On local path behavior of Surgailis multifractional processes
Authors:
A. Ayache and F. Bouly
Journal:
Theor. Probability and Math. Statist. 106 (2022), 3-26
MSC (2020):
Primary 60G17, 60G22; Secondary 60H05
DOI:
https://doi.org/10.1090/tpms/1162
Published electronically:
May 16, 2022
MathSciNet review:
4438441
Full-text PDF
Abstract |
References |
Similar Articles |
Additional Information
Abstract:
Multifractional processes are stochastic processes with non-stationary increments whose local regularity and self-similarity properties change from point to point. The paradigmatic example of them is the classical Multifractional Brownian Motion (MBM) $\{{\mathcal {M}}(t)\}_{t\in \mathbb {R}}$ of Benassi, Jaffard, Lévy Véhel, Peltier and Roux, which was constructed in the mid 90’s just by replacing the constant Hurst parameter ${\mathcal {H}}$ of the well-known Fractional Brownian Motion by a deterministic function ${\mathcal {H}}(t)$ having some smoothness. More than 10 years later, using a different construction method, which basically relied on nonhomogeneous fractional integration and differentiation operators, Surgailis introduced two non-classical Gaussian multifactional processes denoted by $\{X(t)\}_{t\in \mathbb {R}}$ and $\{Y(t)\}_{t\in \mathbb {R}}$.
In our article, under a rather weak condition on the functional parameter ${\mathcal {H}}(\cdot )$, we show that $\{{\mathcal {M}}(t)\}_{t\in \mathbb {R}}$ and $\{X(t)\}_{t\in \mathbb {R}}$ as well as $\{{\mathcal {M}}(t)\}_{t\in \mathbb {R}}$ and $\{Y(t)\}_{t\in \mathbb {R}}$ only differ by a part which is locally more regular than $\{{\mathcal {M}}(t)\}_{t\in \mathbb {R}}$ itself. On one hand this result implies that the two non-classical multifractional processes $\{X(t)\}_{t\in \mathbb {R}}$ and $\{Y(t)\}_{t\in \mathbb {R}}$ have exactly the same local path behavior as that of the classical MBM $\{{\mathcal {M}}(t)\}_{t\in \mathbb {R}}$. On the other hand it allows to obtain from discrete realizations of $\{X(t)\}_{t\in \mathbb {R}}$ and $\{Y(t)\}_{t\in \mathbb {R}}$ strongly consistent statistical estimators for values of their functional parameter.
References
- Antoine Ayache, Continuous Gaussian multifractional processes with random pointwise Hölder regularity, J. Theoret. Probab. 26 (2013), no. 1, 72–93. MR 3023836, DOI 10.1007/s10959-012-0418-3
- Antoine Ayache, Multifractional stochastic fields, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2019. Wavelet strategies in multifractional frameworks. MR 3839281
- Antoine Ayache, Stéphane Jaffard, and Murad S. Taqqu, Wavelet construction of generalized multifractional processes, Rev. Mat. Iberoam. 23 (2007), no. 1, 327–370. MR 2351137, DOI 10.4171/RMI/497
- Antoine Ayache and Jacques Lévy Véhel, On the identification of the pointwise Hölder exponent of the generalized multifractional Brownian motion, Stochastic Process. Appl. 111 (2004), no. 1, 119–156. MR 2049572, DOI 10.1016/j.spa.2003.11.002
- Paul Balança, Some sample path properties of multifractional Brownian motion, Stochastic Process. Appl. 125 (2015), no. 10, 3823–3850. MR 3373305, DOI 10.1016/j.spa.2015.05.008
- Jean-Marc Bardet and Donatas Surgailis, Nonparametric estimation of the local Hurst function of multifractional Gaussian processes, Stochastic Process. Appl. 123 (2013), no. 3, 1004–1045. MR 3005013, DOI 10.1016/j.spa.2012.11.009
- Albert Benassi, Stéphane Jaffard, and Daniel Roux, Elliptic Gaussian random processes, Rev. Mat. Iberoamericana 13 (1997), no. 1, 19–90 (English, with English and French summaries). MR 1462329, DOI 10.4171/RMI/217
- Simeon M. Berman, Gaussian sample functions: Uniform dimension and Hölder conditions nowhere, Nagoya Math. J. 46 (1972), 63–86. MR 307320, DOI 10.1017/S002776300001477X
- Simeon M. Berman, Local nondeterminism and local times of Gaussian processes, Indiana Univ. Math. J. 23 (1973/74), 69–94. MR 317397, DOI 10.1512/iumj.1973.23.23006
- Erick Herbin, From $N$ parameter fractional Brownian motions to $N$ parameter multifractional Brownian motions, Rocky Mountain J. Math. 36 (2006), no. 4, 1249–1284. MR 2274895, DOI 10.1216/rmjm/1181069415
- Ioannis Karatzas and Steven E. Shreve, Brownian motion and stochastic calculus, Graduate Texts in Mathematics, vol. 113, Springer-Verlag, New York, 1988. MR 917065, DOI 10.1007/978-1-4684-0302-2
- Davar Khoshnevisan, Multiparameter processes, Springer Monographs in Mathematics, Springer-Verlag, New York, 2002. An introduction to random fields. MR 1914748, DOI 10.1007/b97363
- R. Peltier and J. Lévy Véhel, Multifractional Brownian motion: definition and preliminary results, Rapport de recherche INRIA (1995), no. 2645.
