Random Lipschitz–Killing curvatures: Reduction Principles, Integration by Parts and Wiener chaos
Author:
A. Vidotto
Journal:
Theor. Probability and Math. Statist. 106 (2022), 157-175
MSC (2020):
Primary 60G60, 60D05; Secondary 35J05, 60G10, 60G15
DOI:
https://doi.org/10.1090/tpms/1170
Published electronically:
May 16, 2022
MathSciNet review:
4438449
Full-text PDF
Abstract |
References |
Similar Articles |
Additional Information
Abstract: In this survey we collect some recent results regarding the Lipschitz–Killing curvatures (LKCs) of the excursion sets of random eigenfunctions on the two-dimensional standard flat torus (arithmetic random waves) and on the two-dimensional unit sphere (random spherical harmonics). In particular, the aim of the present survey is to highlight the key role of integration by parts formulae in order to have an extremely neat expression for the random LKCs. Indeed, the main tool to study local geometric functionals of random waves on manifold is to exploit their Wiener chaos decomposition and show that (often), in the so-called high-energy limit, a single chaotic component dominates their behavior. Moreover, reduction principles show that the dominant Wiener chaotic component of LKCs of random waves’ excursion sets at threshold level $u\ne 0$ is proportional to the integral of $H_2(f)$, $f$ being the random field of interest and $H_2$ the second Hermite polynomial. This will be shown via integration by parts formulae.
References
- Robert J. Adler and Jonathan E. Taylor, Random fields and geometry, Springer Monographs in Mathematics, Springer, New York, 2007. MR 2319516
- Jean-Marc Azaïs and José R. León, CLT for crossings of random trigonometric polynomials, Electron. J. Probab. 18 (2013), no. 68, 17. MR 3084654, DOI 10.1214/EJP.v18-2403
- Dmitry Beliaev, Valentina Cammarota, and Igor Wigman, Two point function for critical points of a random plane wave, Int. Math. Res. Not. IMRN 9 (2019), 2661–2689. MR 3947635, DOI 10.1093/imrn/rnx197
- Jacques Benatar and Riccardo W. Maffucci, Random waves on $\Bbb T^3$: nodal area variance and lattice point correlations, Int. Math. Res. Not. IMRN 10 (2019), 3032–3075. MR 3952558, DOI 10.1093/imrn/rnx220
- P. Bérard, Volume des ensembles nodaux des fonctions propres du laplacien, Bony-Sjöstrand-Meyer seminar, 1984–1985, École Polytech., Palaiseau, 1985, pp. Exp. No. 14 , 10 (French). MR 819780
- M. V. Berry, Regular and irregular semiclassical wavefunctions, J. Phys. A 10 (1977), no. 12, 2083–2091. MR 489542, DOI 10.1088/0305-4470/10/12/016
- M. V. Berry, Statistics of nodal lines and points in chaotic quantum billiards: perimeter corrections, fluctuations, curvature, J. Phys. A 35 (2002), no. 13, 3025–3038. MR 1913853, DOI 10.1088/0305-4470/35/13/301
- Solesne Bourguin, Claudio Durastanti, Domenico Marinucci, and Giovanni Peccati, Gaussian approximation of nonlinear statistics on the sphere, J. Math. Anal. Appl. 436 (2016), no. 2, 1121–1148. MR 3447000, DOI 10.1016/j.jmaa.2015.12.036
- Jochen Brüning, Über Knoten von Eigenfunktionen des Laplace-Beltrami-Operators, Math. Z. 158 (1978), no. 1, 15–21 (German). MR 478247, DOI 10.1007/BF01214561
- V. Cammarota, D. Marinucci, and M. Rossi, Lipschitz–Killing curvatures for arithmetic random waves, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze (2022+, in press).
