Asymptotic theory for quadratic variation of harmonizable fractional stable processes
Authors:
Andreas Basse-O’Connor and Mark Podolskij
Journal:
Theor. Probability and Math. Statist. 110 (2024), 3-12
MSC (2020):
Primary 60F05, 60F15, 60G22, 60G48, 60H05
DOI:
https://doi.org/10.1090/tpms/1203
Published electronically:
May 10, 2024
Full-text PDF
Abstract |
References |
Similar Articles |
Additional Information
Abstract: In this paper we study the asymptotic theory for quadratic variation of a harmonizable fractional $\alpha$-stable process. We show a law of large numbers with a non-ergodic limit and obtain weak convergence towards a Lévy-driven Rosenblatt random variable when the Hurst parameter satisfies $H\in (1/2,1)$ and $\alpha (1-H)<1/2$. This result complements the asymptotic theory for fractional stable processes.
References
- Antoine Ayache and Julien Hamonier, Linear fractional stable motion: a wavelet estimator of the $\alpha$ parameter, Statist. Probab. Lett. 82 (2012), no. 8, 1569–1575. MR 2930661, DOI 10.1016/j.spl.2012.04.005
- Antoine Ayache and Yimin Xiao, Harmonizable fractional stable fields: local nondeterminism and joint continuity of the local times, Stochastic Process. Appl. 126 (2016), no. 1, 171–185. MR 3426515, DOI 10.1016/j.spa.2015.08.001
- Andreas Basse-O’Connor, Thorbjørn Grønbæk, and Mark Podolskij, Local asymptotic self-similarity for heavy tailed harmonizable fractional Lévy motions, ESAIM Probab. Stat. 25 (2021), 286–297. MR 4281739, DOI 10.1051/ps/2021011
- Andreas Basse-O’Connor, Claudio Heinrich, and Mark Podolskij, On limit theory for functionals of stationary increments Lévy driven moving averages, Electron. J. Probab. 24 (2019), Paper No. 79, 42. MR 4003132, DOI 10.1214/19-ejp336
- Andreas Basse-O’Connor, Raphaël Lachièze-Rey, and Mark Podolskij, Power variation for a class of stationary increments Lévy driven moving averages, Ann. Probab. 45 (2017), no. 6B, 4477–4528. MR 3737916, DOI 10.1214/16-AOP1170
- Andreas Basse-O’Connor and Mark Podolskij, On critical cases in limit theory for stationary increments Lévy driven moving averages, Stochastics 89 (2017), no. 1, 360–383. MR 3574707, DOI 10.1080/17442508.2016.1191493
- Andreas Basse-O’Connor, Mark Podolskij, and Christoph Thäle, A Berry-Esseén theorem for partial sums of functionals of heavy-tailed moving averages, Electron. J. Probab. 25 (2020), Paper No. 31, 31. MR 4073692, DOI 10.1214/20-ejp435
- Albert Benassi, Serge Cohen, and Jacques Istas, Identification and properties of real harmonizable fractional Lévy motions, Bernoulli 8 (2002), no. 1, 97–115. MR 1884160
- Stamatis Cambanis, Clyde D. Hardin Jr., and Aleksander Weron, Ergodic properties of stationary stable processes, Stochastic Process. Appl. 24 (1987), no. 1, 1–18. MR 883599, DOI 10.1016/0304-4149(87)90024-X
- Stamatis Cambanis and Makoto Maejima, Two classes of self-similar stable processes with stationary increments, Stochastic Process. Appl. 32 (1989), no. 2, 305–329. MR 1014456, DOI 10.1016/0304-4149(89)90082-3
- Thi To Nhu Dang and Jacques Istas, Estimation of the Hurst and the stability indices of a $H$-self-similar stable process, Electron. J. Stat. 11 (2017), no. 2, 4103–4150. MR 3715823, DOI 10.1214/17-EJS1357
- Marco Dozzi and Georgiy Shevchenko, Real harmonizable multifractional stable process and its local properties, Stochastic Process. Appl. 121 (2011), no. 7, 1509–1523. MR 2802463, DOI 10.1016/j.spa.2011.03.012
- Danijel Grahovac, Nikolai N. Leonenko, and Murad S. Taqqu, Scaling properties of the empirical structure function of linear fractional stable motion and estimation of its parameters, J. Stat. Phys. 158 (2015), no. 1, 105–119. MR 3296276, DOI 10.1007/s10955-014-1126-4
