Skip to Main Content
Remote Access Theory of Probability and Mathematical Statistics

Theory of Probability and Mathematical Statistics

ISSN 1547-7363(online) ISSN 0094-9000(print)

   
 
 

 

Statistical inference for models driven by $n$-th order fractional Brownian motion


Authors: Hicham Chaouch, Hamid El Maroufy and Mohamed El Omari
Journal: Theor. Probability and Math. Statist. 108 (2023), 29-43
MSC (2020): Primary 62F12; Secondary 60G15, 60G18
DOI: https://doi.org/10.1090/tpms/1185
Published electronically: May 2, 2023
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the following stochastic integral equation $X(t)=\mu t + \sigma \int _0^t \varphi (s) dB_H^n(s)$, $t\geq 0$, where $\varphi$ is a known function and $B^n_H$ is the $n$-th order fractional Brownian motion. We provide explicit maximum likelihood estimators for both $\mu$ and $\sigma ^2$, then we formulate explicitly a least squares estimator for $\mu$ and an estimator for $\sigma ^2$ by using power variations method. The consistency and asymptotic normality are established for those estimators when the number of observations or the time horizon is sufficiently large.


References [Enhancements On Off] (What's this?)

References
  • R. Belfadli, K. Es-Sebaiy, and Y. Ouknine, Parameter estimation for fractional Ornstein–Uhlenbeck processes: Non-ergodic case, Frontiers in Science and Engineering, 1 (2011), no. 1, 1–16.
  • Jan Beran, Statistics for long-memory processes, Monographs on Statistics and Applied Probability, vol. 61, Chapman and Hall, New York, 1994. MR 1304490
  • Jose Maria Varas Casado and Rob Hewson, Algorithm 1008: multicomplex number class for Matlab, with a focus on the accurate calculation of small imaginary terms for multicomplex step sensitivity calculations, ACM Trans. Math. Software 46 (2020), no. 2, Art. 18, 26. MR 4103644, DOI 10.1145/3378542
  • José Manuel Corcuera, David Nualart, and Jeannette H. C. Woerner, Power variation of some integral fractional processes, Bernoulli 12 (2006), no. 4, 713–735. MR 2248234, DOI 10.3150/bj/1155735933
  • M. El Omari, Mixtures of higher-order fractional Brownian motions, Comm. Statist. Theory Methods, (2021), 1–16.
  • Mohamed El Omari, An $\alpha$-order fractional Brownian motion with Hurst index $H \in (0,1)$ and $\alpha \in \Bbb {R}_+$, Sankhya A 85 (2023), no. 1, 572–599. MR 4540809, DOI 10.1007/s13171-021-00266-z
  • Yaozhong Hu, David Nualart, Weilin Xiao, and Weiguo Zhang, Exact maximum likelihood estimator for drift fractional Brownian motion at discrete observation, Acta Math. Sci. Ser. B (Engl. Ed.) 31 (2011), no. 5, 1851–1859. MR 2884954, DOI 10.1016/S0252-9602(11)60365-2
  • Yaozhong Hu and David Nualart, Parameter estimation for fractional Ornstein-Uhlenbeck processes, Statist. Probab. Lett. 80 (2010), no. 11-12, 1030–1038. MR 2638974, DOI 10.1016/j.spl.2010.02.018
  • Yaozhong Hu, David Nualart, and Hongjuan Zhou, Parameter estimation for fractional Ornstein-Uhlenbeck processes of general Hurst parameter, Stat. Inference Stoch. Process. 22 (2019), no. 1, 111–142. MR 3918739, DOI 10.1007/s11203-017-9168-2
  • R. Jennane and R. Harba, Fractional Brownian motion: A model for image texture, EUSIPCO, Signal Processing, 3 (1994), 1389–1392.
  • M. L. Kleptsyna and A. Le Breton, Statistical analysis of the fractional Ornstein-Uhlenbeck type process, Stat. Inference Stoch. Process. 5 (2002), no. 3, 229–248. MR 1943832, DOI 10.1023/A:1021220818545
  • Gregory Lantoine, Ryan P. Russell, and Thierry Dargent, Using multicomplex variables for automatic computation of high-order derivatives, ACM Trans. Math. Software 38 (2012), no. 3, Art. 16, 21. MR 2923553, DOI 10.1145/2168773.2168774