- V. Cammarota, D. Marinucci, and I. Wigman, Fluctuations of the Euler-Poincaré characteristic for random spherical harmonics, Proc. Amer. Math. Soc. 144 (2016), no. 11, 4759–4775. MR 3544528, DOI 10.1090/proc/13299
- V. Cammarota and I. Wigman, Fluctuations of the total number of critical points of random spherical harmonics, Stochastic Process. Appl. 127 (2017), no. 12, 3825–3869. MR 3718098, DOI 10.1016/j.spa.2017.02.013
- Valentina Cammarota, Nodal area distribution for arithmetic random waves, Trans. Amer. Math. Soc. 372 (2019), no. 5, 3539–3564. MR 3988618, DOI 10.1090/tran/7779
- Valentina Cammarota and Domenico Marinucci, A quantitative central limit theorem for the Euler-Poincaré characteristic of random spherical eigenfunctions, Ann. Probab. 46 (2018), no. 6, 3188–3228. MR 3857854, DOI 10.1214/17-AOP1245
- Valentina Cammarota, Domenico Marinucci, and Igor Wigman, On the distribution of the critical values of random spherical harmonics, J. Geom. Anal. 26 (2016), no. 4, 3252–3324. MR 3544960, DOI 10.1007/s12220-015-9668-5
- Simon Campese, Domenico Marinucci, and Maurizia Rossi, Approximate normality of high-energy hyperspherical eigenfunctions, J. Math. Anal. Appl. 461 (2018), no. 1, 500–522. MR 3759554, DOI 10.1016/j.jmaa.2017.11.051
- Shiu Yuen Cheng, Eigenfunctions and nodal sets, Comment. Math. Helv. 51 (1976), no. 1, 43–55. MR 397805, DOI 10.1007/BF02568142
- Federico Dalmao, Ivan Nourdin, Giovanni Peccati, and Maurizia Rossi, Phase singularities in complex arithmetic random waves, Electron. J. Probab. 24 (2019), Paper No. 71, 45. MR 3978221, DOI 10.1214/19-EJP321
- Harold Donnelly and Charles Fefferman, Nodal sets of eigenfunctions on Riemannian manifolds, Invent. Math. 93 (1988), no. 1, 161–183. MR 943927, DOI 10.1007/BF01393691
- Anne Estrade and José R. León, A central limit theorem for the Euler characteristic of a Gaussian excursion set, Ann. Probab. 44 (2016), no. 6, 3849–3878. MR 3572325, DOI 10.1214/15-AOP1062
- Laura Fainsilber, Pär Kurlberg, and Bernt Wennberg, Lattice points on circles and discrete velocity models for the Boltzmann equation, SIAM J. Math. Anal. 37 (2006), no. 6, 1903–1922. MR 2213399, DOI 10.1137/040618916
- A. V. Ivanov and N. N. Leonenko, Statistical analysis of random fields, Mathematics and its Applications (Soviet Series), vol. 28, Kluwer Academic Publishers Group, Dordrecht, 1989. With a preface by A. V. Skorokhod; Translated from the Russian by A. I. Kochubinskiĭ. MR 1009786, DOI 10.1007/978-94-009-1183-3
- Marie F. Kratz and José R. León, Level curves crossings and applications for Gaussian models, Extremes 13 (2010), no. 3, 315–351. MR 2670094, DOI 10.1007/s10687-009-0090-x
- Manjunath Krishnapur, Pär Kurlberg, and Igor Wigman, Nodal length fluctuations for arithmetic random waves, Ann. of Math. (2) 177 (2013), no. 2, 699–737. MR 3010810, DOI 10.4007/annals.2013.177.2.8
- Pär Kurlberg and Igor Wigman, On probability measures arising from lattice points on circles, Math. Ann. 367 (2017), no. 3-4, 1057–1098. MR 3623219, DOI 10.1007/s00208-016-1411-4
- Pär Kurlberg, Igor Wigman, and Nadav Yesha, The defect of toral Laplace eigenfunctions and arithmetic random waves, Nonlinearity 34 (2021), no. 9, 6651–6684. MR 4304493, DOI 10.1088/1361-6544/ac17c8
- E. Landau, Uber die einteilung der positiven zahlen nach vier klassen nach der mindestzahl der zu ihrer addition zusammensetzung erforderlichen quadrate, Archiv der Math. und Physik 13 (1908), no. 3, 305–312.
