Stochastic analysis for vector-valued generalized grey Brownian motion
Authors:
Wolfgang Bock, Martin Grothaus and Karlo Orge
Journal:
Theor. Probability and Math. Statist. 108 (2023), 1-27
MSC (2020):
Primary 46F25, 46F12, 60G22, 33E12, 60H10, 26A33, 60J22
DOI:
https://doi.org/10.1090/tpms/1184
Published electronically:
May 2, 2023
Full-text PDF
Abstract |
References |
Similar Articles |
Additional Information
Abstract: In this article, we show that the standard vector-valued generalization of a generalized grey Brownian motion (ggBm) has independent components if and only if it is a fractional Brownian motion. In order to extend ggBm with independent components, we introduce a vector-valued generalized grey Brownian motion (vggBm). The characteristic function of the corresponding measure is introduced as the product of the characteristic functions of the one-dimensional case. We show that for this measure, the Appell system and a calculus of generalized functions or distributions are accessible. We characterize these distributions with suitable transformations and give a $d$-dimensional Donsker’s delta function as an example for such distributions. From there, we show the existence of local times and self-intersection local times of vggBm as distributions under some constraints, and compute their corresponding generalized expectations. At the end, we solve a system of linear SDEs driven by a vggBm noise in $d$ dimensions.
References
- S. Albeverio, Yu. L. Daletsky, Yu. G. Kondratiev, and L. Streit, Non-Gaussian infinite-dimensional analysis, J. Funct. Anal. 138 (1996), no. 2, 311–350. MR 1395961, DOI 10.1006/jfan.1996.0067
- R. Alsultan and Ch. Ma, $K$-differenced vector random fields, Teor. Veroyatn. Primen. 63 (2018), no. 3, 482–499 (English, with Russian summary). MR 3833094, DOI 10.4213/tvp5119
- Nicole Bäuerle and Sascha Desmettre, Portfolio optimization in fractional and rough Heston models, SIAM J. Financial Math. 11 (2020), no. 1, 240–273. MR 4078803, DOI 10.1137/18M1217243
- Christian Bender, An Itô formula for generalized functionals of a fractional Brownian motion with arbitrary Hurst parameter, Stochastic Process. Appl. 104 (2003), no. 1, 81–106. MR 1956473, DOI 10.1016/S0304-4149(02)00212-0
- Christian Bender and Yana A. Butko, Stochastic solutions of generalized time-fractional evolution equations, Fract. Calc. Appl. Anal. 25 (2022), no. 2, 488–519. MR 4437290, DOI 10.1007/s13540-022-00025-3
- Y. M. Berezansky and Y. G. Kondratiev, Spectral methods in infinite-dimensional analysis. Vol. 1, Mathematical Physics and Applied Mathematics, vol. 12/1, Kluwer Academic Publishers, Dordrecht, 1995. Translated from the 1988 Russian original by P. V. Malyshev and D. V. Malyshev and revised by the authors. MR 1340626, DOI 10.1007/978-94-011-0509-5
- Francesca Biagini, Yaozhong Hu, Bernt Øksendal, and Tusheng Zhang, Stochastic calculus for fractional Brownian motion and applications, Probability and its Applications (New York), Springer-Verlag London, Ltd., London, 2008. MR 2387368, DOI 10.1007/978-1-84628-797-8
- W. Bock and J. L. da Silva. Wick type SDEs driven by grey Brownian motion, AIP Conference Proceedings, 1871(1):020004, 2017.
