The trimmed mean in non-parametric regression function estimation
Authors:
Subhra Sankar Dhar, Prashant Jha and Prabrisha Rakshit
Journal:
Theor. Probability and Math. Statist. 107 (2022), 133-158
MSC (2020):
Primary 62G08; Secondary 62G05
DOI:
https://doi.org/10.1090/tpms/1174
Published electronically:
November 8, 2022
Full-text PDF
Abstract |
References |
Similar Articles |
Additional Information
Abstract: This article studies a trimmed version of the NadarayaâWatson estimator for the unknown non-parametric regression function. The characterization of the estimator through the minimization problem is established, and its pointwise asymptotic distribution is derived. The robustness property of the proposed estimator is also studied through the breakdown point. Moreover, similar to the trimmed mean in the location model, and for a wide range of trimming proportion, the proposed estimator possesses good efficiency and high breakdown point, which is out of the ordinary properties for any estimator. Furthermore, the usefulness of the proposed estimator is shown for two benchmark real data and various simulated data.
References
- Ibrahim M. Almanjahie, Mohammed Kadi Attouch, Omar Fetitah, and Hayat Louhab, Robust kernel regression estimator of the scale parameter for functional ergodic data with applications, Chil. J. Stat. 11 (2020), no. 2, 73â93. MR 4206207
- Mohammed Attouch, Ali Laksaci, and Elias Ould-SaĂŻd, Asymptotic distribution of robust estimator for functional nonparametric models, Comm. Statist. Theory Methods 38 (2009), no. 8-10, 1317â1335. MR 2538143, DOI 10.1080/03610920802422597
- Mohammed Attouch, Ali Laksaci, and Elias Ould SaĂŻd, Asymptotic normality of a robust estimator of the regression function for functional time series data, J. Korean Statist. Soc. 39 (2010), no. 4, 489â500. MR 2780220, DOI 10.1016/j.jkss.2009.10.007
- Nadjia Azzedine, Ali Laksaci, and Elias Ould-SaĂŻd, On robust nonparametric regression estimation for a functional regressor, Statist. Probab. Lett. 78 (2008), no. 18, 3216â3221. MR 2479480, DOI 10.1016/j.spl.2008.06.018
- Peter J. Bickel, On some robust estimates of location, Ann. Math. Statist. 36 (1965), 847â858. MR 177484, DOI 10.1214/aoms/1177700058
- Patrick Billingsley, Probability and measure, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, New York-Chichester-Brisbane, 1979. MR 534323
- Graciela Boente and Ricardo Fraiman, Robust nonparametric regression estimation for dependent observations, Ann. Statist. 17 (1989), no. 3, 1242â1256. MR 1015148, DOI 10.1214/aos/1176347266
- Graciela Boente and Ricardo Fraiman, Asymptotic distribution of robust estimators for nonparametric models from mixing processes, Ann. Statist. 18 (1990), no. 2, 891â906. MR 1056342, DOI 10.1214/aos/1176347631
- Graciela Boente and Ricardo Fraiman, Local $L$-estimators for nonparametric regression under dependence, J. Nonparametr. Statist. 4 (1994), no. 1, 91â101. MR 1366366, DOI 10.1080/10485259408832603
- Graciela Boente and Alejandra Vahnovan, Strong convergence of robust equivariant nonparametric functional regression estimators, Statist. Probab. Lett. 100 (2015), 1â11. MR 3324068, DOI 10.1016/j.spl.2015.01.028
- Graciela Boente and Alejandra Vahnovan, Robust estimators in semi-functional partial linear regression models, J. Multivariate Anal. 154 (2017), 59â84. MR 3588557, DOI 10.1016/j.jmva.2016.10.005
- Pavel ÄĂĆŸek, Generalized method of trimmed moments, J. Statist. Plann. Inference 171 (2016), 63â78. MR 3458068, DOI 10.1016/j.jspi.2015.11.004
