Estimation of the Hurst and diffusion parameters in fractional stochastic heat equation
Authors:
D. A. Avetisian and K. V. Ralchenko
Journal:
Theor. Probability and Math. Statist. 104 (2021), 61-76
MSC (2020):
Primary 60G22, 60H15, 62F10, 62F12
DOI:
https://doi.org/10.1090/tpms/1145
Published electronically:
September 24, 2021
Full-text PDF
Abstract |
References |
Similar Articles |
Additional Information
Abstract: The paper deals with a one-dimensional stochastic heat equation driven by a space-only fractional Brownian noise. We construct strongly consistent estimators of two unknown parameters, namely, the diffusion parameter $\sigma$ and the Hurst parameter $H\in (0,1)$, based on the discrete-time observations of a solution. We also prove joint asymptotic normality of the estimators in the case $H\in \left (0,\frac 34\right )$.
References
- Shin Ichi Aihara and Arunabha Bagchi, Stochastic hyperbolic dynamics for infinite-dimensional forward rates and option pricing, Math. Finance 15 (2005), no. 1, 27–47. MR 2116795, DOI 10.1111/j.0960-1627.2005.00209.x
- S. I. Aihara and A. Bagchi, Parameter estimation of parabolic type factor model and empirical study of US treasury bonds, System modeling and optimization, IFIP Int. Fed. Inf. Process., vol. 199, Springer, New York, 2006, pp. 207–217. MR 2249335, DOI 10.1007/0-387-33006-2_{1}9
- Miguel A. Arcones, Limit theorems for nonlinear functionals of a stationary Gaussian sequence of vectors, Ann. Probab. 22 (1994), no. 4, 2242–2274. MR 1331224
- Diana Avetisian and Kostiantyn Ralchenko, Ergodic properties of the solution to a fractional stochastic heat equation, with an application to diffusion parameter estimation, Mod. Stoch. Theory Appl. 7 (2020), no. 3, 339–356. MR 4159153
- D. A. Avetisian and G. M. Shevchenko, Estimation of diffusion parameter for stochastic heat equation with white noise, Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics & Mathematics (2018), no. 3, 9–16.
- Markus Bibinger and Mathias Trabs, On central limit theorems for power variations of the solution to the stochastic heat equation, Stochastic models, statistics and their applications, Springer Proc. Math. Stat., vol. 294, Springer, Cham, [2019] ©2019, pp. 69–84. MR 4043170
- Markus Bibinger and Mathias Trabs, Volatility estimation for stochastic PDEs using high-frequency observations, Stochastic Process. Appl. 130 (2020), no. 5, 3005–3052. MR 4080737, DOI 10.1016/j.spa.2019.09.002
- Peter Breuer and Péter Major, Central limit theorems for nonlinear functionals of Gaussian fields, J. Multivariate Anal. 13 (1983), no. 3, 425–441. MR 716933, DOI 10.1016/0047-259X(83)90019-2
- Baohua Chen and Jinqiao Duan, Stochastic quantification of missing mechanisms in dynamical systems, Recent development in stochastic dynamics and stochastic analysis, Interdiscip. Math. Sci., vol. 8, World Sci. Publ., Hackensack, NJ, 2010, pp. 67–76. MR 2807813, DOI 10.1142/9789814277266_{0}004
- Carsten Chong, High-frequency analysis of parabolic stochastic PDEs, Ann. Statist. 48 (2020), no. 2, 1143–1167. MR 4102691, DOI 10.1214/19-AOS1841
- Pao-Liu Chow, Stochastic partial differential equations, Chapman & Hall/CRC Applied Mathematics and Nonlinear Science Series, Chapman & Hall/CRC, Boca Raton, FL, 2007. MR 2295103
- Igor Cialenco, Francisco Delgado-Vences, and Hyun-Jung Kim, Drift estimation for discretely sampled SPDEs, Stoch. Partial Differ. Equ. Anal. Comput. 8 (2020), no. 4, 895–920. MR 4174073, DOI 10.1007/s40072-019-00164-4
- Igor Cialenco and Yicong Huang, A note on parameter estimation for discretely sampled SPDEs, Stoch. Dyn. 20 (2020), no. 3, 2050016, 28. MR 4101083, DOI 10.1142/S0219493720500161
- I. Cialenco and H.-J. Kim, Parameter estimation for discretely sampled stochastic heat equation driven by space-only noise revised, 2020.