- A. Logunov, E. Malinnikova, N. Nadirashvili, and F. Nazarov, The sharp upper bound for the area of the nodal sets of Dirichlet Laplace eigenfunctions, Geom. Funct. Anal. 31 (2021), no. 5, 1219–1244. MR 4356702, DOI 10.1007/s00039-021-00581-5
- Alexander Logunov, Nodal sets of Laplace eigenfunctions: proof of Nadirashvili’s conjecture and of the lower bound in Yau’s conjecture, Ann. of Math. (2) 187 (2018), no. 1, 241–262. MR 3739232, DOI 10.4007/annals.2018.187.1.5
- Riccardo W. Maffucci, Nodal intersections for random waves against a segment on the 3-dimensional torus, J. Funct. Anal. 272 (2017), no. 12, 5218–5254. MR 3639527, DOI 10.1016/j.jfa.2017.02.011
- Riccardo W. Maffucci, Nodal intersections of random eigenfunctions against a segment on the 2-dimensional torus, Monatsh. Math. 183 (2017), no. 2, 311–328. MR 3641930, DOI 10.1007/s00605-016-1001-2
- Riccardo W. Maffucci, Nodal intersections for arithmetic random waves against a surface, Ann. Henri Poincaré 20 (2019), no. 11, 3651–3691. MR 4019200, DOI 10.1007/s00023-019-00831-1
- D. Marinucci and I. Wigman, The defect variance of random spherical harmonics, J. Phys. A 44 (2011), no. 35, 355206.
- Domenico Marinucci and Giovanni Peccati, Ergodicity and Gaussianity for spherical random fields, J. Math. Phys. 51 (2010), no. 4, 043301, 23. MR 2662485, DOI 10.1063/1.3329423
- Domenico Marinucci and Giovanni Peccati, Random fields on the sphere, London Mathematical Society Lecture Note Series, vol. 389, Cambridge University Press, Cambridge, 2011. Representation, limit theorems and cosmological applications. MR 2840154, DOI 10.1017/CBO9780511751677
- Domenico Marinucci, Giovanni Peccati, Maurizia Rossi, and Igor Wigman, Non-universality of nodal length distribution for arithmetic random waves, Geom. Funct. Anal. 26 (2016), no. 3, 926–960. MR 3540457, DOI 10.1007/s00039-016-0376-5
- Domenico Marinucci and Maurizia Rossi, Stein-Malliavin approximations for nonlinear functionals of random eigenfunctions on $\Bbb {S}^d$, J. Funct. Anal. 268 (2015), no. 8, 2379–2420. MR 3318653, DOI 10.1016/j.jfa.2015.02.004
- Domenico Marinucci, Maurizia Rossi, and Igor Wigman, The asymptotic equivalence of the sample trispectrum and the nodal length for random spherical harmonics, Ann. Inst. Henri Poincaré Probab. Stat. 56 (2020), no. 1, 374–390 (English, with English and French summaries). MR 4058991, DOI 10.1214/19-AIHP964
- Domenico Marinucci and Igor Wigman, On the area of excursion sets of spherical Gaussian eigenfunctions, J. Math. Phys. 52 (2011), no. 9, 093301, 21. MR 2867816, DOI 10.1063/1.3624746
- Domenico Marinucci and Igor Wigman, On nonlinear functionals of random spherical eigenfunctions, Comm. Math. Phys. 327 (2014), no. 3, 849–872. MR 3192051, DOI 10.1007/s00220-014-1939-7
- F. Nazarov and M. Sodin, Asymptotic laws for the spatial distribution and the number of connected components of zero sets of Gaussian random functions, Zh. Mat. Fiz. Anal. Geom. 12 (2016), no. 3, 205–278. MR 3522141, DOI 10.15407/mag12.03.205
