Remote Access Theory of Probability and Mathematical Statistics

Theory of Probability and Mathematical Statistics

ISSN 1547-7363(online) ISSN 0094-9000(print)

 
 

 

Stein-Haff identity for the exponential family


Author: G. Alfelt
Original publication: Teoriya Imovirnostei ta Matematichna Statistika, tom 99 (2018).
Journal: Theor. Probability and Math. Statist. 99 (2019), 5-17
MSC (2010): Primary 62H12; Secondary 62C99
DOI: https://doi.org/10.1090/tpms/1076
Published electronically: February 27, 2020
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, the Stein-Haff identity is established for positive-definite and symmetric random matrices belonging to the exponential family. The identity is then applied to the matrix-variate gamma distribution, and an estimator that dominates the maximum likelihood estimator in terms of Stein's loss is obtained. Finally, a simulation study is conducted in order to support the theoretical results.


References [Enhancements On Off] (What's this?)

  • [1] T. Bodnar and A. Gupta, An identity for multivariate elliptically contoured matrix distribution, Statistics & Probability Letters 79 (2009), 1327-1330. MR 2522604
  • [2] D. K. Dey and C. Srinivasan, Estimation of a covariance matrix under Stein's loss, Ann. Statist. 13 (1985), 1581-1591. MR 811511
  • [3] T. S. Ferguson, Mathematical Statistics: A Decision Theoretic Approach, Academic Press, New York, 1967. MR 0215390
  • [4] A. K. Gupta and D. K. Nagar, Matrix Variate Distributions, CRC Press, 2000. MR 1738933
  • [5] L. R. Haff, An identity for the Wishart distribution with applications, J. Multivariate Anal. 9 (1979), 531-542. MR 556910
  • [6] D. Harville, Matrix Algebra from Statistician's Perspective, Springer, New York, 1997. MR 1467237
  • [7] W. James and C. Stein, Estimation with quadratic loss, Proc. Fourth Berkeley Symp. Math. Statist. Prob., vol. 1, 1961, pp. 361-380. MR 0133191
  • [8] Y. Konno, Improving on the sample covariance matrix for a complex elliptically contoured distribution, Journal of Statistical Planning and Inference 7 (2007), 2475-2486. MR 2325450
  • [9] Y. Konno, Shrinkage estimators for large covariance matrices in multivariate real and complex normal distributions under an invariant quadratic loss, J. Multivariate Anal. 100 (2009), 2237-2253. MR 2560366
  • [10] T. Kubokawa, A revisit to estimation of the precision matrix of the Wishart distribution, J. Statist. Res. 39 (2005), 91-114. MR 2195210
  • [11] T. Kubokawa and M. Srivastava, Robust improvement in estimation of a covariance matrix in an elliptically contoured distribution, Ann. Statist. 27 (1999), 600-609. MR 1714715
  • [12] T. Kubokawa and M. Srivastava, Estimation of the precision matrix of a singular Wishart distribution and its application in high dimensional data, J. Multivariate Anal. 99 (2008), 1906-1928. MR 2466543
  • [13] R. J. Muirhead, Aspects of multivariate statistical theory, Wiley, New York, 1982. MR 652932
  • [14] Y. Sheena, Unbiased estimator of risk for an orthogonal invariant estimator of a covariance matrix, J. Japan Statist. Soc. 25 (1995), no. 1, 35-48. MR 1347863
  • [15] C. Stein, Lectures on the theory of estimation of many parameters, Studies in the Statistical Theory of Estimation I (I. A. Ibraimov and M. S. Nikulin, eds.), Proceeding of Scientific Seminars of the Steklov Institute, Leningrad Division, vol. 74, 1977, pp. 4-65. MR 545117
  • [16] A. Takemura, An orthogonally invariant minimax estimator of the covariance matrix of a multivariate normal population, Tsukaba J. Math. 8 (1984), 367-376. MR 767967
  • [17] H. Tsukuma, Improvement on the best invariant estimators of the normal covariance and precision matrices via a lower triangular subgroup, J. Japan Statist. Soc. 44 (2014), 195-218. MR 3379071
  • [18] H. Van der Vaart, On certain characteristics of the distribution of the latent roots of a symmetric random matrix under general conditions, Ann. Math. Statist. 32 (1961), 864-873. MR 130749

Similar Articles

Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2010): 62H12, 62C99

Retrieve articles in all journals with MSC (2010): 62H12, 62C99


Additional Information

G. Alfelt
Affiliation: Department of Mathematics, Stockholm University, Roslagsvägen 101, SE-10691 Stockholm, Sweden
Email: gustava@math.su.se

DOI: https://doi.org/10.1090/tpms/1076
Keywords: Random matrices, matrix-variate gamma distribution, decision theory
Received by editor(s): June 21, 2018
Published electronically: February 27, 2020
Article copyright: © Copyright 2020 American Mathematical Society