- P. ÄĂĆŸek, J. Tamine, and W. HĂ€rdle, Smoothed $L$-estimation of regression function, Comput. Statist. Data Anal. 52 (2008), no. 12, 5154â5162. MR 2526582, DOI 10.1016/j.csda.2008.05.024
- R. M. Clark, Non-parametric estimation of a smooth regression function, J. Roy. Statist. Soc. Ser. B 39 (1977), no. 1, 107â113. MR 494661, DOI 10.1111/j.2517-6161.1977.tb01611.x
- GĂ©rard Collomb and Wolfgang HĂ€rdle, Strong uniform convergence rates in robust nonparametric time series analysis and prediction: kernel regression estimation from dependent observations, Stochastic Process. Appl. 23 (1986), no. 1, 77â89. MR 866288, DOI 10.1016/0304-4149(86)90017-7
- C. Crambes, L. Delsol, and A. Laksaci, Robust nonparametric estimation for functional data, J. Nonparametr. Stat. 20 (2008), no. 7, 573â598. MR 2454613, DOI 10.1080/10485250802331524
- Luc Devroye, Laws of the iterated logarithm for order statistics of uniform spacings, Ann. Probab. 9 (1981), no. 5, 860â867. MR 628878
- Subhra Sankar Dhar, Trimmed mean isotonic regression, Scand. J. Stat. 43 (2016), no. 1, 202â212. MR 3467002, DOI 10.1111/sjos.12173
- Subhra Sankar Dhar and Probal Chaudhuri, A comparison of robust estimators based on two types of trimming, AStA Adv. Stat. Anal. 93 (2009), no. 2, 151â158. MR 2511592, DOI 10.1007/s10182-008-0099-5
- Subhra Sankar Dhar and Probal Chaudhuri, On the derivatives of the trimmed mean, Statist. Sinica 22 (2012), no. 2, 655â679. MR 2954356, DOI 10.5705/ss.2010.155
- J. Fan and I. Gijbels, Local polynomial modelling and its applications, Monographs on Statistics and Applied Probability, vol. 66, Chapman & Hall, London, 1996. MR 1383587
- William Feller, An introduction to probability theory and its applications. Vol. I, 3rd ed., John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0228020
- Luis Angel GarcĂa-Escudero, Alfonso Gordaliza, and Carlos MatrĂĄn, Trimming tools in exploratory data analysis, J. Comput. Graph. Statist. 12 (2003), no. 2, 434â449. MR 1983163, DOI 10.1198/1061860031806
- Luis A. GarcĂa-Escudero, Alfonso Gordaliza, Carlos MatrĂĄn, and Agustin Mayo-Iscar, A general trimming approach to robust cluster analysis, Ann. Statist. 36 (2008), no. 3, 1324â1345. MR 2418659, DOI 10.1214/07-AOS515
- Theo Gasser and Hans-Georg MĂŒller, Kernel estimation of regression functions, Smoothing techniques for curve estimation (Proc. Workshop, Heidelberg, 1979) Lecture Notes in Math., vol. 757, Springer, Berlin, 1979, pp. 23â68. MR 564251
- Robert V. Hogg, Some observations on robust estimation, J. Amer. Statist. Assoc. 62 (1967), 1179â1186. MR 221630, DOI 10.1080/01621459.1967.10500924
- Peter J. Huber, Robust statistics, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1981. MR 606374, DOI 10.1002/0471725250
- Louis A. Jaeckel, Some flexible estimates of location, Ann. Math. Statist. 42 (1971), 1540â1552. MR 350951, DOI 10.1214/aoms/1177693152
- Jana JureÄkovĂĄ, Roger Koenker, and A. H. Welsh, Adaptive choice of trimming proportions, Ann. Inst. Statist. Math. 46 (1994), no. 4, 737â755. MR 1325993, DOI 10.1007/BF00773479
- Jana JureÄkovĂĄ and BohumĂr ProchĂĄzka, Regression quantiles and trimmed least squares estimator in nonlinear regression model, J. Nonparametr. Statist. 3 (1994), no. 3-4, 201â222. MR 1291545, DOI 10.1080/10485259408832583
- H. Kaya, Pm. TĂŒfekci, and F. S. GĂŒrgen, Local and global learning methods for predicting power of a combined gas & steam turbine, Proceedings of the International Conference on Emerging Trends in Computer and Electronics Engineering ICETCEE, 2012, pp. 13â18.
