Stochastic heat equation with piecewise constant coefficients and generalized fractional type noise
Authors:
M. Zili and E. Zougar
Journal:
Theor. Probability and Math. Statist. 104 (2021), 123-144
MSC (2020):
Primary 60H15, 60G15, 60G17; Secondary 60G60, 35K10, 33B20
DOI:
https://doi.org/10.1090/tpms/1150
Published electronically:
September 24, 2021
Full-text PDF
Abstract |
References |
Similar Articles |
Additional Information
Abstract: We investigate a new stochastic partial differential equation with second order elliptic operator in divergence form, having a piecewise constant diffusion coefficient with two points of discontinuity, and driven by a Gaussian noise which behaves as a Wiener process in space and the time covariance generates a signed measure. Such equation could be used in mathematical modeling of diffusion phenomena in medium consisting of three kinds of materials and undergoing stochastic perturbations. We focus our attention on the particular case when the noise behaves as a generalized fractional Brownian motion in time.
References
- Zhen-Qing Chen and Mounir Zili, One-dimensional heat equation with discontinuous conductance, Sci. China Math. 58 (2015), no. 1, 97–108. MR 3296333, DOI 10.1007/s11425-014-4912-1
- Charles El-Nouty and Mounir Zili, On the sub-mixed fractional Brownian motion, Appl. Math. J. Chinese Univ. Ser. B 30 (2015), no. 1, 27–43. MR 3319622, DOI 10.1007/s11766-015-3198-6
- Pierre Étoré, On random walk simulation of one-dimensional diffusion processes with discontinuous coefficients, Electron. J. Probab. 11 (2006), no. 9, 249–275. MR 2217816, DOI 10.1214/EJP.v11-311
- Bernard Gaveau, Masami Okada, and Tatsuya Okada, Second order differential operators and Dirichlet integrals with singular coefficients. I. Functional calculus of one-dimensional operators, Tohoku Math. J. (2) 39 (1987), no. 4, 465–504. MR 917463, DOI 10.2748/tmj/1178228238
- Christian Houdré and José Villa, An example of infinite dimensional quasi-helix, Stochastic models (Mexico City, 2002) Contemp. Math., vol. 336, Amer. Math. Soc., Providence, RI, 2003, pp. 195–201. MR 2037165, DOI 10.1090/conm/336/06034
- Jean-Pierre Kahane, Some random series of functions, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 5, Cambridge University Press, Cambridge, 1985. MR 833073
- Ida Kruk, Francesco Russo, and Ciprian A. Tudor, Wiener integrals, Malliavin calculus and covariance measure structure, J. Funct. Anal. 249 (2007), no. 1, 92–142. MR 2338856, DOI 10.1016/j.jfa.2007.03.031
- Yuliya Mishura, Kostiantyn Ralchenko, Mounir Zili, and Eya Zougar, Fractional stochastic heat equation with piecewise constant coefficients, Stoch. Dyn. 21 (2021), no. 1, Paper No. 2150002, 39. MR 4192903, DOI 10.1142/S0219493721500027
- Yuliya Mishura and Mounir Zili, Stochastic analysis of mixed fractional Gaussian processes, ISTE Press, London; Elsevier Ltd, Oxford, 2018. MR 3793191
- John Lamperti, Semi-stable stochastic processes, Trans. Amer. Math. Soc. 104 (1962), 62–78. MR 138128, DOI 10.1090/S0002-9947-1962-0138128-7
- Ciprian Tudor and Mounir Zili, Covariance measure and stochastic heat equation with fractional noise, Fract. Calc. Appl. Anal. 17 (2014), no. 3, 807–826. MR 3260307, DOI 10.2478/s13540-014-0199-8
- Ciprian A. Tudor and Mounir Zili, SPDE with generalized drift and fractional-type noise, NoDEA Nonlinear Differential Equations Appl. 23 (2016), no. 5, Art. 53, 23. MR 3549892, DOI 10.1007/s00030-016-0407-9