- Massimo Notarnicola, Fluctuations of nodal sets on the 3-torus and general cancellation phenomena, ALEA Lat. Am. J. Probab. Math. Stat. 18 (2021), no. 2, 1127–1194. MR 4282185, DOI 10.30757/alea.v18-43
- Ivan Nourdin and Giovanni Peccati, Stein’s method on Wiener chaos, Probab. Theory Related Fields 145 (2009), no. 1-2, 75–118. MR 2520122, DOI 10.1007/s00440-008-0162-x
- Ivan Nourdin and Giovanni Peccati, Normal approximations with Malliavin calculus, Cambridge Tracts in Mathematics, vol. 192, Cambridge University Press, Cambridge, 2012. From Stein’s method to universality. MR 2962301, DOI 10.1017/CBO9781139084659
- Ivan Nourdin, Giovanni Peccati, and Maurizia Rossi, Nodal statistics of planar random waves, Comm. Math. Phys. 369 (2019), no. 1, 99–151. MR 3959555, DOI 10.1007/s00220-019-03432-5
- David Nualart and Giovanni Peccati, Central limit theorems for sequences of multiple stochastic integrals, Ann. Probab. 33 (2005), no. 1, 177–193. MR 2118863, DOI 10.1214/009117904000000621
- Ferenc Oravecz, Zeév Rudnick, and Igor Wigman, The Leray measure of nodal sets for random eigenfunctions on the torus, Ann. Inst. Fourier (Grenoble) 58 (2008), no. 1, 299–335 (English, with English and French summaries). MR 2401223, DOI 10.5802/aif.2351
- Giovanni Peccati and Maurizia Rossi, Quantitative limit theorems for local functionals of arithmetic random waves, Computation and combinatorics in dynamics, stochastics and control, Abel Symp., vol. 13, Springer, Cham, 2018, pp. 659–689. MR 3967400
- Giovanni Peccati and Anna Vidotto, Gaussian random measures generated by Berry’s nodal sets, J. Stat. Phys. 178 (2020), no. 4, 996–1027. MR 4064212, DOI 10.1007/s10955-019-02477-z
- M. Rossi, The geometry of spherical random fields, Ph.D.-Thesis University of Rome Tor Vergata, 2015.
- Maurizia Rossi, The defect of random hyperspherical harmonics, J. Theoret. Probab. 32 (2019), no. 4, 2135–2165. MR 4020703, DOI 10.1007/s10959-018-0849-6
- Maurizia Rossi, Random nodal lengths and Wiener chaos, Probabilistic methods in geometry, topology and spectral theory, Contemp. Math., vol. 739, Amer. Math. Soc., [Providence], RI, [2019] ©2019, pp. 155–169. MR 4033918, DOI 10.1090/conm/739/14898
- Maurizia Rossi and Igor Wigman, Asymptotic distribution of nodal intersections for arithmetic random waves, Nonlinearity 31 (2018), no. 10, 4472–4516. MR 3846437, DOI 10.1088/1361-6544/aaced4
- Zeév Rudnick and Igor Wigman, On the volume of nodal sets for eigenfunctions of the Laplacian on the torus, Ann. Henri Poincaré 9 (2008), no. 1, 109–130. MR 2389892, DOI 10.1007/s00023-007-0352-6
- Zeév Rudnick, Igor Wigman, and Nadav Yesha, Nodal intersections for random waves on the 3-dimensional torus, Ann. Inst. Fourier (Grenoble) 66 (2016), no. 6, 2455–2484 (English, with English and French summaries). MR 3580177, DOI 10.5802/aif.3068
- Peter Sarnak and Igor Wigman, Topologies of nodal sets of random band limited functions, Advances in the theory of automorphic forms and their $L$-functions, Contemp. Math., vol. 664, Amer. Math. Soc., Providence, RI, 2016, pp. 351–365. MR 3502990, DOI 10.1090/conm/664/13040