- Ă. A. Nadaraja, On non-parametric estimates of density functions and regression, Teor. Verojatnost. i Primenen. 10 (1965), 199â203 (Russian, with English summary). MR 0172400
- Ch.-H. Park, S. Lee, and J.-H. Chang, Robust closed-form time-of-arrival source localization based on $\alpha$-trimmed mean and HodgesâLehmann estimator under NLOS environments, Signal Processing 111 (2015), 113â123.
- M. B. Priestley and M. T. Chao, Non-parametric function fitting, J. Roy. Statist. Soc. Ser. B 34 (1972), 385â392. MR 331616, DOI 10.1111/j.2517-6161.1972.tb00916.x
- Peter J. Rousseeuw and Annick M. Leroy, Robust regression and outlier detection, Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics, John Wiley & Sons, Inc., New York, 1987. MR 914792, DOI 10.1002/0471725382
- Robert J. Serfling, Approximation theorems of mathematical statistics, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1980. MR 595165, DOI 10.1002/9780470316481
- B. W. Silverman, Density estimation for statistics and data analysis, Monographs on Statistics and Applied Probability, Chapman & Hall, London, 1986. MR 848134, DOI 10.1007/978-1-4899-3324-9
- Stephen M. Stigler, The asymptotic distribution of the trimmed mean, Ann. Statist. 1 (1973), 472â477. MR 359134
- A. Tsanas, M. A. Little, P. E. McSharry, and L. O. Ramig, Accurate telemonitoring of Parkinsonâs disease progression by noninvasive speech tests, IEEE Transactions on Biomedical Engineering 57 (2009), no. 4, 884â893.
- P. TĂŒfekci, Prediction of full load electrical power output of a base load operated combined cycle power plant using machine learning methods, International Journal of Electrical Power & Energy Systems 60 (2014), 126â140.
- Wei Wang, Nan Lin, and Xiang Tang, Robust two-sample test of high-dimensional mean vectors under dependence, J. Multivariate Anal. 169 (2019), 312â329. MR 3875602, DOI 10.1016/j.jmva.2018.09.013
- Geoffrey S. Watson, Smooth regression analysis, SankhyÄ Ser. A 26 (1964), 359â372. MR 185765
- A. H. Welsh, The trimmed mean in the linear model, Ann. Statist. 15 (1987), no. 1, 20â45. With discussion by P. J. de Jongh, T. de Wet and Roger Koenker and a reply by Welsh. MR 885722, DOI 10.1214/aos/1176350248
References
- I. M. Almanjahie, M. K. Attouch, O. Fetitah, and H. Louhab, Robust kernel regression estimator of the scale parameter for functional ergodic data with applications, Chil. J. Stat. 11 (2020), no. 2, 73â93. MR 4206207
- M. Attouch, A. Laksaci, and S. E. Ould, Asymptotic distribution of robust estimator for functional nonparametric models, Comm. Statist. Theory Methods 38 (2009), no. 8-10, 1317â1335. MR 2538143
- M. Attouch, A. Laksaci, and S. E. Ould, Asymptotic normality of a robust estimator of the regression function for functional time series data, J. Korean Statist. Soc. 39 (2010), no. 4, 489â500. MR 2780220
- N. Azzedine, A. Laksaci, and S. E. Ould, On robust nonparametric regression estimation for a functional regressor, Statist. Probab. Lett. 78 (2008), no. 18, 3216â3221. MR 2479480
- P. J. Bickel, On some robust estimates of location, Ann. Math. Statist. 36 (1965), 847â858. MR 177484
- P. Billingsley, Probability and measure, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, New York-Chichester-Brisbane, 1979. MR 534323
- G. Boente and R. Fraimen, Robust nonparametric regression estimation for dependent observations, Ann. Statist. 17 (1989), no. 3, 1242â1256. MR 1015148
- G. Boente and R. Fraimen, Asymptotic distribution of robust estimators for nonparametric models from mixing processes, Ann. Statist. 18 (1990), no. 2, 891â906. MR 1056342