- Igor Cialenco, Hyun-Jung Kim, and Sergey V. Lototsky, Statistical analysis of some evolution equations driven by space-only noise, Stat. Inference Stoch. Process. 23 (2020), no. 1, 83–103. MR 4072253, DOI 10.1007/s11203-019-09205-0
- Rama Cont, Modeling term structure dynamics: an infinite dimensional approach, Int. J. Theor. Appl. Finance 8 (2005), no. 3, 357–380. MR 2144706, DOI 10.1142/S0219024905003049
- Giuseppe Da Prato and Jerzy Zabczyk, Stochastic equations in infinite dimensions, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 152, Cambridge University Press, Cambridge, 2014. MR 3236753, DOI 10.1017/CBO9781107295513
- Donald A. Dawson, Qualitative behavior of geostochastic systems, Stochastic Process. Appl. 10 (1980), no. 1, 1–31. MR 581688, DOI 10.1016/0304-4149(80)90002-2
- S. S. De, Stochastic model of population growth and spread, Bull. Math. Biol. 49 (1987), no. 1, 1–11. MR 891484, DOI 10.1016/S0092-8240(87)80032-0
- R. L. Dobrushin and P. Major, Non-central limit theorems for nonlinear functionals of Gaussian fields, Z. Wahrsch. Verw. Gebiete 50 (1979), no. 1, 27–52. MR 550122, DOI 10.1007/BF00535673
- Massimiliano Gubinelli, Antoine Lejay, and Samy Tindel, Young integrals and SPDEs, Potential Anal. 25 (2006), no. 4, 307–326. MR 2255351, DOI 10.1007/s11118-006-9013-5
- Yaozhong Hu and David Nualart, Stochastic heat equation driven by fractional noise and local time, Probab. Theory Related Fields 143 (2009), no. 1-2, 285–328. MR 2449130, DOI 10.1007/s00440-007-0127-5
- L. Isserlis, On a formula for the product-moment coefficient of any order of a normal frequency distribution in any number of variables, Biometrika 12 (1918), no. 1/2, 134–139.
- Yusuke Kaino and Masayuki Uchida, Parametric estimation for a parabolic linear SPDE model based on discrete observations, J. Statist. Plann. Inference 211 (2021), 190–220. MR 4153870, DOI 10.1016/j.jspi.2020.05.004
- Sergey V. Lototsky and Boris L. Rozovskii, Stochastic partial differential equations driven by purely spatial noise, SIAM J. Math. Anal. 41 (2009), no. 4, 1295–1322. MR 2540267, DOI 10.1137/070698440
- Zeina Mahdi Khalil and Ciprian Tudor, Estimation of the drift parameter for the fractional stochastic heat equation via power variation, Mod. Stoch. Theory Appl. 6 (2019), no. 4, 397–417. MR 4047392
- P. Major, Non-central limit theorem for non-linear functionals of vector valued gaussian stationary random fields, 2019.
- Bohdan Maslowski and David Nualart, Evolution equations driven by a fractional Brownian motion, J. Funct. Anal. 202 (2003), no. 1, 277–305. MR 1994773, DOI 10.1016/S0022-1236(02)00065-4
- Yu. Mishura, K. Ralchenko, and G. Shevchenko, Existence and uniqueness of mild solution to stochastic heat equation with white and fractional noises, Teor. Ĭmovīr. Mat. Stat. 98 (2018), 142–162 (English, with English, Russian and Ukrainian summaries); English transl., Theory Probab. Math. Statist. 98 (2019), 149–170. MR 3824684, DOI 10.1090/tpms/1068
- L. Piterbarg and B. Rozovskii, Maximum likelihood estimators in the equations of physical oceanography, Stochastic modelling in physical oceanography, Progr. Probab., vol. 39, Birkhäuser Boston, Boston, MA, 1996, pp. 397–421. MR 1383880, DOI 10.1007/978-1-4612-2430-3_{1}5
- Kostiantyn Ralchenko and Georgiy Shevchenko, Existence and uniqueness of mild solution to fractional stochastic heat equation, Mod. Stoch. Theory Appl. 6 (2019), no. 1, 57–79. MR 3935427, DOI 10.15559/18-vmsta122
- Boris L. Rozovsky and Sergey V. Lototsky, Stochastic evolution systems, Probability Theory and Stochastic Modelling, vol. 89, Springer, Cham, 2018. Linear theory and applications to non-linear filtering; Second edition of [ MR1135324]. MR 3839316, DOI 10.1007/978-3-319-94893-5
- Murad S. Taqqu, Convergence of integrated processes of arbitrary Hermite rank, Z. Wahrsch. Verw. Gebiete 50 (1979), no. 1, 53–83. MR 550123, DOI 10.1007/BF00535674
- S. Tindel, C. A. Tudor, and F. Viens, Stochastic evolution equations with fractional Brownian motion, Probab. Theory Related Fields 127 (2003), no. 2, 186–204. MR 2013981, DOI 10.1007/s00440-003-0282-2
