Distribution of the product of a Wishart matrix and a normal vector
Authors:
Koshiro Yonenaga and Akio Suzukawa
Journal:
Theor. Probability and Math. Statist. 108 (2023), 209-224
MSC (2020):
Primary 62H10, 60E05
DOI:
https://doi.org/10.1090/tpms/1193
Published electronically:
May 2, 2023
Full-text PDF
Abstract |
References |
Similar Articles |
Additional Information
Abstract: We consider the distribution of the product of a Wishart matrix and a normal vector with uncommon covariance matrices. We derive the stochastic representation which reduces the computational burden for the generation of realizations of the product. Using this representation, the density function and higher order moments of the product are derived. In a numerical illustration, we investigate some properties of the distribution of the product. We further suggest the Edgeworth type expansions for the product, and we observe that the suggested approximations provide a good performance for moderately large degrees of freedom of a Wishart matrix.
References
- David Bauder, Taras Bodnar, Stepan Mazur, and Yarema Okhrin, Bayesian inference for the tangent portfolio, Int. J. Theor. Appl. Finance 21 (2018), no. 8, 1850054, 27. MR 3897158, DOI 10.1142/S0219024918500541
- Taras Bodnar, Stepan Mazur, and Yarema Okhrin, On the exact and approximate distributions of the product of a Wishart matrix with a normal vector, J. Multivariate Anal. 122 (2013), 70–81. MR 3189308, DOI 10.1016/j.jmva.2013.07.007
- Taras Bodnar and Yarema Okhrin, Properties of the singular, inverse and generalized inverse partitioned Wishart distributions, J. Multivariate Anal. 99 (2008), no. 10, 2389–2405. MR 2463397, DOI 10.1016/j.jmva.2008.02.024
- Taras Bodnar and Yarema Okhrin, On the product of inverse Wishart and normal distributions with applications to discriminant analysis and portfolio theory, Scand. J. Stat. 38 (2011), no. 2, 311–331. MR 2829602, DOI 10.1111/j.1467-9469.2011.00729.x
- T. Bodnar, S. Mazur, and Y. Okhrin, Distribution of the product of singular Wishart matrix and normal vector, Teor. Ĭmovīr. Mat. Stat. 91 (2014), 1–14; English transl., Theory Probab. Math. Statist. 91 (2015), 1–15. MR 3364119, DOI 10.1090/tpms/962
- Taras Bodnar, Stepan Mazur, and Krzysztof Podgórski, Singular inverse Wishart distribution and its application to portfolio theory, J. Multivariate Anal. 143 (2016), 314–326. MR 3431434, DOI 10.1016/j.jmva.2015.09.021
- T. Bodnar, S. Mazur, E. Ngailo, and N. Parolya, Discriminant analysis in small and large dimensions, Teor. Ĭmovīr. Mat. Stat. 100 (2019), 24–42 (English, with English, Russian and Ukrainian summaries); English transl., Theory Probab. Math. Statist. 100 (2020), 21–41. MR 3992991, DOI 10.1090/tpms/1096
- T. Bodnar, S. Mazur, S. Muhinyuza, and N. Parolya, On the product of a singular Wishart matrix and a singular Gaussian vector in high dimension, Teor. Ĭmovīr. Mat. Stat. 99 (2018), 37–50 (English, with English, Russian and Ukrainian summaries); English transl., Theory Probab. Math. Statist. 99 (2019), 39–52. MR 3908654, DOI 10.1090/tpms/1078
- Taras Bodnar, Stepan Mazur, and Nestor Parolya, Central limit theorems for functionals of large sample covariance matrix and mean vector in matrix-variate location mixture of normal distributions, Scand. J. Stat. 46 (2019), no. 2, 636–660. MR 3948571, DOI 10.1111/sjos.12383
- José A. Díaz-García, Ramón Gutierrez Jáimez, and Kanti V. Mardia, Wishart and pseudo-Wishart distributions and some applications to shape theory, J. Multivariate Anal. 63 (1997), no. 1, 73–87. MR 1491567, DOI 10.1006/jmva.1997.1689
- Yasunori Fujikoshi, Error bounds for asymptotic expansions of the distribution of the MLE in a GMANOVA model, Ann. Inst. Statist. Math. 39 (1987), no. 1, 153–161. MR 886513, DOI 10.1007/BF02491456
- A. K. Gupta and D. K. Nagar, Matrix variate distributions, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, vol. 104, Chapman & Hall/CRC, Boca Raton, FL, 2000. MR 1738933
- Arjun K. Gupta, Tamas Varga, and Taras Bodnar, Elliptically contoured models in statistics and portfolio theory, 2nd ed., Springer, New York, 2013. MR 3112145, DOI 10.1007/978-1-4614-8154-6
- L. R. Haff, An identity for the Wishart distribution with applications, J. Multivariate Anal. 9 (1979), no. 4, 531–544. MR 556910, DOI 10.1016/0047-259X(79)90056-3
- Peter D. Hoff, A first course in Bayesian statistical methods, Springer Texts in Statistics, Springer, New York, 2009. MR 2648134, DOI 10.1007/978-0-387-92407-6
- L. Isserlis, On a formula for the product-moment coefficient of any order of a normal frequency distribution in any number of variables, Biometrika. 12 (1918), 134–139.