- Wolfgang Bock, Sascha Desmettre, and José Luís da Silva, Integral representation of generalized grey Brownian motion, Stochastics 92 (2020), no. 4, 552–565. MR 4115989, DOI 10.1080/17442508.2019.1641093
- N. Bourbaki, Topological vector spaces. Chapters 1–5, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1987. Translated from the French by H. G. Eggleston and S. Madan. MR 910295, DOI 10.1007/978-3-642-61715-7
- Stamatis Cambanis, Steel Huang, and Gordon Simons, On the theory of elliptically contoured distributions, J. Multivariate Anal. 11 (1981), no. 3, 368–385. MR 629795, DOI 10.1016/0047-259X(81)90082-8
- Philippe Carmona, Laure Coutin, and G. Montseny, Approximation of some Gaussian processes, Stat. Inference Stoch. Process. 3 (2000), no. 1-2, 161–171. 19th “Rencontres Franco-Belges de Statisticiens” (Marseille, 1998). MR 1819293, DOI 10.1023/A:1009999518898
- Philippe Carmona, Laure Coutin, and Gérard Montseny, Stochastic integration with respect to fractional Brownian motion, Ann. Inst. H. Poincaré Probab. Statist. 39 (2003), no. 1, 27–68 (English, with English and French summaries). MR 1959841, DOI 10.1016/S0246-0203(02)01111-1
- Yu. L. Daletskiĭ, A bi-orthogonal analogue of Hermite polynomials and the inversion of the Fourier transform with respect to a non-Gaussian measure, Funktsional. Anal. i Prilozhen. 25 (1991), no. 2, 68–70 (Russian); English transl., Funct. Anal. Appl. 25 (1991), no. 2, 138–140. MR 1142214, DOI 10.1007/BF01079597
- Seán Dineen, Complex analysis in locally convex spaces, Notas de Matemática [Mathematical Notes], vol. 83, North-Holland Publishing Co., Amsterdam-New York, 1981. MR 640093
- Mirko D’Ovidio, Silvia Vitali, Vittoria Sposini, Oleksii Sliusarenko, Paolo Paradisi, Gastone Castellani, and Gianni Pagnini, Centre-of-mass like superposition of Ornstein-Uhlenbeck processes: a pathway to non-autonomous stochastic differential equations and to fractional diffusion, Fract. Calc. Appl. Anal. 21 (2018), no. 5, 1420–1435. MR 3903618, DOI 10.1515/fca-2018-0074
- Juan Du, Nikolai Leonenko, Chunsheng Ma, and Hong Shu, Hyperbolic vector random fields with hyperbolic direct and cross covariance functions, Stoch. Anal. Appl. 30 (2012), no. 4, 662–674. MR 2946043, DOI 10.1080/07362994.2012.684325
- Kai Tai Fang, Samuel Kotz, and Kai Wang Ng, Symmetric multivariate and related distributions, Monographs on Statistics and Applied Probability, vol. 36, Chapman and Hall, Ltd., London, 1990. MR 1071174, DOI 10.1007/978-1-4899-2937-2
- I. M. Gel’fand and N. Ya. Vilenkin, Generalized functions. Vol. 4: Applications of harmonic analysis, Academic Press, New York-London, 1964. Translated by Amiel Feinstein. MR 0173945
- Rudolf Gorenflo, Anatoly A. Kilbas, Francesco Mainardi, and Sergei V. Rogosin, Mittag-Leffler functions, related topics and applications, Springer Monographs in Mathematics, Springer, Heidelberg, 2014. MR 3244285, DOI 10.1007/978-3-662-43930-2
- M. Grothaus and F. Jahnert, Mittag-Leffler analysis II: Application to the fractional heat equation, J. Funct. Anal. 270 (2016), no. 7, 2732–2768. MR 3464056, DOI 10.1016/j.jfa.2016.01.018
- M. Grothaus, F. Jahnert, F. Riemann, and J. L. da Silva, Mittag-Leffler analysis I: Construction and characterization, J. Funct. Anal. 268 (2015), no. 7, 1876–1903. MR 3315581, DOI 10.1016/j.jfa.2014.12.007
- Martin Grothaus, Yuri G. Kondratiev, and Ludwig Streit, Complex Gaussian analysis and the Bargmann-Segal space, Methods Funct. Anal. Topology 3 (1997), no. 2, 46–64. MR 1632659
- Martin Grothaus, Jan Müller, and Andreas Nonnenmacher, An improved characterisation of regular generalised functions of white noise and an application to singular SPDEs, Stoch. Partial Differ. Equ. Anal. Comput. 10 (2022), no. 2, 359–391. MR 4439986, DOI 10.1007/s40072-021-00200-2
- Philipp Harms and David Stefanovits, Affine representations of fractional processes with applications in mathematical finance, Stochastic Process. Appl. 129 (2019), no. 4, 1185–1228. MR 3926553, DOI 10.1016/j.spa.2018.04.010
- C. C. Heyde and N. N. Leonenko, Student processes, Adv. in Appl. Probab. 37 (2005), no. 2, 342–365. MR 2144557, DOI 10.1239/aap/1118858629
- Takeyuki Hida, Hui-Hsiung Kuo, Jürgen Potthoff, and Ludwig Streit, White noise, Mathematics and its Applications, vol. 253, Kluwer Academic Publishers Group, Dordrecht, 1993. An infinite-dimensional calculus. MR 1244577, DOI 10.1007/978-94-017-3680-0
- T. Hida and L. Streit (eds.), Let us use white noise, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017. MR 3645435, DOI 10.1142/10472
- Yaozhong Hu and David Nualart, Renormalized self-intersection local time for fractional Brownian motion, Ann. Probab. 33 (2005), no. 3, 948–983. MR 2135309, DOI 10.1214/009117905000000017
- Yaozhong Hu and Bernt Øksendal, Chaos expansion of local time of fractional Brownian motions, Stochastic Anal. Appl. 20 (2002), no. 4, 815–837. MR 1921068, DOI 10.1081/SAP-120006109
- Yoshifusa Ito, Generalized Poisson functionals, Probab. Theory Related Fields 77 (1988), no. 1, 1–28. MR 921816, DOI 10.1007/BF01848128
- F. Jahnert. Construction of a Mittag-Leffler analysis and its applications, PhD thesis, TU Kaiserslautern, Germany, 2015.
