Fractional stochastic partial differential equation for random tangent fields on the sphere
Authors:
V. V. Anh, A. Olenko and Y. G. Wang
Journal:
Theor. Probability and Math. Statist. 104 (2021), 3-22
MSC (2020):
Primary 35R60, 60H15, 35R11; Secondary 60G60, 33C55, 60G22
DOI:
https://doi.org/10.1090/tpms/1142
Published electronically:
September 24, 2021
Full-text PDF
Abstract |
References |
Similar Articles |
Additional Information
Abstract: This paper develops a fractional stochastic partial differential equation (SPDE) to model the evolution of a random tangent vector field on the unit sphere. The SPDE is governed by a fractional diffusion operator to model the Lévy-type behaviour of the spatial solution, a fractional derivative in time to depict the intermittency of its temporal solution, and is driven by vector-valued fractional Brownian motion on the unit sphere to characterize its temporal long-range dependence. The solution to the SPDE is presented in the form of the Karhunen–Loève expansion in terms of vector spherical harmonics. Its covariance matrix function is established as a tensor field on the unit sphere that is an expansion of Legendre tensor kernels. The variance of the increments and approximations to the solutions are studied and convergence rates of the approximation errors are given. It is demonstrated how these convergence rates depend on the decay of the power spectrum and variances of the fractional Brownian motion.
References
- V. V. Anh, P. Broadbridge, A. Olenko, and Y. G. Wang, On approximation for fractional stochastic partial differential equations on the sphere, Stochastic Environmental Research and Risk Assessment 32 (2018), no. 9, 2585–2603.
- V. V. Anh, C. C. Heyde, and N. N. Leonenko, Dynamic models of long-memory processes driven by Lévy noise, J. Appl. Probab. 39 (2002), no. 4, 730–747. MR 1938167, DOI 10.1239/jap/1037816015
- V. V. Anh and N. N. Leonenko, Spectral analysis of fractional kinetic equations with random data, J. Statist. Phys. 104 (2001), no. 5-6, 1349–1387. MR 1859007, DOI 10.1023/A:1010474332598
- Vo V. Anh, Nikolai N. Leonenko, and María D. Ruiz-Medina, Fractional-in-time and multifractional-in-space stochastic partial differential equations, Fract. Calc. Appl. Anal. 19 (2016), no. 6, 1434–1459. MR 3589359, DOI 10.1515/fca-2016-0074
- V. V. Anh, N. N. Leonenko, and A. Sikorskii, Stochastic representation of fractional Bessel-Riesz motion, Chaos Solitons Fractals 102 (2017), 135–139. MR 3672004, DOI 10.1016/j.chaos.2017.04.039
- V. V. Anh and R. McVinish, The Riesz-Bessel fractional diffusion equation, Appl. Math. Optim. 49 (2004), no. 3, 241–264. MR 2041851, DOI 10.1007/s00245-004-0790-1
- R. Atlas, R. N. Hoffman, S. M. Leidner, J. Sienkiewicz, T.-W. Yu, S. C. Bloom, E. Brin, J. Ardizzone, J. Terry, D. Bungato, et al., The effects of marine winds from scatterometer data on weather analysis and forecasting, Bulletin of the American Meteorological Society 82 (2001), no. 9, 1965–1990.