- Gábor Szegő, Orthogonal polynomials, 4th ed., American Mathematical Society Colloquium Publications, Vol. XXIII, American Mathematical Society, Providence, R.I., 1975. MR 0372517
- Murad S. Taqqu, Weak convergence to fractional Brownian motion and to the Rosenblatt process, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 31 (1974/75), 287–302. MR 400329, DOI 10.1007/BF00532868
- Anna Paola Todino, A quantitative central limit theorem for the excursion area of random spherical harmonics over subdomains of $\Bbb S^2$, J. Math. Phys. 60 (2019), no. 2, 023505, 33. MR 3916834, DOI 10.1063/1.5048976
- Anna Paola Todino, Nodal lengths in shrinking domains for random eigenfunctions on $S^2$, Bernoulli 26 (2020), no. 4, 3081–3110. MR 4140538, DOI 10.3150/20-BEJ1216
- Anna Vidotto, A note on the reduction principle for the nodal length of planar random waves, Statist. Probab. Lett. 174 (2021), Paper No. 109090, 5. MR 4237481, DOI 10.1016/j.spl.2021.109090
- Igor Wigman, Fluctuations of the nodal length of random spherical harmonics, Comm. Math. Phys. 298 (2010), no. 3, 787–831. MR 2670928, DOI 10.1007/s00220-010-1078-8
- Anthony Bak, $K$-theory of forms, Annals of Mathematics Studies, No. 98, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1981. MR 632404
- Steve Zelditch, Real and complex zeros of Riemannian random waves, Spectral analysis in geometry and number theory, Contemp. Math., vol. 484, Amer. Math. Soc., Providence, RI, 2009, pp. 321–342. MR 1500155, DOI 10.1090/conm/484/09482
References
- R. J. Adler and J. E. Taylor, Random fields and geometry, Springer Monographs in Mathematics, Springer, New York, 2007. MR 2319516
- J.-M. Azaïs and J. R. León, CLT for crossings of random trigonometric polynomials, Electron. J. Probab. 18 (2013), no. 68, 17. MR 3084654
- D. Beliaev, V. Cammarota, and I. Wigman, Two point function for critical points of a random plane wave, Int. Math. Res. Not. IMRN (2019), no. 9, 2661–2689. MR 3947635
- J. Benatar and R. W. Maffucci, Random waves on $\mathbb T^3$: nodal area variance and lattice point correlations, Int. Math. Res. Not. IMRN (2019), no. 10, 3032–3075. MR 3952558
- P. Bérard, Volume des ensembles nodaux des fonctions propres du laplacien, Bony-Sjöstrand-Meyer seminar, 1984–1985, École Polytech., Palaiseau, 1985, Exp. No. 14, 10. MR 819780
- M. V. Berry, Regular and irregular semiclassical wavefunctions, J. Phys. A 10 (1977), no. 12, 2083–2091. MR 489542
- M. V. Berry, Statistics of nodal lines and points in chaotic quantum billiards: perimeter corrections, fluctuations, curvature, J. Phys. A 35 (2002), no. 13, 3025–3038. MR 1913853
- S. Bourguin, C. Durastanti, D. Marinucci, and G. Peccati, Gaussian approximation of nonlinear statistics on the sphere, J. Math. Anal. Appl. 436 (2016), no. 2, 1121–1148. MR 3447000
- J. Brüning, Über Knoten von Eigenfunktionen des Laplace-Beltrami-Operators, Math. Z. 158 (1978), no. 1, 15–21. MR 478247
- V. Cammarota, D. Marinucci, and M. Rossi, Lipschitz–Killing curvatures for arithmetic random waves, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze (2022+, in press).