- Douglas Kelker, Distribution theory of spherical distributions and a location-scale parameter generalization, Sankhyā Ser. A 32 (1970), 419–438. MR 287628
- John L. Kelley and Isaac Namioka, Linear topological spaces, Graduate Texts in Mathematics, No. 36, Springer-Verlag, New York-Heidelberg, 1976. With the collaboration of W. F. Donoghue, Jr., Kenneth R. Lucas, B. J. Pettis, Ebbe Thue Poulsen, G. Baley Price, Wendy Robertson, W. R. Scott, and Kennan T. Smith; Second corrected printing. MR 0394084
- A. N. Kochubeĭ and S. D. Èĭdel′man, The Cauchy problem for evolution equations of fractional order, Dokl. Akad. Nauk 394 (2004), no. 2, 159–161 (Russian). MR 2089744
- Yu. G. Kondratiev, P. Leukert, J. Potthoff, L. Streit, and W. Westerkamp, Generalized functionals in Gaussian spaces: the characterization theorem revisited, J. Funct. Anal. 141 (1996), no. 2, 301–318. MR 1418508, DOI 10.1006/jfan.1996.0130
- Yuri G. Kondratiev, José L. Silva, and Ludwig Streit, Differential geometry on compound Poisson space, Methods Funct. Anal. Topology 4 (1998), no. 1, 32–58. MR 1770820
- Yuri G. Kondratiev, Ludwig Streit, Werner Westerkamp, and Jia-an Yan, Generalized functions in infinite-dimensional analysis, Hiroshima Math. J. 28 (1998), no. 2, 213–260. MR 1637310
- Hui-Hsiung Kuo, White noise distribution theory, Probability and Stochastics Series, CRC Press, Boca Raton, FL, 1996. MR 1387829
- N. N. Leonenko, I. Papić, A. Sikorskii, and N. Šuvak, Heavy-tailed fractional Pearson diffusions, Stochastic Process. Appl. 127 (2017), no. 11, 3512–3535. MR 3707236, DOI 10.1016/j.spa.2017.03.004
- N. N. Leonenko, I. Papić, A. Sikorskii, and N. Šuvak, Approximation of heavy-tailed fractional Pearson diffusions in Skorokhod topology, J. Math. Anal. Appl. 486 (2020), no. 2, 123934, 22. MR 4062953, DOI 10.1016/j.jmaa.2020.123934
- Chunsheng Ma, Mittag-Leffler vector random fields with Mittag-Leffler direct and cross covariance functions, Ann. Inst. Statist. Math. 65 (2013), no. 5, 941–958. MR 3105803, DOI 10.1007/s10463-013-0398-9
- Chunsheng Ma, Student’s $t$ vector random fields with power-law and log-law decaying direct and cross covariances, Stoch. Anal. Appl. 31 (2013), no. 1, 167–182. MR 3007889, DOI 10.1080/07362994.2013.741401
- Marcin Magdziarz, Black-Scholes formula in subdiffusive regime, J. Stat. Phys. 136 (2009), no. 3, 553–564. MR 2529684, DOI 10.1007/s10955-009-9791-4
- Francesco Mainardi, Fractional calculus and waves in linear viscoelasticity—an introduction to mathematical models, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, [2022] ©2022. Second edition [of 2676137]. MR 4485803, DOI 10.1142/p926
- F. Mainardi, A. Mura, and G. Pagnini. The functions of the Wright type in fractional calculus, Lecture Notes of Seminario Interdisciplinare di Matematica, 9 (2010), 111–128.