- G. Boente and R. Fraimen, Local $L$-estimators for nonparametric regression under dependence, J. Nonparametr. Statist. 4 (1994), no. 1, 91â101. MR 1366366
- G. Boente and A. Vahnovan, Strong convergence of robust equivariant nonparametric functional regression estimators, Statist. Probab. Lett. 100 (2015), 1â11. MR 3324068
- G. Boente and A. Vahnovan, Robust estimators in semi-functional partial linear regression models, J. Multivariate Anal. 154 (2017), 59â84. MR 3588557
- P. ÄĂĆŸek, Generalized method of trimmed moments, J. Statist. Plann. Inference 171 (2016), 63â78. MR 3458068
- P. Cizek, J. Tamine, and W. Hardle, Smoothed $L$-estimation of regression function, Comput. Statist. Data Anal. 52 (2008), no. 12, 5154â5162. MR 2526582
- R. M. Clark, Non-parametric estimation of a smooth regression function, J. Roy. Statist. Soc. Ser. B 39 (1977), no. 1, 107â113. MR 494661
- G. Collomb and W. Hardle, Strong uniform convergence rates in robust nonparametric time series analysis and prediction: kernel regression estimation from dependent observations, Stochastic Process. Appl. 23 (1986), no. 1, 77â89. MR 866288
- C. Crambes, L. Delsol, and A. Laksaci, Robust nonparametric estimation for functional data, J. Nonparametr. Stat. 20 (2008), no. 7, 573â598. MR 2454613
- L. Devroye, Laws of the iterated logarithm for order statistics of uniform spacings, Ann. Probab. 9 (1981), no. 5, 860â867. MR 628878
- S. S. Dhar, Trimmed mean isotonic regression, Scand. J. Stat. 43 (2016), no. 1, 202â212. MR 3467002
- S. S. Dhar and P. Chaudhuri, A comparison of robust estimators based on two types of trimming, AStA Adv. Stat. Anal. 93 (2009), no. 2, 151â158. MR 2511592
- S. S. Dhar and P. Chaudhuri, On the derivatives of the trimmed mean, Statist. Sinica 22 (2012), no. 2, 655â679. MR 2954356
- J. Fan and I. Gijbels, Local polynomial modelling and its applications, Monographs on Statistics and Applied Probability, vol. 66, Chapman & Hall, London, 1996. MR 1383587
- W. Feller, An introduction to probability theory and its applications. Vol. I, third ed., John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0228020
- L. A. GarcĂa-Escudero, A. Gordaliza, and C. MatrĂĄn, Trimming tools in exploratory data analysis, J. Comput. Graph. Statist. 12 (2003), no. 2, 434â449. MR 1983163
- L. A. GarcĂa-Escudero, A. Gordaliza, C. MatrĂĄn, and A. Mayo-Iscar, A general trimming approach to robust cluster analysis, Ann. Statist. 36 (2008), no. 3, 1324â1345. MR 2418659
- Th. Gasser and H.-G. MĂŒller, Kernel estimation of regression functions, Smoothing techniques for curve estimation (Proc. Workshop, Heidelberg, 1979), Lecture Notes in Math., vol. 757, Springer, Berlin, 1979, pp. 23â68. MR 564251
- R. V. Hogg, Some observations on robust estimation, J. Amer. Statist. Assoc. 62 (1967), 1179â1186. MR 221630
- P. J. Huber, Robust statistics, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1981. MR 606374
- L. A. Jaeckel, Some flexible estimates of location, Ann. Math. Statist. 42 (1971), 1540â1552. MR 350951
- J. JureÄkovĂĄ, R. Koenker, and A. H. Welsh, Adaptive choice of trimming proportions, Ann. Inst. Statist. Math. 46 (1994), no. 4, 737â755. MR 1325993
- J. JureckovĂĄ and B. ProchĂĄzka, Regression quantiles and trimmed least squares estimator in nonlinear regression model, J. Nonparametr. Statist. 3 (1994), no. 3-4, 201â222. MR 1291545
- H. Kaya, Pm. TĂŒfekci, and F. S. GĂŒrgen, Local and global learning methods for predicting power of a combined gas & steam turbine, Proceedings of the International Conference on Emerging Trends in Computer and Electronics Engineering ICETCEE, 2012, pp. 13â18.