- John B. Walsh, An introduction to stochastic partial differential equations, École d’été de probabilités de Saint-Flour, XIV—1984, Lecture Notes in Math., vol. 1180, Springer, Berlin, 1986, pp. 265–439. MR 876085, DOI 10.1007/BFb0074920
References
- S. I. Aihara and A. Bagchi, Stochastic hyperbolic dynamics for infinite-dimensional forward rates and option pricing, Math. Finance 15 (2005), no. 1, 27–47. MR 2116795
- S. I. Aihara and A. Bagchi, Parameter estimation of parabolic type factor model and empirical study of US treasury bonds, System modeling and optimization, IFIP Int. Fed. Inf. Process., vol. 199, Springer, New York, 2006, pp. 207–217. MR 2249335
- M. A. Arcones, Limit theorems for nonlinear functionals of a stationary Gaussian sequence of vectors, Ann. Probab. 22 (1994), no. 4, 2242–2274. MR 1331224
- D. Avetisian and K. Ralchenko, Ergodic properties of the solution to a fractional stochastic heat equation, with an application to diffusion parameter estimation, Mod. Stoch. Theory Appl. 7 (2020), no. 3, 339–356. MR 4159153
- D. A. Avetisian and G. M. Shevchenko, Estimation of diffusion parameter for stochastic heat equation with white noise, Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics & Mathematics (2018), no. 3, 9–16.
- M. Bibinger and M. Trabs, On central limit theorems for power variations of the solution to the stochastic heat equation, Stochastic models, statistics and their applications, Springer Proc. Math. Stat., vol. 294, Springer, Cham, 2019, pp. 69–84. MR 4043170
- M. Bibinger and M. Trabs, Volatility estimation for stochastic PDEs using high-frequency observations, Stochastic Process. Appl. 130 (2020), no. 5, 3005–3052. MR 4080737
- P. Breuer and P. Major, Central limit theorems for nonlinear functionals of Gaussian fields, J. Multivariate Anal. 13 (1983), no. 3, 425–441. MR 716933
- B. Chen and J. Duan, Stochastic quantification of missing mechanisms in dynamical systems, Recent development in stochastic dynamics and stochastic analysis, Interdiscip. Math. Sci., vol. 8, World Sci. Publ., Hackensack, NJ, 2010, pp. 67–76. MR 2807813
- C. Chong, High-frequency analysis of parabolic stochastic PDEs, Ann. Statist. 48 (2020), no. 2, 1143–1167. MR 4102691
- P.-L. Chow, Stochastic partial differential equations, Chapman & Hall/CRC Applied Mathematics and Nonlinear Science Series, Chapman & Hall/CRC, Boca Raton, FL, 2007. MR 2295103
- I. Cialenco, F. Delgado-Vences, and H.-J. Kim, Drift estimation for discretely sampled SPDEs, Stoch. Partial Differ. Equ. Anal. Comput. 8 (2020), no. 4, 895–920. MR 4174073
- I. Cialenco and Y. Huang, A note on parameter estimation for discretely sampled SPDEs, Stoch. Dyn. 20 (2020), no. 3, 2050016, 28. MR 4101083
- I. Cialenco and H.-J. Kim, Parameter estimation for discretely sampled stochastic heat equation driven by space-only noise revised, 2020.
- I. Cialenco, H.-J. Kim, and S. V. Lototsky, Statistical analysis of some evolution equations driven by space-only noise, Stat. Inference Stoch. Process. 23 (2020), no. 1, 83–103. MR 4072253
- R. Cont, Modeling term structure dynamics: an infinite dimensional approach, Int. J. Theor. Appl. Finance 8 (2005), no. 3, 357–380. MR 2144706
- G. Da Prato and J. Zabczyk, Stochastic equations in infinite dimensions, second ed., Encyclopedia of Mathematics and its Applications, vol. 152, Cambridge University Press, Cambridge, 2014. MR 3236753
- D. A. Dawson, Qualitative behavior of geostochastic systems, Stochastic Process. Appl. 10 (1980), no. 1, 1–31. MR 581688
- S. S. De, Stochastic model of population growth and spread, Bull. Math. Biol. 49 (1987), no. 1, 1–11. MR 891484
- R. L. Dobrushin and P. Major, Non-central limit theorems for nonlinear functionals of Gaussian fields, Z. Wahrsch. Verw. Gebiete 50 (1979), no. 1, 27–52. MR 550122
- M. Gubinelli, A. Lejay, and S. Tindel, Young integrals and SPDEs, Potential Anal. 25 (2006), no. 4, 307–326. MR 2255351
- Y. Hu and D. Nualart, Stochastic heat equation driven by fractional noise and local time, Probab. Theory Related Fields 143 (2009), no. 1-2, 285–328. MR 2449130
- L. Isserlis, On a formula for the product-moment coefficient of any order of a normal frequency distribution in any number of variables, Biometrika 12 (1918), no. 1/2, 134–139.