- Benoit B. Mandelbrot and John W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev. 10 (1968), 422–437. MR 242239, DOI 10.1137/1010093
- Mark M. Meerschaert and Hans-Peter Scheffler, Limit theorems for continuous-time random walks with infinite mean waiting times, J. Appl. Probab. 41 (2004), no. 3, 623–638. MR 2074812, DOI 10.1239/jap/1091543414
- Ralf Metzler and Joseph Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep. 339 (2000), no. 1, 77. MR 1809268, DOI 10.1016/S0370-1573(00)00070-3
- Ralf Metzler and Joseph Klafter, The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics, J. Phys. A 37 (2004), no. 31, R161–R208. MR 2090004, DOI 10.1088/0305-4470/37/31/R01
- Yuliya S. Mishura, Stochastic calculus for fractional Brownian motion and related processes, Lecture Notes in Mathematics, vol. 1929, Springer-Verlag, Berlin, 2008. MR 2378138, DOI 10.1007/978-3-540-75873-0
- G. Mittag-Leffler. Sur la nouvelle fonction ${E}_\alpha (x)$, C. R. Acad. Sci. Paris, 137 (1903), no. 1, 554–558.
- G. Mittag-Leffler. Sopra la funzione ${E}_\alpha (x)$, Rend. Accad. Lincei, 5 (1904), no. 13, 3–5.
- G. Mittag-Leffler, Sur la représentation analytique d’une branche uniforme d’une fonction monogène, Acta Math. 29 (1905), no. 1, 101–181 (French). cinquième note. MR 1555012, DOI 10.1007/BF02403200
- Antonio Mura and Francesco Mainardi, A class of self-similar stochastic processes with stationary increments to model anomalous diffusion in physics, Integral Transforms Spec. Funct. 20 (2009), no. 3-4, 185–198. MR 2501791, DOI 10.1080/10652460802567517
- A. Mura and G. Pagnini, Characterizations and simulations of a class of stochastic processes to model anomalous diffusion, J. Phys. A 41 (2008), no. 28, 285003, 22. MR 2430462, DOI 10.1088/1751-8113/41/28/285003
- A. A. Muravlëv, Representation of fractal Brownian motion in terms of an infinite-dimensional Ornstein-Uhlenbeck process, Uspekhi Mat. Nauk 66 (2011), no. 2(398), 235–236 (Russian); English transl., Russian Math. Surveys 66 (2011), no. 2, 439–441. MR 2847795, DOI 10.1070/RM2011v066n02ABEH004746
- Ivan Nourdin, Selected aspects of fractional Brownian motion, Bocconi & Springer Series, vol. 4, Springer, Milan; Bocconi University Press, Milan, 2012. MR 3076266, DOI 10.1007/978-88-470-2823-4
- Nobuaki Obata, White noise calculus and Fock space, Lecture Notes in Mathematics, vol. 1577, Springer-Verlag, Berlin, 1994. MR 1301775, DOI 10.1007/BFb0073952
- Harry Pollard, The completely monotonic character of the Mittag-Leffler function $E_a(-x)$, Bull. Amer. Math. Soc. 54 (1948), 1115–1116. MR 27375, DOI 10.1090/S0002-9904-1948-09132-7
- J. Potthoff and L. Streit, A characterization of Hida distributions, J. Funct. Anal. 101 (1991), no. 1, 212–229. MR 1132316, DOI 10.1016/0022-1236(91)90156-Y
- G. Rangarajan and M. Ding. Processes with long-range correlations: Theory and applications, Springer Science & Business Media, 2003.