- V. Cammarota, D. Marinucci, and I. Wigman, Fluctuations of the Euler–Poincaré characteristic for random spherical harmonics, Proc. Amer. Math. Soc. 144 (2016), no. 11, 4759–4775. MR 3544528
- V. Cammarota and I. Wigman, Fluctuations of the total number of critical points of random spherical harmonics, Stochastic Process. Appl. 127 (2017), no. 12, 3825–3869. MR 3718098
- V. Cammarota, Nodal area distribution for arithmetic random waves, Trans. Amer. Math. Soc. 372 (2019), no. 5, 3539–3564. MR 3988618
- V. Cammarota and D. Marinucci, A quantitative central limit theorem for the Euler-Poincaré characteristic of random spherical eigenfunctions, Ann. Probab. 46 (2018), no. 6, 3188–3228. MR 3857854
- V. Cammarota, D. Marinucci, and I. Wigman, On the distribution of the critical values of random spherical harmonics, J. Geom. Anal. 26 (2016), no. 4, 3252–3324. MR 3544960
- S. Campese, D. Marinucci, and M. Rossi, Approximate normality of high-energy hyperspherical eigenfunctions, J. Math. Anal. Appl. 461 (2018), no. 1, 500–522. MR 3759554
- S. Y. Cheng, Eigenfunctions and nodal sets, Comment. Math. Helv. 51 (1976), no. 1, 43–55. MR 397805
- F. Dalmao, I. Nourdin, G. Peccati, and M. Rossi, Phase singularities in complex arithmetic random waves, Electron. J. Probab. 24 (2019), Paper No. 71, 45. MR 3978221
- H. Donnelly and C. Fefferman, Nodal sets of eigenfunctions on Riemannian manifolds, Invent. Math. 93 (1988), no. 1, 161–183. MR 943927
- A. Estrade and J. R. León, A central limit theorem for the Euler characteristic of a Gaussian excursion set, Ann. Probab. 44 (2016), no. 6, 3849–3878. MR 3572325
- L. Fainsilber, P. Kurlberg, and B. Wennberg, Lattice points on circles and discrete velocity models for the Boltzmann equation, SIAM J. Math. Anal. 37 (2006), no. 6, 1903–1922. MR 2213399
- A. V. Ivanov and N. N. Leonenko, Statistical analysis of random fields, Mathematics and its Applications (Soviet Series), vol. 28, Kluwer Academic Publishers Group, Dordrecht, 1989. MR 1009786
- M. F. Kratz and J. R. León, Level curves crossings and applications for Gaussian models, Extremes 13 (2010), no. 3, 315–351. MR 2670094
- M. Krishnapur, P. Kurlberg, and Igor Wigman, Nodal length fluctuations for arithmetic random waves, Ann. of Math. (2) 177 (2013), no. 2, 699–737. MR 3010810
- P. Kurlberg and I. Wigman, On probability measures arising from lattice points on circles, Math. Ann. 367 (2017), no. 3-4, 1057–1098. MR 3623219
- P. Kurlberg, I. Wigman, and N. Yesha, The defect of toral Laplace eigenfunctions and arithmetic random waves, Nonlinearity 34 (2021), no. 9, 6651–6684. MR 4304493
- E. Landau, Uber die einteilung der positiven zahlen nach vier klassen nach der mindestzahl der zu ihrer addition zusammensetzung erforderlichen quadrate, Archiv der Math. und Physik 13 (1908), no. 3, 305–312.