- Ciprian A. Tudor, Analysis of variations for self-similar processes, Probability and its Applications (New York), Springer, Cham, 2013. A stochastic calculus approach. MR 3112799, DOI 10.1007/978-3-319-00936-0
- Mounir Zili, Generalized fractional Brownian motion, Mod. Stoch. Theory Appl. 4 (2017), no. 1, 15–24. MR 3633929, DOI 10.15559/16-VMSTA71
- Mounir Zili, On the mixed fractional Brownian motion, J. Appl. Math. Stoch. Anal. , posted on (2006), Art. ID 32435, 9. MR 2253522, DOI 10.1155/JAMSA/2006/32435
- Mounir Zili, Développement asymptotique en temps petits de la solution d’une équation aux dérivées partielles de type parabolique, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), no. 8, 1049–1052 (French, with English and French summaries). MR 1360571
- M. Zili, Construction d’une solution fondamentale d’une équation aux dérivées partielles à coefficients constants par morceaux, Bull. Sci. Math. 123 (1999), no. 2, 115–155 (French, with English and French summaries). MR 1679034, DOI 10.1016/S0007-4497(99)80017-7
- Mounir Zili, Fundamental solution of a parabolic partial differential equation with piecewise constant coefficients and admitting a generalized drift, Int. J. Appl. Math. 2 (2000), no. 9, 1073–1110. MR 1757592
- Mounir Zili, Mixed sub-fractional Brownian motion, Random Oper. Stoch. Equ. 22 (2014), no. 3, 163–178. MR 3259127, DOI 10.1515/rose-2014-0017
- Mounir Zili, On the generalized fractional Brownian motion, Math. Models Comput. Simul. 10 (2018), no. 6, 759–769. MR 3882081, DOI 10.1134/s2070048219010113
- Mounir Zili and Eya Zougar, One-dimensional stochastic heat equation with discontinuous conductance, Appl. Anal. 98 (2019), no. 12, 2178–2191. MR 3988829, DOI 10.1080/00036811.2018.1451642
- M. Zili and E. Zougar, Exact variations for stochastic heat equations with piecewise constant coefficients and application to parameter estimation, Teor. Ĭmovīr. Mat. Stat. 100 (2019), 75–101 (English, with English, Russian and Ukrainian summaries); English transl., Theory Probab. Math. Statist. 100 (2020), 77–106. MR 3992994, DOI 10.1090/tpms/1099
- Mounir Zili and Eya Zougar, Spatial quadratic variations for the solution to a stochastic partial differential equation with elliptic divergence form operator, Mod. Stoch. Theory Appl. 6 (2019), no. 3, 345–375. MR 4028081, DOI 10.15559/19-vmsta139
References
- Z. Q. Chen and M. Zili, One-dimensional heat equation with discontinuous conductance, Science China Mathematics 58 (2015), no. 1, 97–108. MR 3296333
- C. El-Nouty and M. Zili, On the sub-mixed fractional Brownian motion, Appl. Math. J. Chinese Univ. 30 (2015), no. 1. MR 3319622
- P. Étoré, On random walk simulation of one-dimonsional diffusion processes with discontinuous coefficients, Electron. J. Probab. 11 (2006), 249–275. MR 2217816
- B. Gaveau, M. Okada, and T. Okada, Second order differential operators and Dirichlet integrals with singular coefficients, Tohoku Math. J. 39 (1987), 465–504. MR 917463
- C. Houdré and J. Villa, An example of infinite dimensional quasi-helix, Contemp. Math, Am. math. Soc. 336 (2003), 195–201. MR 2037165
- J. P. Kahane, Some random series of functions, Cambridge studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1985. MR 833073
- I. Kruk, F. Russo, and C. A. Tudor, Wiener integrals, Malliavin calculus and covariance measure structure, J. Funct. Anal. 249 (2007), no. 1, 92–142. MR 2338856
- Y. Mishura, K. Ralchenko, M. Zili, and E. Zougar, Fractional stochastic heat equation with piecewise constant coefficients, Stochastics and Dynamics 21 (2021), no. 01, 2150002. MR 4192903