- A. Beskos, J. Dureau, and K. Kalogeropoulos, Bayesian inference for partially observed stochastic differential equations driven by fractional Brownian motion, Biometrika 102 (2015), no. 4, 809–827. MR 3431555, DOI 10.1093/biomet/asv051
- Francesca Biagini, Yaozhong Hu, Bernt Øksendal, and Tusheng Zhang, Stochastic calculus for fractional Brownian motion and applications, Probability and its Applications (New York), Springer-Verlag London, Ltd., London, 2008. MR 2387368, DOI 10.1007/978-1-84628-797-8
- David Bolin and Finn Lindgren, Spatial models generated by nested stochastic partial differential equations, with an application to global ozone mapping, Ann. Appl. Stat. 5 (2011), no. 1, 523–550. MR 2810408, DOI 10.1214/10-AOAS383
- David R. Brillinger, A particle migrating randomly on a sphere, J. Theoret. Probab. 10 (1997), no. 2, 429–443. Dedicated to Murray Rosenblatt. MR 1455152, DOI 10.1023/A:1022869817770
- Phil Broadbridge, Alexander D. Kolesnik, Nikolai Leonenko, and Andriy Olenko, Random spherical hyperbolic diffusion, J. Stat. Phys. 177 (2019), no. 5, 889–916. MR 4031900, DOI 10.1007/s10955-019-02395-0
- Philip Broadbridge, Alexander D. Kolesnik, Nikolai Leonenko, Andriy Olenko, and Dareen Omari, Spherically restricted random hyperbolic diffusion, Entropy 22 (2020), no. 2, Paper No. 217, 31. MR 4144958, DOI 10.3390/e22020217
- Stefano Castruccio and Michael L. Stein, Global space-time models for climate ensembles, Ann. Appl. Stat. 7 (2013), no. 3, 1593–1611. MR 3127960, DOI 10.1214/13-AOAS656
- Mkhitar M. Djrbashian, Harmonic analysis and boundary value problems in the complex domain, Operator Theory: Advances and Applications, vol. 65, Birkhäuser Verlag, Basel, 1993. Translated from the manuscript by H. M. Jerbashian and A. M. Jerbashian [A. M. Dzhrbashyan]. MR 1249271, DOI 10.1007/978-3-0348-8549-2
- S. Dodelson, Modern Cosmology, Academic press, 2003.
- Mirko D’Ovidio, Coordinates changed random fields on the sphere, J. Stat. Phys. 154 (2014), no. 4, 1153–1176. MR 3164607, DOI 10.1007/s10955-013-0911-9
- Mirko D’Ovidio, Nikolai Leonenko, and Enzo Orsingher, Fractional spherical random fields, Statist. Probab. Lett. 116 (2016), 146–156. MR 3508533, DOI 10.1016/j.spl.2016.04.011
- Mirko D’Ovidio and Erkan Nane, Fractional Cauchy problems on compact manifolds, Stoch. Anal. Appl. 34 (2016), no. 2, 232–257. MR 3462135, DOI 10.1080/07362994.2015.1116997
- Minjie Fan, Debashis Paul, Thomas C. M. Lee, and Tomoko Matsuo, Modeling tangential vector fields on a sphere, J. Amer. Statist. Assoc. 113 (2018), no. 524, 1625–1636. MR 3902234, DOI 10.1080/01621459.2017.1356322
- W. Freeden and M. Schreiner, Spherical functions of mathematical geosciences: a scalar, vectorial, and tensorial setup, Springer-Verlag Berlin Heidelberg, 2009.
- Edward J. Fuselier and Grady B. Wright, Stability and error estimates for vector field interpolation and decomposition on the sphere with RBFs, SIAM J. Numer. Anal. 47 (2009), no. 5, 3213–3239. MR 2551192, DOI 10.1137/080730901
- W. Grecksch and V. V. Anh, A parabolic stochastic differential equation with fractional Brownian motion input, Statist. Probab. Lett. 41 (1999), no. 4, 337–346. MR 1666072, DOI 10.1016/S0167-7152(98)00147-3
- Souleymane Kadri Harouna and Valérie Perrier, Helmholtz-Hodge decomposition on $[0,1]^d$ by divergence-free and curl-free wavelets, Curves and surfaces, Lecture Notes in Comput. Sci., vol. 6920, Springer, Heidelberg, 2012, pp. 311–329. MR 2889785, DOI 10.1007/978-3-642-27413-8_{2}0
- D. T. Hristopulos, Permissibility of fractal exponents and models of band-limited two-point functions for fGn and fBm random fields, Stochastic Environmental Research and Risk Assessment 17 (2003), no. 3, 191–216.