- A. Logunov, E. Malinnikova, N. Nadirashvili, and F. Nazarov, The sharp upper bound for the area of the nodal sets of Dirichlet Laplace eigenfunctions, Geom. Funct. Anal. 31 (2021), no. 5, 1219–1244. MR 4356702
- A. Logunov, Nodal sets of Laplace eigenfunctions: proof of Nadirashvili’s conjecture and of the lower bound in Yau’s conjecture, Ann. of Math. (2) 187 (2018), no. 1, 241–262. MR 3739232
- R. W. Maffucci, Nodal intersections for random waves against a segment on the 3-dimensional torus, J. Funct. Anal. 272 (2017), no. 12, 5218–5254. MR 3639527
- R. W. Maffucci, Nodal intersections of random eigenfunctions against a segment on the 2-dimensional torus, Monatsh. Math. 183 (2017), no. 2, 311–328. MR 3641930
- R. W. Maffucci, Nodal intersections for arithmetic random waves against a surface, Ann. Henri Poincaré 20 (2019), no. 11, 3651–3691. MR 4019200
- D. Marinucci and I. Wigman, The defect variance of random spherical harmonics, J. Phys. A 44 (2011), no. 35, 355206.
- D. Marinucci and G. Peccati, Ergodicity and Gaussianity for spherical random fields, J. Math. Phys. 51 (2010), no. 4, 043301, 23. MR 2662485
- D. Marinucci and G. Peccati, Random fields on the sphere, London Mathematical Society Lecture Note Series, vol. 389, Cambridge University Press, Cambridge, 2011. MR 2840154
- D. Marinucci, G. Peccati, M. Rossi, and I. Wigman, Non-universality of nodal length distribution for arithmetic random waves, Geom. Funct. Anal. 26 (2016), no. 3, 926–960. MR 3540457
- D. Marinucci and M. Rossi, Stein–Malliavin approximations for nonlinear functionals of random eigenfunctions on $\mathbb {S}^d$, J. Funct. Anal. 268 (2015), no. 8, 2379–2420. MR 3318653
- D. Marinucci, M. Rossi, and I. Wigman, The asymptotic equivalence of the sample trispectrum and the nodal length for random spherical harmonics, Ann. Inst. Henri Poincaré Probab. Stat. 56 (2020), no. 1, 374–390. MR 4058991
- D. Marinucci and I. Wigman, On the area of excursion sets of spherical Gaussian eigenfunctions, J. Math. Phys. 52 (2011), no. 9, 093301, 21. MR 2867816
- D. Marinucci and I. Wigman, On nonlinear functionals of random spherical eigenfunctions, Comm. Math. Phys. 327 (2014), no. 3, 849–872. MR 3192051
- F. Nazarov and M. Sodin, Asymptotic laws for the spatial distribution and the number of connected components of zero sets of Gaussian random functions, Zh. Mat. Fiz. Anal. Geom. 12 (2016), no. 3, 205–278. MR 3522141
- M. Notarnicola, Fluctuations of nodal sets on the 3-torus and general cancellation phenomena, ALEA Lat. Am. J. Probab. Math. Stat. 18 (2021), no. 2, 1127–1194. MR 4282185
- I. Nourdin and G. Peccati, Stein’s method on Wiener chaos, Probab. Theory Related Fields 145 (2009), no. 1–2, 75–118. MR 2520122
- I. Nourdin and G. Peccati, Normal approximations with Malliavin calculus, Cambridge Tracts in Mathematics, vol. 192, Cambridge University Press, Cambridge, 2012. MR 2962301
- I. Nourdin, G. Peccati, and M. Rossi, Nodal statistics of planar random waves, Comm. Math. Phys. 369 (2019), no. 1, 99–151. MR 3959555
- D. Nualart and G. Peccati, Central limit theorems for sequences of multiple stochastic integrals, Ann. Probab. 33 (2005), no. 1, 177–193. MR 2118863
- F. Oravecz, Z. Rudnick, and I. Wigman, The Leray measure of nodal sets for random eigenfunctions on the torus, Ann. Inst. Fourier (Grenoble) 58 (2008), no. 1, 299–335. MR 2401223
- G. Peccati and M. Rossi, Quantitative limit theorems for local functionals of arithmetic random waves, Computation and combinatorics in dynamics, stochastics and control, Abel Symp., vol. 13, Springer, Cham, 2018, pp. 659–689. MR 3967400
- G. Peccati and A. Vidotto, Gaussian random measures generated by Berry’s nodal sets, J. Stat. Phys. 178 (2020), no. 4, 996–1027. MR 4064212
- M. Rossi, The geometry of spherical random fields, Ph.D.-Thesis University of Rome Tor Vergata, 2015.