- Farrukh Javed, Stepan Mazur, and Edward Ngailo, Higher order moments of the estimated tangency portfolio weights, J. Appl. Stat. 48 (2021), no. 3, 517–535. MR 4205986, DOI 10.1080/02664763.2020.1736523
- F. Javed, N. Loperdo and S. Mazur, Edgeworth expansions for multivariate random sums. Econ. Stat. (2021), DOI 10.1016/j.ecosta.2021.04.005.
- Raymond Kan, From moments of sum to moments of product, J. Multivariate Anal. 99 (2008), no. 3, 542–554. MR 2396978, DOI 10.1016/j.jmva.2007.01.013
- I. Kotsiuba and S. Mazur, On the asymptotic and approximate distributions of the product of an inverse Wishart matrix and a Gaussian vector, Teor. Ĭmovīr. Mat. Stat. 93 (2015), 95–104 (English, with English, Russian and Ukrainian summaries); English transl., Theory Probab. Math. Statist. 93 (2016), 103–112. MR 3553443, DOI 10.1090/tpms/1004
- Tõnu Kollo and Dietrich von Rosen, Advanced multivariate statistics with matrices, Mathematics and Its Applications (New York), vol. 579, Springer, Dordrecht, 2005. MR 2162145, DOI 10.1007/1-4020-3419-9
- Tatsuya Kubokawa, Masashi Hyodo, and Muni S. Srivastava, Asymptotic expansion and estimation of EPMC for linear classification rules in high dimension, J. Multivariate Anal. 115 (2013), 496–515. MR 3004572, DOI 10.1016/j.jmva.2012.11.001
- Gérard Letac and Hélène Massam, All invariant moments of the Wishart distribution, Scand. J. Statist. 31 (2004), no. 2, 295–318. MR 2066255, DOI 10.1111/j.1467-9469.2004.01-043.x
- A. M. Mathai and Serge B. Provost, Quadratic forms in random variables, Statistics: Textbooks and Monographs, vol. 126, Marcel Dekker, Inc., New York, 1992. Theory and applications. MR 1192786
- Robb J. Muirhead, Aspects of multivariate statistical theory, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1982. MR 652932, DOI 10.1002/9780470316559
- M. S. Srivastava, Singular Wishart and multivariate beta distributions, Ann. Statist. 31 (2003), no. 5, 1537–1560. MR 2012825, DOI 10.1214/aos/1065705118
- Dietrich von Rosen, Moments for the inverted Wishart distribution, Scand. J. Statist. 15 (1988), no. 2, 97–109. MR 968156
- Dietrich von Rosen, Moments of maximum likelihood estimators in the growth curve model, Statistics 22 (1991), no. 1, 111–131. MR 1097365, DOI 10.1080/02331889108802291
- Dietrich von Rosen, Distribution and density approximations of a maximum likelihood estimator in the growth curve model, Statistics 29 (1997), no. 1, 37–59. MR 1438532, DOI 10.1080/02331889708802573
References
- D. Bauder, T. Bodnar, S. Mazur and Y. Okhrin, Bayesian inference for the tangent portfolio, Int. J. Theor. Appl. Finance, 21 (2018), no. 8, 1850054, 27 pp. MR 3897158
- T. Bodnar, S. Mazur, and Y. Okhrin, On the exact and approximate distributions of the product of a Wishart matrix with a normal vector, J. Multivariate Anal. 122 (2013), 70–81. MR 3189308
- T. Bodnar and Y. Okhrin, Properties of the singular, inverse and generalized inverse partitioned Wishart distributions, J. Multivariate Anal. 99 (2008), no. 10, 2389–2405. MR 2463397
- T. Bodnar and Y. Okhrin, On the product of inverse Wishart and normal distributions with applications to discriminant analysis and portfolio theory, Scand. J. Stat. 38 (2011), no. 2, 311–331. MR 2829602
- T. Bodnar, S. Mazur and Y. Okhrin, Distribution of the product of singular Wishart matrix and normal vector, Theory Probab. Math. Statist. 91 (2015), 1–15. MR 3364119
- T. Bodnar, S. Mazur and K. Podgórski, Singular inverse Wishart distribution and its application to portfolio theory, J. Multivariate Anal. 143 (2016), 314–326. MR 3431434
- T. Bodnar, S. Mazur, E. Ngailo and N. Parolya, Discriminant analysis in small and large dimensions, Theory Probab. Math. Statist, 100 (2020), 21–41. MR 3992991
- T. Bodnar, S. Mazur, S. Muhinzaya and N. Parolya, On the product of a singular Wishart matrix and a singular Gaussian vector in high dimension, Theory Probab. Math. Statist. 99 (2019), 39–52. MR 3908654
- T. Bodnar, S. Mazur and N. Parolya, Central limit theorems for functionals of large sample covariance matrix and mean vector in matrix-variate location mixture of normal distributions. Scand. J. Stat, 46 (2019), no. 2, 636–660. MR 3948571