- Alfonso Rocha-Arteaga and Ken-iti Sato, Topics in infinitely divisible distributions and Lévy processes, SpringerBriefs in Probability and Mathematical Statistics, Springer, Cham, 2019. Revised edition of [ MR2042245]. MR 3971266, DOI 10.1007/978-3-030-22700-5
- Stefan G. Samko, Anatoly A. Kilbas, and Oleg I. Marichev, Fractional integrals and derivatives, Gordon and Breach Science Publishers, Yverdon, 1993. Theory and applications; Edited and with a foreword by S. M. Nikol′skiĭ; Translated from the 1987 Russian original; Revised by the authors. MR 1347689
- Enrico Scalas, Five years of continuous-time random walks in econophysics, The complex networks of economic interactions, Lecture Notes in Econom. and Math. Systems, vol. 567, Springer, Berlin, 2006, pp. 3–16. MR 2198447, DOI 10.1007/3-540-28727-2_{1}
- Walter R. Schneider, Grey noise, Stochastic processes, physics and geometry (Ascona and Locarno, 1988) World Sci. Publ., Teaneck, NJ, 1990, pp. 676–681. MR 1124240
- W. R. Schneider, Grey noise, Ideas and methods in mathematical analysis, stochastics, and applications (Oslo, 1988) Cambridge Univ. Press, Cambridge, 1992, pp. 261–282. MR 1190506
- R. Schumer, D. A. Benson, M. M. Meerschaert, and B. Baeumer. Fractal mobile/immobile solute transport, Water Resources Research, 39, no. 10, 2003.
- F. Trèves. Topological vector spaces, distributions and kernels, Academic Press, New York, 1967.
- Fangfang Wang, Nikolai Leonenko, and Chunsheng Ma, Isotropic random fields with infinitely divisible marginal distributions, Stoch. Anal. Appl. 36 (2018), no. 2, 189–208. MR 3750676, DOI 10.1080/07362994.2017.1385028
- A. Wiman, Über den Fundamentalsatz in der Teorie der Funktionen $E^a(x)$, Acta Math. 29 (1905), no. 1, 191–201 (German). MR 1555014, DOI 10.1007/BF02403202
- A. Wiman, Über die Nullstellen der Funktionen $E_\alpha (x)$, Acta Math. 29 (1905), no. 1, 217–234 (German). MR 1555016, DOI 10.1007/BF02403204
References
- S. Albeverio, Y. L. Daletsky, Y. G. Kondratiev, and L. Streit. Non-Gaussian infinite dimensional analysis, J. Funct. Anal. 138 (1996), no. 2, 311–350. MR 1395961
- R. Alsultan and C. Ma. $K$-differenced vector random fields, Theo. Prob. & Appl., 63 (2018), no. 3, 482–499. MR 3833094
- N. Baüerle and S. Desmettre. Portfolio optimization in fractional and rough Heston models, SIAM J. Financial Math., 11 (2020), no. 1, 240–273. MR 4078803
- C. Bender. An Itô formula for generalized functionals of a fractional Brownian motion with arbitrary Hurst parameter, Stochastic Process. Appl., 104 (2003), no. 1, 81–106. MR 1956473
- C. Bender and Y. A. Butko. Stochastic solutions of generalized time-fractional evolution equations, Fract. Calc. Appl. Anal. 25 (2022), no. 2, 488–519. MR 4437290
- Y. M. Berezansky and Y. G. Kondratiev. Spectral methods in infinite-dimensional analysis. Vol. 2, Mathematical Physics and Applied Mathematics, 12/2, Kluwer Academic Publishers, Dordrecht, 1995. MR 1340626
- F. Biagini, Y. Hu, B. Øksendal, and T. Zhang. Stochastic calculus for fractional Brownian motion and applications, Probability and its Applications (New York), Springer-Verlag London, Ltd., London, 2008. MR 2387368
- W. Bock and J. L. da Silva. Wick type SDEs driven by grey Brownian motion, AIP Conference Proceedings, 1871(1):020004, 2017.