  • T. Lundahl, W.J. Ohley, S.M. Kay, and R. Siffert, Fractional Brownian motion: A maximum likelihood estimator and its application to image texture, IEEE Transactions on medical imaging, 5(1986), no. 3, 152–161.
  • Benoit B. Mandelbrot and John W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev. 10 (1968), 422–437. MR 242239, DOI 10.1137/1010093
  • David Nualart, The Malliavin calculus and related topics, Probability and its Applications (New York), Springer-Verlag, New York, 1995. MR 1344217, DOI 10.1007/978-1-4757-2437-0
  • D. Nualart and S. Ortiz-Latorre, Central limit theorems for multiple stochastic integrals and Malliavin calculus, Stochastic Process. Appl. 118 (2008), no. 4, 614–628. MR 2394845, DOI 10.1016/j.spa.2007.05.004
  • A. P. Pentland, Fractal-based description of natural scenes, IEEE transactions on pattern analysis and machine intelligence, 6 (1984), 661–674.
  • E. Perrin, R. Harba, C. Berzin-Joseph, I. Iribarren, and A. Bonami, $n$th-order fractional Brownian motion and fractional Gaussian noises, IEEE Transactions on Signal Processing, 49 (2001), no. 5, 1049–1059.
  • Vladas Pipiras and Murad S. Taqqu, Integration questions related to fractional Brownian motion, Probab. Theory Related Fields 118 (2000), no. 2, 251–291. MR 1790083, DOI 10.1007/s440-000-8016-7
  • James R. Schott, Matrix analysis for statistics, 3rd ed., Wiley Series in Probability and Statistics, John Wiley & Sons, Inc., Hoboken, NJ, 2017. MR 3497549
  • T. Sottinen and L. Viitasaari, Transfer principle for $n$th order fractional Brownian motion with applications to prediction and equivalence in law, Teor. Ĭmovīr. Mat. Stat. 98 (2018), 188–204 (English, with English, Russian and Ukrainian summaries); English transl., Theory Probab. Math. Statist. 98 (2019), 199–216. MR 3824687, DOI 10.1090/tpms/1071
  • Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
  • Katsuto Tanaka, Maximum likelihood estimation for the non-ergodic fractional Ornstein-Uhlenbeck process, Stat. Inference Stoch. Process. 18 (2015), no. 3, 315–332. MR 3395610, DOI 10.1007/s11203-014-9110-9
  • Katsuto Tanaka, Comparison of the LS-based estimators and the MLE for the fractional Ornstein-Uhlenbeck process, Stat. Inference Stoch. Process. 23 (2020), no. 2, 415–434. MR 4123930, DOI 10.1007/s11203-020-09215-3
  • Gene H. Golub and Charles F. Van Loan, Matrix computations, 3rd ed., Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 1996. MR 1417720
  • Weilin Xiao and Jun Yu, Asymptotic theory for estimating drift parameters in the fractional Vasicek model, Econometric Theory 35 (2019), no. 1, 198–231. MR 3904176, DOI 10.1017/S0266466618000051
  • M. Zabat, M. Vayer-Besançon, R. Harba, S. Bonnamy, and H. Van Damme, Surface topography and mechanical properties of smectite films, Trends in Colloid and Interface Science XI, (1997), 96–102.

Similar Articles

Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2020): 62F12, 60G15, 60G18

Retrieve articles in all journals with MSC (2020): 62F12, 60G15, 60G18


Additional Information

Hicham Chaouch
Affiliation: Faculty of Sciences and Technics, Sultan Mouly Slimane University, Campus Mghilla, BP 523, Beni-Mellal, Morocco

Hamid El Maroufy
Affiliation: Faculty of Sciences and Technics, Sultan Mouly Slimane University, Campus Mghilla, BP 523, Beni-Mellal, Morocco
Email: h.elmaroufy@usms.ma

Mohamed El Omari
Affiliation: Polydisciplinary Faculty of Sidi Bennour, Chouaıb Doukkali University, B.P. 299, Jabrane Khalil Jabrane Street, 24000 El Jadida, Morocco
Email: elomari.m@ucd.ac.ma

Keywords: $n$-th order fractional Brownian motion, maximum likelihood estimator, least squares estimator, consistency, asymptotic normality
Received by editor(s): July 25, 2022
Accepted for publication: December 14, 2022
Published electronically: May 2, 2023
Article copyright: © Copyright 2023 Taras Shevchenko National University of Kyiv