- J. A. Díaz-García, R. Gitiérrez-Jáimez and K. V. Mardia, Wishart and pseudo-Wishart distributions and some applications to shape theory, J. Multivariate Anal. 63 (1997), no. 1, 73–87. MR 1491567
- Y. Fujikoshi, Error bounds for asymptotic expansion of the distribution of the MLE in a GMANOVA model, Ann. Inst. Statist. Math. 39 (1987), no. 1, 153–161. MR 886513
- A. K. Gupta and D. K. Nagar, Matrix Variate Distributions, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 104, Chapman & Hall/CRC, Boca Raton, FL, 2000. MR 1738933
- A. K. Gupta, T. Varga, and T. Bodnar, Elliptically Contoured Models in Statistics and Portfolio Theory, second edition, Springer, New York, 2013. MR 3112145
- L. R. Haff, An identity for the Wishart distribution with applications, J. Multivariate Anal. 9 (1979), no. 4, 531–544. MR 556910
- P. D. Hoff, A first course in Bayesian statistical methods, Springer Texts in Statistics, Springer, New York, 2009. MR 2648134
- L. Isserlis, On a formula for the product-moment coefficient of any order of a normal frequency distribution in any number of variables, Biometrika. 12 (1918), 134–139.
- F. Javed, S. Mazur and E. Ngailo, Higher order moments of the estimated tangency portfolio weights, J. Appl. Stat. 48 (2021), no. 3, 517–535. MR 4205986
- F. Javed, N. Loperdo and S. Mazur, Edgeworth expansions for multivariate random sums. Econ. Stat. (2021), DOI 10.1016/j.ecosta.2021.04.005.
- R. Kan, From moments of sum to moments of product, J. Multivariate Anal. 99 (2008), no. 3, 542–554. MR 2396978
- I. Kotsiuba and S. Mazur, On the asymptotic and approximate distributions of the product of an inverse Wishart matrix and a gaussian random vector, Theory Probab. Math. Statist. 93 (2016), 103–112. MR 3553443
- T. Kollo and D. von Rosen, Advanced Multivariate Statistics with Matrices, Mathematics and Its Applications (New York), vol. 579, Springer, Dordrecht, 2005. MR 2162145
- T. Kubokawa, M. Hyodo and M. S. Srivastava, Asymptotic expansion and estimation of EPMC for linear classification rules in high dimension, J. Multivariate Anal. 115 (2013), 496–515. MR 3004572
- G. Letac and H. Massam, All invariant moments of the Wishart distribution, Scand. J. Statist. 31 (2004), no. 2, 295–318. MR 2066255
- A. M. Mathai and S. B. Provost, Quadratic Forms in random variables, Statistics: Textbooks and Monographs, vol. 126, Marcel Dekker, Inc., New York, 1992. MR 1192786
- R. J. Muirhead, Aspects of multivariate statistical theory, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1982. MR 652932
- M. S. Srivastava, Singular Wishart and multivariate beta distributions, Ann. Statist. 31 (2003), no. 5, 1537–1560. MR 2012825
- D. von Rosen, Moments for the inverted Wishart distribution, Scand. J. Stat. 15 (1988), no. 2, 97–109. MR 968156
- D. von Rosen, Moments of maximum likelihood estimators in the growth curve model, Statistics. 22 (1991), no. 1, 111–131. MR 1097365
- D. von Rosen, Distribution and density approximations of a maximum likelihood estimator in the growth curve model, Statistics. 29 (1997), no. 1, 37–59. MR 1438532
Similar Articles
Retrieve articles in Theory of Probability and Mathematical Statistics
with MSC (2020):
62H10,
60E05
Retrieve articles in all journals
with MSC (2020):
62H10,
60E05
Additional Information
Koshiro Yonenaga
Affiliation:
Faculty of Education, Hokkaido University of Education, Sapporo, Japan
Email:
yonenaga.koshiro@s.hokkyodai.ac.jp
Akio Suzukawa
Affiliation:
Faculty of Economics and Business, Hokkaido University, Sapporo, Japan
Email:
suzukawa@econ.hokudai.ac.jp
Keywords:
Wishart distribution,
multivariate normal distribution,
moment
Received by editor(s):
June 25, 2021
Accepted for publication:
February 11, 2022
Published electronically:
May 2, 2023
Additional Notes:
Financial support from the Hokkaido University DX Doctoral Fellowship (JPMJSP2119) is gratefully acknowledged.
Article copyright:
© Copyright 2023
Taras Shevchenko National University of Kyiv