- E. A. Nadaraya, On non-parametric estimates of density functions and regression curves, Teor. Verojatnost. i Primenen. 10 (1965), 199â203. MR 0172400
- Ch.-H. Park, S. Lee, and J.-H. Chang, Robust closed-form time-of-arrival source localization based on $\alpha$-trimmed mean and HodgesâLehmann estimator under NLOS environments, Signal Processing 111 (2015), 113â123.
- M. B. Priestley and M. T. Chao, Non-parametric function fitting, J. Roy. Statist. Soc. Ser. B 34 (1972), 385â392. MR 331616
- P. J. Rousseeuw and A. M. Leroy, Robust regression and outlier detection, Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics, John Wiley & Sons, Inc., New York, 1987. MR 914792
- R. J. Serfling, Approximation theorems of mathematical statistics, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1980. MR 595165
- B. W. Silverman, Density estimation for statistics and data analysis, Monographs on Statistics and Applied Probability, Chapman & Hall, London, 1986. MR 848134
- St. M. Stigler, The asymptotic distribution of the trimmed mean, Ann. Statist. 1 (1973), 472â477. MR 359134
- A. Tsanas, M. A. Little, P. E. McSharry, and L. O. Ramig, Accurate telemonitoring of Parkinsonâs disease progression by noninvasive speech tests, IEEE Transactions on Biomedical Engineering 57 (2009), no. 4, 884â893.
- P. TĂŒfekci, Prediction of full load electrical power output of a base load operated combined cycle power plant using machine learning methods, International Journal of Electrical Power & Energy Systems 60 (2014), 126â140.
- W. Wang, N. Lin, and X. Tang, Robust two-sample test of high-dimensional mean vectors under dependence, J. Multivariate Anal. 169 (2019), 312â329. MR 3875602
- G. S. Watson, Smooth regression analysis, SankhyÄ Ser. A 26 (1964), 359â372. MR 185765
- A. H. Welsh, The trimmed mean in the linear model, Ann. Statist. 15 (1987), no. 1, 20â45. MR 885722
Similar Articles
Retrieve articles in Theory of Probability and Mathematical Statistics
with MSC (2020):
62G08,
62G05
Retrieve articles in all journals
with MSC (2020):
62G08,
62G05
Additional Information
Subhra Sankar Dhar
Affiliation:
Department of Mathematics and Statistics, IIT Kanpur, Kanpur, India
Email:
subhra@iitk.ac.in
Prashant Jha
Affiliation:
Department of Mathematics, NIT Sikkim, Sikkim, India
Email:
prashant@nitsikkim.ac.in
Prabrisha Rakshit
Affiliation:
Department of Statistics, Rutgers University, USA
Email:
prabrisha.rakshit@rutgers.edu
Keywords:
Heavy-tailed distribution,
Kernel density estimator,
$L$-estimator,
the NadarayaâWatson estimator,
Robust estimator
Received by editor(s):
March 31, 2021
Accepted for publication:
October 23, 2021
Published electronically:
November 8, 2022
Additional Notes:
The first author is partially supported by MATRICS (MTR/2019/000039), a research grant from the SERB, Government of India.
Article copyright:
© Copyright 2022
Taras Shevchenko National University of Kyiv