- W. Bock, S. Desmettre, and J. L. da Silva. Integral representation of generalized grey Brownian motion, Stochastics 92 (2020), no. 4, 552–565. MR 4115989
- N. Bourbaki. Topological vector spaces. Chapters 1–5. Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1987. MR 910295
- S. Cambanis, S. Huang, and G. Simons. On the theory of elliptically contoured distributions, J. Multivariate Anal. 11 (1981), no. 3, 368–385. MR 629795
- P. Carmona, L. Coutin, and G. Montseny. Approximation of some Gaussian processes, Stat. Inference Stoch. Process. 3 (2000), no. 1-2, 161–171. MR 1819293
- P. Carmona, L. Coutin, and G. Montseny. Stochastic integration with respect to fractional Brownian motion, Ann. Inst. H. Poincaré Probab. Statist. 39 (2003), no. 1, 27–68. MR 1959841
- Y. L. Daletskii. A bi-orthogonal analogue of Hermite polynomials and the inversion of the Fourier transform with respect to a non-Gaussian measure, Funct. Anal. Appl. 25 (1991), no. 2, 138–140. MR 1142214
- S. Dineen. Complex analysis in locally convex spaces, Notas de Matemática, 83, North-Holland Mathematics Studies, 57, North-Holland Publishing Co., Amsterdam, 1981. MR 640093
- M. D’Ovidio, S. Vitali, V. Sposini, O. Sliusarenko, P. Paradisi, G. Castellani, and G. Pagnini. Centre-of-mass like superposition of Ornstein–Uhlenbeck processes: A pathway to non-autonomous stochastic differential equations and to fractional diffusion, Fract. Calc. Appl. Anal. 21 (2018), no. 5, 1420–1435. MR 3903618
- J. Du, N. Leonenko, C. Ma, and H. Shu. Hyperbolic vector random fields with hyperbolic direct and cross covariance functions, Stoch. Anal. Appl. 30 (2012), no. 4, 662–674. MR 2946043
- K. T. Fang, S. Kotz, and K. W. Ng. Symmetric multivariate and related distributions, Monographs on Statistics and Applied Probability, 36, Chapman and Hall, Ltd., London, 1990. MR 1071174
- I. M. Gel’fand and N. Ya. Vilenkin. Generalized functions. Vol. 4: Applications of harmonic analysis, translated by Amiel Feinstein, Academic Press, New York, 1964. MR 0173945
- R. Gorenflo, A. A. Kilbas, F. Mainardi, and S. V. Rogosin. Mittag-Leffler functions, related topics and applications, Springer Monographs in Mathematics, Springer, Heidelberg, 2014. MR 3244285
- M. Grothaus and F. Jahnert. Mittag-Leffler analysis II: Application to the fractional heat equation, J. Funct. Anal. 270 (2016), no. 7, 2732–2768. MR 3464056
- M. Grothaus, F. Jahnert, F. Riemann, and J. L. da Silva. Mittag-Leffler analysis I: Construction and characterization, J. Funct. Anal. 268 (2015), no. 7, 1876–1903. MR 3315581
- M. Grothaus, Y. G. Kondratiev, and L. Streit. Complex Gaussian analysis and the Bargmann–Segal space, Methods Funct. Anal. Topology 3 (1997), no. 2, 46–64. MR 1632659
- M. Grothaus, J. Müller, and A. Nonnenmacher. An improved characterisation of regular generalised functions of white noise and an application to singular SPDEs, Stoch. Partial Differ. Equ. Anal. Comput. 10 (2022), no. 2, 359–391. MR 4439986
- P. Harms and D. Stefanovits. Affine representations of fractional processes with applications in mathematical finance, Stochastic Process. Appl. 129 (2019), no. 4, 1185–1228. MR 3926553
- C. C. Heyde and N. N. Leonenko. Student processes, Adv. in Appl. Probab. 37 (2005), no. 2, 342–365. MR 2144557
- T. Hida, H.-H. Kuo, J. Potthoff, and L. Streit. White noise, Mathematics and its Applications, 253, Kluwer Academic Publishers Group, Dordrecht, 1993. MR 1244577
- T. Hida and L. Streit, editors. Let us use white noise. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017. MR 3645435
- Y. Hu and D. Nualart. Renormalized self-intersection local time for fractional Brownian motion, Ann. Probab. 33 (2005), no. 3, 948–983. MR 2135309
- Y. Hu and B. Øksendal. Chaos expansion of local time of fractional Brownian motions, Stochastic Anal. Appl. 20 (2002), no. 4, 815–837. MR 1921068
- Y. Ito. Generalized poisson functionals, Probab. Theory Related Fields 77 (1988), no. 1, 1–28. MR 921816
- F. Jahnert. Construction of a Mittag-Leffler analysis and its applications, PhD thesis, TU Kaiserslautern, Germany, 2015.