- Yaozhong Hu, Yanghui Liu, and David Nualart, Rate of convergence and asymptotic error distribution of Euler approximation schemes for fractional diffusions, Ann. Appl. Probab. 26 (2016), no. 2, 1147–1207. MR 3476635, DOI 10.1214/15-AAP1114
- Yuzuru Inahama, Laplace approximation for rough differential equation driven by fractional Brownian motion, Ann. Probab. 41 (2013), no. 1, 170–205. MR 3059196, DOI 10.1214/11-AOP733
- Q. T. Le Gia, M. Li, and Y. G. Wang, FaVeST: fast vector spherical harmonic transforms, ACM Transactions on Mathematical Software (2021, in press).
- Quoc T. Le Gia, Ian H. Sloan, Yu Guang Wang, and Robert S. Womersley, Needlet approximation for isotropic random fields on the sphere, J. Approx. Theory 216 (2017), 86–116. MR 3612485, DOI 10.1016/j.jat.2017.01.001
- M. Li, P. Broadbridge, A. Olenko, and Y. G. Wang, Fast tensor needlet transforms for tangent vector fields on the sphere, arXiv preprint ArXiv:1907.13339 (2019).
- Terry J. Lyons, Differential equations driven by rough signals, Rev. Mat. Iberoamericana 14 (1998), no. 2, 215–310. MR 1654527, DOI 10.4171/RMI/240
- Chunsheng Ma and Anatoliy Malyarenko, Time-varying isotropic vector random fields on compact two-point homogeneous spaces, J. Theoret. Probab. 33 (2020), no. 1, 319–339. MR 4064303, DOI 10.1007/s10959-018-0872-7
- B. I. Manikin and V. M. Radchenko, Approximation of the solution to the parabolic equation driven by stochastic measure, Theory of Probability and Mathematical Statistics 102 (2020), 145–156.
- A. M. Mathai and H. J. Haubold, Special functions for applied scientists, Springer, 2008.
- Jean Mémin, Yulia Mishura, and Esko Valkeila, Inequalities for the moments of Wiener integrals with respect to a fractional Brownian motion, Statist. Probab. Lett. 51 (2001), no. 2, 197–206. MR 1822771, DOI 10.1016/S0167-7152(00)00157-7
- D. S. Mitrinović, Analytic inequalities, Die Grundlehren der mathematischen Wissenschaften, Band 165, Springer-Verlag, New York-Berlin, 1970. In cooperation with P. M. Vasić. MR 0274686
- J. Pan, X.-H. Yan, Q. Zheng, and W. T. Liu, Vector empirical orthogonal function modes of the ocean surface wind variability derived from satellite scatterometer data, Geophysical Research Letters 28 (2001), no. 20, 3951–3954.
- Planck Collaboration and Adam, R. et al., Planck 2015 results - I. Overview of products and scientific results, Astronomy & Astrophysics 594 (2016), A1.
- —, Planck 2015 results - IX. Diffuse component separation: CMB maps, Astronomy & Astrophysics 594 (2016), A9.
- Planck Collaboration and Aghanim, N. et al., Planck 2015 results - XI. CMB power spectra, likelihoods, and robustness of parameters, Astronomy & Astrophysics 594 (2016), A11.
- Igor Podlubny, Fractional differential equations, Mathematics in Science and Engineering, vol. 198, Academic Press, Inc., San Diego, CA, 1999. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. MR 1658022
- A. D. Richmond and Y. Kamide, Mapping electrodynamic features of the high-latitude ionosphere from localized observations: Technique, Journal of Geophysical Research: Space Physics 93 (1988), no. A6, 5741–5759.
- T. J. Sabaka, G. Hulot, and N. Olsen, Mathematical properties relevant to geomagnetic field modeling, Handbook of Geomathematics, Springer, 2010.
- Michael Scheuerer and Martin Schlather, Covariance models for divergence-free and curl-free random vector fields, Stoch. Models 28 (2012), no. 3, 433–451. MR 2959449, DOI 10.1080/15326349.2012.699756
- M. Schlather, A. Malinowski, P. J. Menck, M. Oesting, and K. Strokorb, Analysis, simulation and prediction of multivariate random fields with package random fields, Journal of Statistical Software 63 (2015), no. 8, 1–25.