- M. Rossi, The defect of random hyperspherical harmonics, J. Theoret. Probab. 32 (2019), no. 4, 2135–2165. MR 4020703
- M. Rossi, Random nodal lengths and Wiener chaos, Probabilistic methods in geometry, topology and spectral theory, Contemp. Math., vol. 739, Amer. Math. Soc., [Providence], RI, [2019] ©2019, pp. 155–169. MR 4033918
- M. Rossi and I. Wigman, Asymptotic distribution of nodal intersections for arithmetic random waves, Nonlinearity 31 (2018), no. 10, 4472–4516. MR 3846437
- Z. Rudnick and I. Wigman, On the volume of nodal sets for eigenfunctions of the Laplacian on the torus, Ann. Henri Poincaré 9 (2008), no. 1, 109–130. MR 2389892
- Z. Rudnick, I. Wigman, and N. Yesha, Nodal intersections for random waves on the 3-dimensional torus, Ann. Inst. Fourier (Grenoble) 66 (2016), no. 6, 2455–2484. MR 3580177
- P. Sarnak and I. Wigman, Topologies of nodal sets of random band limited functions, Advances in the theory of automorphic forms and their $L$-functions, Contemp. Math., vol. 664, Amer. Math. Soc., Providence, RI, 2016, pp. 351–365. MR 3502990
- G. Szego, Orthogonal polynomials, fourth ed., American Mathematical Society Colloquium Publications, Vol. XXIII, American Mathematical Society, Providence, R.I., 1975. MR 0372517
- M. S. Taqqu, Weak convergence to fractional Brownian motion and to the Rosenblatt process, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 31 (1974/75), 287–302. MR 400329
- A. P. Todino, A quantitative central limit theorem for the excursion area of random spherical harmonics over subdomains of $\mathbb S^2$, J. Math. Phys. 60 (2019), no. 2, 023505, 33. MR 3916834
- A. P. Todino, Nodal lengths in shrinking domains for random eigenfunctions on $S^2$, Bernoulli 26 (2020), no. 4, 3081–3110. MR 4140538
- A. Vidotto, A note on the reduction principle for the nodal length of planar random waves, Statist. Probab. Lett. 174 (2021), Paper No. 109090, 5. MR 4237481
- I. Wigman, Fluctuations of the nodal length of random spherical harmonics, Comm. Math. Phys. 298 (2010), no. 3, 787–831. MR 2670928
- S. T. Yau (ed.), Seminar on Differential Geometry, Annals of Mathematics Studies, No. 102, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1982. MR 632404
- S. Zelditch, Real and complex zeros of Riemannian random waves, Spectral analysis in geometry and number theory, Contemp. Math., vol. 484, Amer. Math. Soc., Providence, RI, 2009, pp. 321–342. MR 1500155
Similar Articles
Retrieve articles in Theory of Probability and Mathematical Statistics
with MSC (2020):
60G60,
60D05,
35J05,
60G10,
60G15
Retrieve articles in all journals
with MSC (2020):
60G60,
60D05,
35J05,
60G10,
60G15
Additional Information
A. Vidotto
Affiliation:
Dipartimento di Matematica e Applicazioni, Università degli Studi di Napoli Federico II
Email:
anna.vidotto@unina.it
Keywords:
Lipschitz-Killing curvatures,
random eigenfunctions,
Wiener chaos expansion,
reduction principles
Received by editor(s):
July 25, 2021
Accepted for publication:
October 18, 2021
Published electronically:
May 16, 2022
Article copyright:
© Copyright 2022
Taras Shevchenko National University of Kyiv