices decomposed by filtering their pointwise Hölder regularity, Int. J. Theor. Appl. Finance 11 (2008), no. 6, 567–595. MR 2455303, https://doi.org/10.1142/S0219024908004932
- [8] Sergio Bianchi, Pathwise identification of the memory function of multifractional Brownian motion with application to finance, Int. J. Theor. Appl. Finance 8 (2005), no. 2, 255–281. MR 2130615, https://doi.org/10.1142/S0219024905002937
- [9] Ingrid Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. MR 1162107
- [10] Marco Dozzi and Georgiy Shevchenko, Real harmonizable multifractional stable process and its local properties, Stochastic Process. Appl. 121 (2011), no. 7, 1509–1523. MR 2802463, https://doi.org/10.1016/j.spa.2011.03.012
- [11] Kenneth J. Falconer, Tangent fields and the local structure of random fields, J. Theoret. Probab. 15 (2002), no. 3, 731–750. MR 1922445, https://doi.org/10.1023/A:1016276016983
- [12] Kenneth J. Falconer, The local structure of random processes, J. London Math. Soc. (2) 67 (2003), no. 3, 657–672. MR 1967698, https://doi.org/10.1112/S0024610703004186
- [13] Svante Janson, Gaussian Hilbert spaces, Cambridge Tracts in Mathematics, vol. 129, Cambridge University Press, Cambridge, 1997. MR 1474726
- [14] A. N. Kolmogoroff, Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum, C. R. (Doklady) Acad. Sci. URSS (N.S.) 26 (1940), 115–118 (German). MR 0003441
- [15] P. G. Lemarié and Y. Meyer, Ondelettes et bases hilbertiennes, Rev. Mat. Iberoamericana 2 (1986), no. 1-2, 1–18 (French). MR 864650, https://doi.org/10.4171/RMI/22
- [16] Benoit B. Mandelbrot and John W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev. 10 (1968), 422–437. MR 242239, https://doi.org/10.1137/1010093
- [17] Yves Meyer, Wavelets and operators, Cambridge Studies in Advanced Mathematics, vol. 37, Cambridge University Press, Cambridge, 1992. Translated from the 1990 French original by D. H. Salinger. MR 1228209
- [18] Toshio Mori and Hiroshi Oodaira, The law of the iterated logarithm for self-similar processes represented by multiple Wiener integrals, Probab. Theory Relat. Fields 71 (1986), no. 3, 367–391. MR 824710, https://doi.org/10.1007/BF01000212
- [19] David Nualart, The Malliavin calculus and related topics, 2nd ed., Probability and its Applications (New York), Springer-Verlag, Berlin, 2006. MR 2200233
- [20] R.-F. Peltier and J. Lévy Véhel, Multifractional Brownian Motion: Definition and Preliminary Results, INRIA Research Report 2645 (1995).
- [21] G. Shevchenko, Local times for multifractional square Gaussian processes, Bulletin of Taras Shevchenko National University of Kyiv, Series: Physics & Mathematics (2013).
- [22] Stilian Stoev and Murad S. Taqqu, Stochastic properties of the linear multifractional stable motion, Adv. in Appl. Probab. 36 (2004), no. 4, 1085–1115. MR 2119856, https://doi.org/10.1239/aap/1103662959
- [23] Stilian Stoev and Murad S. Taqqu, Path properties of the linear multifractional stable motion, Fractals 13 (2005), no. 2, 157–178. MR 2151096, https://doi.org/10.1142/S0218348X05002775
Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2010): 60G17, 60G22
Retrieve articles in all journals with MSC (2010): 60G17, 60G22
Additional Information
A. Ayache
Affiliation:
UMR CNRS 8524, Laboratoire Paul Painlevé, Université de Lille, Cité Scientifique, Bâtiment M2, 59655 Villeneuve d’Ascq, France
Email:
Antoine.Ayache@univ-lille.fr
Y. Esmili
Affiliation:
UMR CNRS 8524, Laboratoire Paul Painlevé, Université de Lille, Cité Scientifique, Bâtiment M2, 59655 Villeneuve d’Ascq, France
Email:
Yassine.Esmili@univ-lille.fr
DOI:
https://doi.org/10.1090/tpms/1061
Keywords:
Wiener chaos,
self-similar processes,
modulus of continuity,
wavelet bases,
fractional processes
Received by editor(s):
February 8, 2018
Published electronically:
August 19, 2019
Additional Notes:
The authors are very grateful to the anonymous referee for his valuable comments which have led to improvements of the article. This work has been partially supported by the Labex CEMPI (ANR-11-LABX-0007-01) and the GDR 3475 (Analyse Multifractale).
Article copyright:
© Copyright 2019
American Mathematical Society