- Thomas Simon, Comparing Fréchet and positive stable laws, Electron. J. Probab. 19 (2014), no. 16, 25. MR 3164769, DOI 10.1214/EJP.v19-3058
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Michael L. Stein, Jie Chen, and Mihai Anitescu, Stochastic approximation of score functions for Gaussian processes, Ann. Appl. Stat. 7 (2013), no. 2, 1162–1191. MR 3113505, DOI 10.1214/13-AOAS627
- Michael L. Stein, Spatial variation of total column ozone on a global scale, Ann. Appl. Stat. 1 (2007), no. 1, 191–210. MR 2393847, DOI 10.1214/07-AOAS106
- Z. Zhang, D. Beletsky, D. J. Schwab, and M. L. Stein, Assimilation of current measurements into a circulation model of Lake Michigan, Water Resources Research 43 (2007), no. 11, W11407.
References
- V. V. Anh, P. Broadbridge, A. Olenko, and Y. G. Wang, On approximation for fractional stochastic partial differential equations on the sphere, Stochastic Environmental Research and Risk Assessment 32 (2018), no. 9, 2585–2603.
- V. V. Anh, C. C. Heyde, and N. N. Leonenko, Dynamic models of long-memory processes driven by Lévy noise, Journal of Applied Probability (2002), 730–747. MR 1938167
- V. V. Anh and N. N. Leonenko, Spectral analysis of fractional kinetic equations with random data, Journal of Statistical Physics 104 (2001), no. 5, 1349–1387. MR 1859007
- V. V. Anh, N. N. Leonenko, and M. D. Ruiz-Medina, Fractional-in-time and multifracational-in-space stochastic partial differential equations, Fractional Calculus and Applied Analysis 19 (2016), no. 6. MR 3589359
- V. V. Anh, N. N. Leonenko, and A. Sikorskii, Stochastic representation of fractional Bessel-Riesz motion, Chaos, Solitons & Fractals 102 (2017), 135–139. MR 3672004
- V. V. Anh and R. McVinish, The Riesz-Bessel fractional diffusion equation, Applied Mathematics and Optimization 49 (2004), no. 3, 241–264. MR 2041851
- R. Atlas, R. N. Hoffman, S. M. Leidner, J. Sienkiewicz, T.-W. Yu, S. C. Bloom, E. Brin, J. Ardizzone, J. Terry, D. Bungato, et al., The effects of marine winds from scatterometer data on weather analysis and forecasting, Bulletin of the American Meteorological Society 82 (2001), no. 9, 1965–1990.
- A. Beskos, J. Dureau, and K. Kalogeropoulos, Bayesian inference for partially observed stochastic differential equations driven by fractional Brownian motion, Biometrika 102 (2015), no. 4, 809–827. MR 3431555
- F. Biagini, Y. Hu, B. Øksendal, and T. Zhang, Stochastic calculus for fractional Brownian motion and applications, Springer-Verlag London, Ltd., London, 2008. MR 2387368
- D. Bolin and F. Lindgren, Spatial models generated by nested stochastic partial differential equations, with an application to global ozone mapping, The Annals of Applied Statistics (2011), 523–550. MR 2810408
- D. R. Brillinger, A particle migrating randomly on a sphere, Journal of Theoretical Probability 10 (1997), no. 2, 429–443. MR 1455152
- P. Broadbridge, A. Kolesnik, N. Leonenko, and A. Olenko, Random spherical hyperbolic diffusion, Journal of Statistical Physics 177 (2019), no. 5, 889–916. MR 4031900
- P. Broadbridge, A. Kolesnik, N. Leonenko, A. Olenko, and D. Omari, Spherically restricted random hyperbolic diffusion, Entropy 22 (2020), no. 2, 217. MR 4144958
- S. Castruccio and M. L. Stein, Global space-time models for climate ensembles, The Annals of Applied Statistics (2013), 1593–1611. MR 3127960
- M. M. Djrbashian, Harmonic analysis and boundary value problems in the complex domain, Birkhäuser Verlag, Basel, 1993. MR 1249271
- S. Dodelson, Modern Cosmology, Academic press, 2003.