- Y. Kaino and M. Uchida, Parametric estimation for a parabolic linear SPDE model based on discrete observations, J. Statist. Plann. Inference 211 (2021), 190–220. MR 4153870
- S. V. Lototsky and B. L. Rozovskii, Stochastic partial differential equations driven by purely spatial noise, SIAM J. Math. Anal. 41 (2009), no. 4, 1295–1322. MR 2540267
- Z. Mahdi Khalil and C. Tudor, Estimation of the drift parameter for the fractional stochastic heat equation via power variation, Mod. Stoch. Theory Appl. 6 (2019), no. 4, 397–417. MR 4047392
- P. Major, Non-central limit theorem for non-linear functionals of vector valued gaussian stationary random fields, 2019.
- B. Maslowski and D. Nualart, Evolution equations driven by a fractional Brownian motion, J. Funct. Anal. 202 (2003), no. 1, 277–305. MR 1994773
- Yu. Mishura, K. Ralchenko, and G. Shevchenko, Existence and uniqueness of mild solution to stochastic heat equation with white and fractional noises, Theory Probab. Math. Statist. 98 (2019), 149–170 MR 3824684
- L. Piterbarg and B. Rozovskii, Maximum likelihood estimators in the equations of physical oceanography, Stochastic modelling in physical oceanography, Progr. Probab., vol. 39, Birkhäuser Boston, Boston, MA, 1996, pp. 397–421. MR 1383880
- K. Ralchenko and G. Shevchenko, Existence and uniqueness of mild solution to fractional stochastic heat equation, Mod. Stoch. Theory Appl. 6 (2019), no. 1, 57–79. MR 3935427
- B. L. Rozovsky and S. V. Lototsky, Stochastic evolution systems, Probability Theory and Stochastic Modelling, vol. 89, Springer, Cham, 2018, Linear theory and applications to non-linear filtering, Second edition of [ MR1135324]. MR 3839316
- M. S. Taqqu, Convergence of integrated processes of arbitrary Hermite rank, Z. Wahrsch. Verw. Gebiete 50 (1979), no. 1, 53–83. MR 550123
- S. Tindel, C. A. Tudor, and F. Viens, Stochastic evolution equations with fractional Brownian motion, Probab. Theory Related Fields 127 (2003), no. 2, 186–204. MR 2013981
- J. B. Walsh, An introduction to stochastic partial differential equations, École d’été de probabilités de Saint-Flour, XIV—1984, Lecture Notes in Math., vol. 1180, Springer, Berlin, 1986, pp. 265–439. MR 876085
Similar Articles
Retrieve articles in Theory of Probability and Mathematical Statistics
with MSC (2020):
60G22,
60H15,
62F10,
62F12
Retrieve articles in all journals
with MSC (2020):
60G22,
60H15,
62F10,
62F12
Additional Information
D. A. Avetisian
Affiliation:
Department of Probability Theory, Statistics and Actuarial Mathematics, Taras Shevchenko National University of Kyiv, Volodymyrska 64, 01601 Kyiv, Ukraine
Email:
diana.avetisian2017@gmail.com
K. V. Ralchenko
Affiliation:
Department of Probability Theory, Statistics and Actuarial Mathematics, Taras Shevchenko National University of Kyiv, Volodymyrska 64, 01601 Kyiv, Ukraine
Email:
kostiantynralchenko@knu.ua
Keywords:
Stochastic partial differential equation,
fractional Brownian motion,
strong consistency,
asymptotic normality
Received by editor(s):
April 19, 2021
Published electronically:
September 24, 2021
Additional Notes:
The second author was supported by the National Research Fund of Ukraine under grant 2020.02/0026.
Article copyright:
© Copyright 2021
Taras Shevchenko National University of Kyiv