- Y. Mishura and M. Zili, Stochastic analysis of mixed fractional gaussian processes, ISTE Press, Elsevier, 2018. MR 3793191
- J. W. Lamperti, Semi-stable stochastic processes, Trans. Amer. Math. Soc. 104 (1962), 62–78. MR 138128
- C. Tudor and M. Zili, Covariance measure and stochastic heat equation with fractional noise, Fract. Calc. Appl. Anal. 17 (2014), no. 3, 807–826. MR 3260307
- C. Tudor and M. Zili, SPDE with generalized drift and fractional-type noise, Nonlinear Differential Equations and Applications NoDEA 23 (2016), Article number: 53. MR 3549892
- C. A. Tudor, Analysis of variations for self-similar processes, Springer, 2013. MR 3112799
- M. Zili, Generalized fractional Brownian motion, Modern Stochastics: Theory and Applications 4 (2017), 15–24. MR 3633929
- M. Zili, On the mixed fractional Brownian motion, Journal of Mathematical Analysis and Applications 2006 (2006), Article ID 32435, 9 pages. MR 2253522
- M. Zili, Développement asymptotique en temps petits de la solution d’une équation aux dérivées partielles de type parabolique généralisée au sens des distributions-mesures, Note des Comptes Rendues de l’Académie des Sciences de Paris, Série I, vol. 321, 1995, pp. 1049–1052. MR 1360571
- M. Zili, Construction d’une solution fondamentale d’une équation aux dérivées partielles à coefficients constants par morceaux, Bull. Sci. Math. 123 (1999), 115–155. MR 1679034
- M. Zili, Fundamental solution of a parabolic partial differential equation with piecewise constant coefficients and admitting a generalized drift, International Journal of Applied Mathematics 2 (2000), no. 9, 1073–1110. MR 1757592
- M. Zili, Mixed Sub-Fractional Brownian Motion, Random Operators and Stochastic Equations 22 (2014), no. 3, 163–178. MR 3259127
- M. Zili, On the Generalized Fractional Brownian Motion, Mathematical Models and Computer Simulation 10 (2018), no. 6, 1–11. MR 3882081
- M. Zili and E. Zougar, One-dimensional stochastic heat equation with discontinuous conductance, Applicable Analysis: An International Journa 98 (2019), no. 12. MR 3988829
- M. Zili and E. Zougar, Exact variations for stochastic heat equations with piecewise constant coefficients and application to parameter estimation, Theory Probab. Math. Stat. 100 (2019), no. 1, 75–101. MR 3992994
- M. Zili and E. Zougar, Spatial quadratic variations for the solution to a stochastic partial differential equation with elliptic divergence form operator, Modern Stochastics: Theory and Applications 6 (2019), no. 3, 345–375. MR 4028081
Similar Articles
Retrieve articles in Theory of Probability and Mathematical Statistics
with MSC (2020):
60H15,
60G15,
60G17,
60G60,
35K10,
33B20
Retrieve articles in all journals
with MSC (2020):
60H15,
60G15,
60G17,
60G60,
35K10,
33B20
Additional Information
M. Zili
Affiliation:
Department of Mathematics, Faculty of sciences of Monastir, University of Monastir, Avenue de l’environnement, 5019 Monastir, Tunisia
Email:
Mounir.Zili@fsm.rnu.tn
E. Zougar
Affiliation:
Department of Mathematics, Faculty of sciences of Monastir, University of Monastir, Avenue de l’environnement, 5019 Monastir, Tunisia
Email:
Eya.Zougar@fsm.rnu.tn
Keywords:
Stochastic partial differential equations,
piecewise constant coefficients,
generalized fractional Brownian motion,
covariance measure structure,
Wiener integral
Received by editor(s):
January 31, 2021
Published electronically:
September 24, 2021
Article copyright:
© Copyright 2021
Taras Shevchenko National University of Kyiv