- M. D’Ovidio, Coordinates changed random fields on the sphere, Journal of Statistical Physics 154 (2014), 1153–1176. MR 3164607
- M. D’Ovidio, N. Leonenko, and E. Orsingher, Fractional spherical random fields, Statistics & Probability Letters 116 (2016), 146–156. MR 3508533
- M. D’Ovidio and E. Nane, Fractional Cauchy problems on compact manifolds, Stochastic Analysis and Applications 34 (2016), no. 2, 232–257. MR 3462135
- M. Fan, D. Paul, T. C. M. Lee, and T. Matsuo, Modeling tangential vector fields on a sphere, Journal of the American Statistical Association 113 (2018), no. 524, 1625–1636. MR 3902234
- W. Freeden and M. Schreiner, Spherical functions of mathematical geosciences: a scalar, vectorial, and tensorial setup, Springer-Verlag Berlin Heidelberg, 2009.
- E. J. Fuselier and G. B. Wright, Stability and error estimates for vector field interpolation and decomposition on the sphere with RBFs, SIAM Journal on Numerical Analysis 47 (2009), no. 5, 3213–3239. MR 2551192
- W. Grecksch and V. V. Anh, A parabolic stochastic differential equation with fractional Brownian motion input, Statistics & Probability Letters 41 (1999), no. 4, 337–346. MR 1666072
- S. K. Harouna and V. Perrier, Helmholtz-Hodge decomposition on $[0, 1]^d$ by divergence-free and curl-free wavelets, International Conference on Curves and Surfaces, Springer, 2010, pp. 311–329. MR 2889785
- D. T. Hristopulos, Permissibility of fractal exponents and models of band-limited two-point functions for fGn and fBm random fields, Stochastic Environmental Research and Risk Assessment 17 (2003), no. 3, 191–216.
- Y. Hu, Y. Liu, D. Nualart, et al., Rate of convergence and asymptotic error distribution of euler approximation schemes for fractional diffusions, The Annals of Applied Probability 26 (2016), no. 2, 1147–1207. MR 3476635
- Y. Inahama et al., Laplace approximation for rough differential equation driven by fractional Brownian motion, The Annals of Probability 41 (2013), no. 1, 170–205. MR 3059196
- Q. T. Le Gia, M. Li, and Y. G. Wang, FaVeST: fast vector spherical harmonic transforms, ACM Transactions on Mathematical Software (2021, in press).
- Q. T. Le Gia, I. H. Sloan, Y. G. Wang, and R. S. Womersley, Needlet approximation for isotropic random fields on the sphere, Journal of Approximation Theory 216 (2017), 86–116. MR 3612485
- M. Li, P. Broadbridge, A. Olenko, and Y. G. Wang, Fast tensor needlet transforms for tangent vector fields on the sphere, arXiv preprint ArXiv:1907.13339 (2019).
- T. J. Lyons, Differential equations driven by rough signals, Revista Matemática Iberoamericana 14 (1998), no. 2, 215–310. MR 1654527
- C. Ma and A. Malyarenko, Time-varying isotropic vector random fields on compact two-point homogeneous spaces, Journal of Theoretical Probability 33 (2020), 319–339. MR 4064303
- B. I. Manikin and V. M. Radchenko, Approximation of the solution to the parabolic equation driven by stochastic measure, Theory of Probability and Mathematical Statistics 102 (2020), 145–156.
- A. M. Mathai and H. J. Haubold, Special functions for applied scientists, Springer, 2008.