- D. Kelker. Distribution theory of spherical distributions and a location-scale parameter generalization, Sankhyā Ser. A 32 (1970), 419–438. MR 287628
- J. L. Kelley and I. Namioka. Linear topological spaces. Graduate Texts in Mathematics, No. 36, Springer-Verlag, New York, 1976. MR 0394084
- A. N. Kochubei and S. D. Eidelman. The Cauchy problem for evolution equations of fractional order, Dokl. Akad. Nauk 394 (2004), no. 2, 159–161. MR 2089744
- Y. G. Kondratiev, P. Leukert, J. Potthoff, L. Streit, and W. Westerkamp. Generalized functionals in Gaussian spaces: the characterization theorem revisited, J. Funct. Anal. 141 (1996), no. 2, 301–318. MR 1418508
- Y. G. Kondratiev, J. L. Silva, and L. Streit. Differential geometry on compound Poisson space, Methods Funct. Anal. Topology 4 (1998), no. 1, 32–58. MR 1770820
- Y. G. Kondratiev, L. Streit, W. Westerkamp, and J. Yan. Generalized functions in infinite-dimensional analysis, Hiroshima Math. J. 28 (1998), no. 2, 213–260. MR 1637310
- H.-H. Kuo. White noise distribution theory, Probability and Stochastics Series, CRC Press, Boca Raton, FL, 1996. MR 1387829
- N. N. Leonenko, I. Papić, A. Sikorskii, and N. Šuvak. Heavy-tailed fractional Pearson diffusions, Stochastic Process. Appl. 127 (2017), no. 11, 3512–3535. MR 3707236
- N. N. Leonenko, I. Papić, A. Sikorskii, and N. Šuvak. Approximation of heavy-tailed fractional Pearson diffusions in Skorokhod topology, J. Math. Anal. Appl. 486 (2020), no. 2, 123934, 22 pp. MR 4062953
- C. Ma. Mittag-Leffler vector random fields with Mittag-Leffler direct and cross covariance functions, Ann. Inst. Statist. Math. 65 (2013), no. 5, 941–958. MR 3105803
- C. Ma. Student’s $t$ vector random fields with power-law and log-law decaying direct and cross covariances, Stoch. Anal. Appl. 31 (2013), no. 1, 167–182. MR 3007889
- M. Magdziarz. Black–Scholes formula in subdiffusive regime, J. Stat. Phys. 136 (2009), no. 3, 553–564. MR 2529684
- F. Mainardi. Fractional calculus and waves in linear viscoelasticity: An introduction to mathematical models, second edition, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2022. MR 4485803
- F. Mainardi, A. Mura, and G. Pagnini. The functions of the Wright type in fractional calculus, Lecture Notes of Seminario Interdisciplinare di Matematica, 9 (2010), 111–128.
- B. B. Mandelbrot and J. W. van Ness. Fractional Brownian motions, fractional noises and applications, SIAM Rev. 10 (1968), 422–437. MR 242239
- M. M. Meerschaert and H.-P. Scheffler. Limit theorems for continuous-time random walks with infinite mean waiting times, J. Appl. Probab. 41 (2004), no. 3, 623–638. MR 2074812
- R. Metzler and J. Klafter. The random walk’s guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep. 339 (2000), no. 1, 77 pp. MR 1809268
- R. Metzler and J. Klafter. The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics, J. Phys. A 37 (2004), no. 31, R161–R208. MR 2090004
- Y. S. Mishura. Stochastic calculus for fractional Brownian motion and related processes, Lecture Notes in Mathematics, 1929, Springer-Verlag, Berlin, 2008. MR 2378138
- G. Mittag-Leffler. Sur la nouvelle fonction ${E}_\alpha (x)$, C. R. Acad. Sci. Paris, 137 (1903), no. 1, 554–558.
- G. Mittag-Leffler. Sopra la funzione ${E}_\alpha (x)$, Rend. Accad. Lincei, 5 (1904), no. 13, 3–5.
- G. Mittag-Leffler. Sur la représentation analytique d’une branche uniforme d’une fonction monogène, Acta Math. 29 (1905), no. 1, 101–181. MR 1555012
- A. Mura and F. Mainardi. A class of self-similar stochastic processes with stationary increments to model anomalous diffusion in physics, Integral Transforms Spec. Funct. 20 (2009), no. 3-4, 185–198. MR 2501791
- A. Mura and G. Pagnini. Characterizations and simulations of a class of stochastic processes to model anomalous diffusion, J. Phys. A 41 (2008), no. 28, 285003, 22 pp. MR 2430462
- A. A. Muravlev. Representation of a fractional Brownian motion in terms of an infinite-dimensional Ornstein–Uhlenbeck process, Russian Math. Surveys 66 (2011), no. 2, 439–441. MR 2847795
- I. Nourdin. Selected aspects of fractional Brownian motion, Bocconi & Springer Series, 4, Springer, Milan, 2012. MR 3076266
- N. Obata. White noise calculus and Fock space, Lecture Notes in Mathematics, 1577, Springer-Verlag, Berlin, 1994. MR 1301775
- H. Pollard. The completely monotonic character of the Mittag-Leffler function $E_a(-x)$, Bull. Amer. Math. Soc. 54 (1948), 1115–1116. MR 27375
- J. Potthoff and L. Streit. A characterization of Hida distributions, J. Funct. Anal. 101 (1991), no. 1, 212–229. MR 1132316
- G. Rangarajan and M. Ding. Processes with long-range correlations: Theory and applications, Springer Science & Business Media, 2003.
