Stochastic differential equations with discontinuous diffusion coefficients
Authors:
Soledad Torres and Lauri Viitasaari
Journal:
Theor. Probability and Math. Statist. 109 (2023), 159-175
MSC (2020):
Primary 60H05; Secondary 60G22, 26A33
DOI:
https://doi.org/10.1090/tpms/1201
Published electronically:
October 3, 2023
MathSciNet review:
4652998
Full-text PDF
Abstract |
References |
Similar Articles |
Additional Information
Abstract: We study one-dimensional stochastic differential equations of the form $dX_t = \sigma (X_t)dY_t$, where $Y$ is a suitable Hölder continuous driver such as the fractional Brownian motion $B^H$ with $H>\frac 12$. The innovative aspect of the present paper lies in the assumptions on diffusion coefficients $\sigma$ for which we assume very mild conditions. In particular, we allow $\sigma$ to have discontinuities, and as such our results can be applied to study equations with discontinuous diffusions.
References
- Richard F. Bass and Zhen-Qing Chen, One-dimensional stochastic differential equations with singular and degenerate coefficients, Sankhyā 67 (2005), no. 1, 19–45. MR 2203887
- Haim Brezis, Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer, New York, 2011. MR 2759829, DOI 10.1007/978-0-387-70914-7
- Brahim Boufoussi and Youssef Ouknine, On a SDE driven by a fractional Brownian motion and with monotone drift, Electron. Comm. Probab. 8 (2003), 122–134. MR 2042751, DOI 10.1214/ECP.v8-1084
- Zhe Chen, Lasse Leskelä, and Lauri Viitasaari, Pathwise Stieltjes integrals of discontinuously evaluated stochastic processes, Stochastic Process. Appl. 129 (2019), no. 8, 2723–2757. MR 3980142, DOI 10.1016/j.spa.2018.08.002
- H. J. Engelbert and W. Schmidt, On one-dimensional stochastic differential equations with generalized drift, Stochastic differential systems (Marseille-Luminy, 1984) Lect. Notes Control Inf. Sci., vol. 69, Springer, Berlin, 1985, pp. 143–155. MR 798317, DOI 10.1007/BFb0005069
- H. J. Engelbert and W. Schmidt, On solutions of one-dimensional stochastic differential equations without drift, Z. Wahrsch. Verw. Gebiete 68 (1985), no. 3, 287–314. MR 771468, DOI 10.1007/BF00532642
- Johanna Garzón, Jorge A. León, and Soledad Torres, Fractional stochastic differential equation with discontinuous diffusion, Stoch. Anal. Appl. 35 (2017), no. 6, 1113–1123. MR 3740753, DOI 10.1080/07362994.2017.1358643
- Michael Hinz, Jonas M. Tölle, and Lauri Viitasaari, Sobolev regularity of occupation measures and paths, variability and compositions, Electron. J. Probab. 27 (2022), Paper No. 73, 29. MR 4440066, DOI 10.1214/22-ejp797
- Michael Hinz, Jonas M. Tölle, and Lauri Viitasaari, Sobolev regularity of occupation measures and paths, variability and compositions, Electron. J. Probab. 27 (2022), Paper No. 73, 29. MR 4440066, DOI 10.1214/22-ejp797
- Michael Josephy, Composing functions of bounded variation, Proc. Amer. Math. Soc. 83 (1981), no. 2, 354–356. MR 624930, DOI 10.1090/S0002-9939-1981-0624930-9
- J.-F. Le Gall, Applications du temps local aux équations différentielles stochastiques unidimensionnelles, Seminar on probability, XVII, Lecture Notes in Math., vol. 986, Springer, Berlin, 1983, pp. 15–31 (French). MR 770393, DOI 10.1007/BFb0068296
- Jorge A. León, David Nualart, and Samy Tindel, Young differential equations with power type nonlinearities, Stochastic Process. Appl. 127 (2017), no. 9, 3042–3067. MR 3682123, DOI 10.1016/j.spa.2017.01.007
- Yuliya S. Mishura, Stochastic calculus for fractional Brownian motion and related processes, Lecture Notes in Mathematics, vol. 1929, Springer-Verlag, Berlin, 2008. MR 2378138, DOI 10.1007/978-3-540-75873-0
- Yu. Mishura and D. Nualart, Weak solutions for stochastic differential equations with additive fractional noise, Statist. Probab. Lett. 70 (2004), no. 4, 253–261. MR 2125162, DOI 10.1016/j.spl.2004.10.011
- Shintaro Nakao, On the pathwise uniqueness of solutions of one-dimensional stochastic differential equations, Osaka Math. J. 9 (1972), 513–518. MR 326840
- David Nualart and Aurel Răşcanu, Differential equations driven by fractional Brownian motion, Collect. Math. 53 (2002), no. 1, 55–81. MR 1893308
- Stefan G. Samko, Anatoly A. Kilbas, and Oleg I. Marichev, Fractional integrals and derivatives, Gordon and Breach Science Publishers, Yverdon, 1993. Theory and applications; Edited and with a foreword by S. M. Nikol′skiĭ; Translated from the 1987 Russian original; Revised by the authors. MR 1347689
- Mark S. Veillette and Murad S. Taqqu, Properties and numerical evaluation of the Rosenblatt distribution, Bernoulli 19 (2013), no. 3, 982–1005. MR 3079303, DOI 10.3150/12-BEJ421