- Loren D. Pitt, Local times for Gaussian vector fields, Indiana Univ. Math. J. 27 (1978), no. 2, 309–330. MR 471055, DOI 10.1512/iumj.1978.27.27024
- Donatas Surgailis, Nonhomogeneous fractional integration and multifractional processes, Stochastic Process. Appl. 118 (2008), no. 2, 171–198. MR 2376898, DOI 10.1016/j.spa.2007.04.003
- Yimin Xiao, Hölder conditions for the local times and the Hausdorff measure of the level sets of Gaussian random fields, Probab. Theory Related Fields 109 (1997), no. 1, 129–157. MR 1469923, DOI 10.1007/s004400050128
References
- A. Ayache, Continuous Gaussian multifractional processes with random pointwise Hölder regularity, J. Theoret. Probab. 26 (2013), no. 1, 72–93. MR 3023836
- A. Ayache, Multifractional stochastic fields, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2019. MR 3839281
- A. Ayache, S. Jaffard, and M. S. Taqqu, Wavelet construction of generalized multifractional processes, Rev. Mat. Iberoam. 23 (2007), no. 1, 327–370. MR 2351137
- A. Ayache and J. Lévy Véhel, On the identification of the pointwise Hölder exponent of the generalized multifractional Brownian motion, Stochastic Process. Appl. 111 (2004), no. 1, 119–156. MR 2049572
- P. Balança, Some sample path properties of multifractional Brownian motion, Stochastic Process. Appl. 125 (2015), no. 10, 3823–3850. MR 3373305
- J.-M. Bardet and D. Surgailis, Nonparametric estimation of the local Hurst function of multifractional Gaussian processes, Stochastic Process. Appl. 123 (2013), no. 3, 1004–1045. MR 3005013
- A. Benassi, S. Jaffard, and D. Roux, Elliptic Gaussian random processes, Rev. Mat. Iberoamericana 13 (1997), no. 1, 19–90. MR 1462329
- S. M. Berman, Gaussian sample functions: Uniform dimension and Hölder conditions nowhere, Nagoya Math. J. 46 (1972), 63–86. MR 307320
- S. M. Berman, Local nondeterminism and local times of Gaussian processes, Indiana Univ. Math. J. 23 (1973/74), 69–94. MR 317397
- E. Herbin, From $N$ parameter fractional Brownian motions to $N$ parameter multifractional Brownian motions, Rocky Mountain J. Math. 36 (2006), no. 4, 1249–1284. MR 2274895
- I. Karatzas and S. E. Shreve, Brownian motion and stochastic calculus, Graduate Texts in Mathematics, vol. 113, Springer-Verlag, New York, 1987. MR 917065
- D. Khoshnevisan, Multiparameter processes, Springer Monographs in Mathematics, Springer-Verlag, New York, 2002. MR 1914748
- R. Peltier and J. Lévy Véhel, Multifractional Brownian motion: definition and preliminary results, Rapport de recherche INRIA (1995), no. 2645.
- L. D. Pitt, Local times for Gaussian vector fields, Indiana Univ. Math. J. 27 (1978), no. 2, 309–330. MR 471055
- D. Surgailis, Nonhomogeneous fractional integration and multifractional processes, Stochastic Process. Appl. 118 (2008), no. 2, 171–198. MR 2376898
- Y. Xiao, Hölder conditions for the local times and the Hausdorff measure of the level sets of Gaussian random fields, Probab. Theory Related Fields 109 (1997), no. 1, 129–157. MR 1469923
Similar Articles
Retrieve articles in Theory of Probability and Mathematical Statistics
with MSC (2020):
60G17,
60G22,
60H05
Retrieve articles in all journals
with MSC (2020):
60G17,
60G22,
60H05
Additional Information
A. Ayache
Affiliation:
Univ. Lille, CNRS, UMR 8524 - Laboratoire Paul Painlevé, F-59000 Lille, France
Email:
antoine.ayache@univ-lille.fr
F. Bouly
Affiliation:
Univ. Lille, CNRS, UMR 8524 - Laboratoire Paul Painlevé, F-59000 Lille, France
Email:
florent.bouly@univ-lille.fr
Keywords:
Gaussian processes,
variable Hurst parameter,
local and pointwise Hölder regularity,
local self-similarity
Received by editor(s):
June 25, 2021
Accepted for publication:
October 18, 2021
Published electronically:
May 16, 2022
Additional Notes:
This work has been partially supported by the Labex CEMPI (ANR-11-LABX-0007-01) and the GDR 3475 (Analyse Multifractale et Autosimilarité).
Article copyright:
© Copyright 2022
Taras Shevchenko National University of Kyiv