- J. Mémin, Y. Mishura, and E. Valkeila, Inequalities for the moments of Wiener integrals with respect to a fractional Brownian motion, Statistics & Probability Letters 51 (2001), no. 2, 197–206. MR 1822771
- D. S. Mitrinovic, Analytic inequalities, Springer, Berlin, 1970. MR 0274686
- J. Pan, X.-H. Yan, Q. Zheng, and W. T. Liu, Vector empirical orthogonal function modes of the ocean surface wind variability derived from satellite scatterometer data, Geophysical Research Letters 28 (2001), no. 20, 3951–3954.
- Planck Collaboration and Adam, R. et al., Planck 2015 results - I. Overview of products and scientific results, Astronomy & Astrophysics 594 (2016), A1.
- —, Planck 2015 results - IX. Diffuse component separation: CMB maps, Astronomy & Astrophysics 594 (2016), A9.
- Planck Collaboration and Aghanim, N. et al., Planck 2015 results - XI. CMB power spectra, likelihoods, and robustness of parameters, Astronomy & Astrophysics 594 (2016), A11.
- I. Podlubny, Fractional differential equations, Academic Press, Inc., San Diego, CA, 1999. MR 1658022
- A. D. Richmond and Y. Kamide, Mapping electrodynamic features of the high-latitude ionosphere from localized observations: Technique, Journal of Geophysical Research: Space Physics 93 (1988), no. A6, 5741–5759.
- T. J. Sabaka, G. Hulot, and N. Olsen, Mathematical properties relevant to geomagnetic field modeling, Handbook of Geomathematics, Springer, 2010.
- M. Scheuerer and M. Schlather, Covariance models for divergence-free and curl-free random vector fields, Stochastic Models 28 (2012), no. 3, 433–451. MR 2959449
- M. Schlather, A. Malinowski, P. J. Menck, M. Oesting, and K. Strokorb, Analysis, simulation and prediction of multivariate random fields with package random fields, Journal of Statistical Software 63 (2015), no. 8, 1–25.
- T. Simon, Comparing Fréchet and positive stable laws, Electronic Journal of Probability 19 (2014), no. 16, 1–25. MR 3164769
- E. M. Stein, Singular integrals and differentiability properties of functions, vol. 2, Princeton University Press, 1970. MR 0290095
- M. L. Stein, J. Chen, and M. Anitescu, Stochastic approximation of score functions for Gaussian processes, The Annals of Applied Statistics 7 (2013), no. 2, 1162–1191. MR 3113505
- M. L. Stein et al., Spatial variation of total column ozone on a global scale, The Annals of Applied Statistics 1 (2007), no. 1, 191–210. MR 2393847
- Z. Zhang, D. Beletsky, D. J. Schwab, and M. L. Stein, Assimilation of current measurements into a circulation model of Lake Michigan, Water Resources Research 43 (2007), no. 11, W11407.
Similar Articles
Retrieve articles in Theory of Probability and Mathematical Statistics
with MSC (2020):
35R60,
60H15,
35R11,
60G60,
33C55,
60G22
Retrieve articles in all journals
with MSC (2020):
35R60,
60H15,
35R11,
60G60,
33C55,
60G22
Additional Information
V. V. Anh
Affiliation:
Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, Victoria 3122, Australia
Email:
vanh@swin.edu.au
A. Olenko
Affiliation:
Department of Mathematics and Statistics, La Trobe University, Melbourne, VIC 3086, Australia
Email:
a.olenko@latrobe.edu.au
Y. G. Wang
Affiliation:
Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, 04103 Leipzig, Germany
Address at time of publication:
Institute of Natural Sciences, School of Mathematical Sciences, and Key Laboratory of Scientific and Engineering Computing of Ministry of Education (MOE-LSC), Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
Email:
yuguang.wang@mis.mpg.de
Keywords:
Fractional stochastic partial differential equation,
random tangent field,
vector spherical harmonics,
fractional Brownian motion
Received by editor(s):
April 23, 2021
Published electronically:
September 24, 2021
Additional Notes:
This research was partially supported under the Australian Research Council’s Discovery Projects funding scheme (project number DP160101366). The third author acknowledges the support of funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no 757983)
Article copyright:
© Copyright 2021
Taras Shevchenko National University of Kyiv