- M. Zähle, Integration with respect to fractal functions and stochastic calculus. I, Probab. Theory Related Fields 111 (1998), no. 3, 333–374. MR 1640795, DOI 10.1007/s004400050171
- Martina Zähle, On the link between fractional and stochastic calculus, Stochastic dynamics (Bremen, 1997) Springer, New York, 1999, pp. 305–325. MR 1678495, DOI 10.1007/0-387-22655-9_{1}3
References
- R. Bass and Z-Q. Chen. One-dimensional stochastic differential equations with singular and degenerate coefficients. Sankhyā 67 (2005), no. 1, 19–45. MR 2203887
- H. Brezis. Functional analysis, Sobolev spaces and partial differential equations. Universitext, Springer, New York, 2011. MR 2759829
- B. Boufoussi and Y. Ouknine. On a SDE driven by a fractional Brownian motion and with monotone drift. Electron. Comm. Probab. 8 (2003), 122–134. MR 2042751
- Z. Chen, L. Leskelä, and L. Viitasaari. Pathwise Stieltjes integrals of discontinuously evaluated stochastic processes. Stochastic Process. Appl. 129 (2019), no. 8, 2723–2757. MR 3980142
- H. J. Engelbert and W. Schmidt. On one-dimensional stochastic differential equations with generalized drift. Stochastic differential systems (Marseille–Luminy, 1984), 143–155, Lect. Notes Control Inf. Sci., 69, Springer, Berlin. MR 0798317
- H. J. Engelbert and W. Schmidt. On solutions of one-dimensional stochastic differential equations without drift. Z. Wahrsch. Verw. Gebiete 68 (1985), no. 3, 287–314. MR 0771468
- J. Garzon, J.A. Leon, and S. Torres. Fractional stochastic differential equation with discontinuous diffusion. Stoch. Anal. Appl. 35 (2017), no. 6, 1113–1123. MR 3740753
- M. Hinz, J. Tölle, and L. Viitasaari. Sobolev regularity of occupation measures and paths, variability and compositions. Electron. J. Probab. 27 (2022), Paper No. 73, 29 pp. MR 4440066
- M. Hinz, J. Tölle, and L. Viitasaari. Variability of paths and differential equations with BV-coefficients. Accepted for publication in Annales de l’Institut Henri Poincaré, 2022. MR 4440066
- M. Josephy. Composing functions of bounded variation. Proc. Amer. Math. Soc. 83 (1981), no. 2, 354–356. MR 0624930
- J.F. Le Gall. Local time applications to one-dimensional stochastic differential equations. Seminar on probability, XVII, Lecture Notes in Math., vol. 986, Springer, Berlin, 1983, pp. 15–31. MR 0770393
- J.A. Leon, D. Nualart, and S. Tindel. Young differential equations with power type nonlinearities. Stochastic Process. Appl. 127 (2017), no. 9, 3042–3067. MR 3682123
- Y. Mishura. Stochastic calculus for fractional Brownian motion and related processes. Springer, Berlin, 2008. MR 2378138
- Y. Mishura and D. Nualart. Weak solutions for stochastic differential equations with additive fractional noise. Statist. Probab. Lett. 70 (2004), no. 4, 253–261. MR 2125162
- S. Nakao. On the pathwise uniqueness of solutions of one-dimensional stochastic differential equations. Osaka Math. J. 9 (1972), 513–518. MR 0326840
- D. Nualart and A. Răşcanu. Differential equations driven by fractional Brownian motion. Collect. Math. 53 (2002), no. 1, 55–81. MR 1893308
- S.G. Samko, A.A. Kilbas, and O.I. Marichev. Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Yverdon, 1993. MR 1347689
- M.S. Veillette and M.S. Taqqu. Properties and numerical evaluation of the Rosenblatt distribution. Bernoulli 19 (2013), no. 3, 982–1005. MR 3079303
- M. Zähle. Integration with respect to fractal functions and stochastic calculus. I. Probab. Theory Related Fields 111 (1998), no. 3, 333–372. MR 1640795
- M. Zähle. On the link between fractional and stochastic calculus. Stochastic dynamics, 305–325, 1999, Springer, New York. MR 1678495
Similar Articles
Retrieve articles in Theory of Probability and Mathematical Statistics
with MSC (2020):
60H05,
60G22,
26A33
Retrieve articles in all journals
with MSC (2020):
60H05,
60G22,
26A33
Additional Information
Soledad Torres
Affiliation:
Universidad de Valparaíso, Facultad de Ingeniería, CIMFAV, Chile
Email:
soledad.torres@uv.cl
Lauri Viitasaari
Affiliation:
Uppsala University, Department of Mathematics, Sweden
Email:
lauri.viitasaari@math.uu.se
Keywords:
Stochastic differential equation,
fractional calculus,
Hölder continuity,
discontinuity,
bounded variation
Received by editor(s):
October 27, 2022
Accepted for publication:
March 1, 2023
Published electronically:
October 3, 2023
Additional Notes:
The first author was partially supported by the grant Fondecyt Regular 1230807.
The second author wishes to thank Vilho, Yrjö, and the Kalle Väisälä foundation for financial support.
Article copyright:
© Copyright 2023
Taras Shevchenko National University of Kyiv