- A. Rocha-Arteaga and K. Sato. Topics in infinitely divisible distributions and Lévy processes, SpringerBriefs in Probability and Mathematical Statistics, Springer, Cham, 2019. MR 3971266
- S. G. Samko, A. A. Kilbas, and O. I. Marichev. Fractional integrals and derivatives, Gordon and Breach Science Publishers, Yverdon, 1993. MR 1347689
- E. Scalas. Five years of continuous-time random walks in econophysics, in The complex networks of economic interactions, Lecture Notes in Econom. and Math. Systems, 567, Springer, Berlin, 3–16. MR 2198447
- W. R. Schneider. Grey noise, in Stochastic processes, physics and geometry (Ascona and Locarno, 1988), World Sci. Publ., Teaneck, NJ, pp. 676–681. MR 1124240
- W. R. Schneider. Grey noise, in Ideas and methods in mathematical analysis, stochastics, and applications (Oslo, 1988), Cambridge Univ. Press, Cambridge, 1992, pp. 261–282. MR 1190506
- R. Schumer, D. A. Benson, M. M. Meerschaert, and B. Baeumer. Fractal mobile/immobile solute transport, Water Resources Research, 39, no. 10, 2003.
- F. Trèves. Topological vector spaces, distributions and kernels, Academic Press, New York, 1967.
- F. Wang, N. Leonenko, and C. Ma. Isotropic random fields with infinitely divisible marginal distributions, Stoch. Anal. Appl. 36 (2018), no. 2, 189–208. MR 3750676
- A. Wiman. Über den Fundamentalsatz in der Teorie der Funktionen $E^a(x)$, Acta Math. 29 (1905), no. 1, 191–201. MR 1555014
- A. Wiman. Über die Nullstellen der Funktionen $E^a(x)$, Acta Math. 29 (1905), no. 1, 217–234. MR 1555016
Similar Articles
Retrieve articles in Theory of Probability and Mathematical Statistics
with MSC (2020):
46F25,
46F12,
60G22,
33E12,
60H10,
26A33,
60J22
Retrieve articles in all journals
with MSC (2020):
46F25,
46F12,
60G22,
33E12,
60H10,
26A33,
60J22
Additional Information
Wolfgang Bock
Affiliation:
Technische Universität Kaiserslautern, Fachbereich Mathematik, Postfach 3049, 67653 Kaiserslautern, Germany
Email:
bock@mathematik.uni-kl.de
Martin Grothaus
Affiliation:
Technische Universität Kaiserslautern, Fachbereich Mathematik, Postfach 3049, 67653 Kaiserslautern, Germany
Email:
grothaus@mathematik.uni-kl.de
Karlo Orge
Affiliation:
Technische Universität Kaiserslautern, Fachbereich Mathematik, Postfach 3049, 67653 Kaiserslautern, Germany; and Department of Mathematics and Statistics, Mindanao State University - Iligan Institute of Technology, 9200 Iligan City, Philippines
Email:
orge@mathematik.uni-kl.de, karlo.orge@g.msuiit.edu.ph
Keywords:
Non-Gaussian analysis,
Mittag-Leffler analysis,
generalized functions,
vector-valued generalized grey Brownian motion,
linear stochastic differential equations,
local time
Received by editor(s):
November 17, 2021
Accepted for publication:
June 26, 2022
Published electronically:
May 2, 2023
Additional Notes:
The author K. Orge gratefully acknowledges the financial support by the German Academic Exchange Service (DAAD) in the form of a scholarship on the PhD program “Mathematics in Industry and Commerce” at TU Kaiserslautern.
Article copyright:
© Copyright 2023
Taras Shevchenko National University of Kyiv