- J. Hoffmann-Jørgensen, Probability with a view toward statistics. Vol. I, Chapman & Hall Probability Series, Chapman & Hall, New York, 1994. MR 1278485, DOI 10.1007/978-1-4899-3019-4
- O. Kallenberg and J. Szulga, Multiple integration with respect to Poisson and Lévy processes, Probab. Theory Related Fields 83 (1989), no. 1-2, 101–134. MR 1012497, DOI 10.1007/BF00333146
- Norio Kôno and Makoto Maejima, Hölder continuity of sample paths of some self-similar stable processes, Tokyo J. Math. 14 (1991), no. 1, 93–100. MR 1108158, DOI 10.3836/tjm/1270130491
- Stanisław Kwapień and Wojbor A. Woyczyński, Double stochastic integrals, random quadratic forms and random series in Orlicz spaces, Ann. Probab. 15 (1987), no. 3, 1072–1096. MR 893915
- Mathias Mørck Ljungdahl and Mark Podolskij, A limit theorem for a class of stationary increments Lévy moving average process with multiple singularities, Mod. Stoch. Theory Appl. 5 (2018), no. 3, 297–316. MR 3868543, DOI 10.15559/18-vmsta111
- Mathias Mørck Ljungdahl and Mark Podolskij, A minimal contrast estimator for the linear fractional stable motion, Stat. Inference Stoch. Process. 23 (2020), no. 2, 381–413. MR 4123929, DOI 10.1007/s11203-020-09216-2
- Mathias Mørck Ljungdahl and Mark Podolskij, Multidimensional parameter estimation of heavy-tailed moving averages, Scand. J. Stat. 49 (2022), no. 2, 593–624. MR 4428498, DOI 10.1111/sjos.12527
- Benoit B. Mandelbrot and John W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev. 10 (1968), 422–437. MR 242239, DOI 10.1137/1010093
- Stepan Mazur, Dmitry Otryakhin, and Mark Podolskij, Estimation of the linear fractional stable motion, Bernoulli 26 (2020), no. 1, 226–252. MR 4036033, DOI 10.3150/19-BEJ1124
- Vladas Pipiras and Murad S. Taqqu, Central limit theorems for partial sums of bounded functionals of infinite-variance moving averages, Bernoulli 9 (2003), no. 5, 833–855. MR 2047688, DOI 10.3150/bj/1066418880
- Vladas Pipiras, Murad S. Taqqu, and Patrice Abry, Bounds for the covariance of functions of infinite variance stable random variables with applications to central limit theorems and wavelet-based estimation, Bernoulli 13 (2007), no. 4, 1091–1123. MR 2364228, DOI 10.3150/07-BEJ6143
- Jan Rosiński, On the structure of stationary stable processes, Ann. Probab. 23 (1995), no. 3, 1163–1187. MR 1349166
- Gennady Samorodnitsky and Murad S. Taqqu, Multiple stable integrals of Banach-valued functions, J. Theoret. Probab. 3 (1990), no. 2, 267–287. MR 1046334, DOI 10.1007/BF01045162
References
- A. Ayache and J. Hamonier, Linear fractional stable motion: A wavelet estimator of the $\alpha$ parameter, Statist. Probab. Lett. 82 (2012), 1569–1575. MR 2930661
- A. Ayache and Y. Xiao, Harmonizable fractional stable fields: Local nondeterminism and joint continuity of the local times, Stochastic Process. Appl. 126 (2016), no. 1, 171–185. MR 3426515
- A. Basse-O’Connor, T. Grønbæk, and M. Podolskij, Local asymptotic self-similarity for heavy-tailed harmonizable fractional Lévy motions, ESAIM Probab. Stat. 25 (2021), 286–297. MR 4281739
- A. Basse-O’Connor, C. Heinrich, and M. Podolskij, On limit theory for functionals of stationary increments Lévy driven moving averages, Electron. J. Probab. 24 (2019), no. 79, 1–42. MR 4003132
- A. Basse-O’Connor, R. Lachièze-Rey, and M. Podolskij, Power variation for a class of stationary increments Lévy driven moving averages, Ann. Probab. 45 (2017), no. 6B, 4477–4528. MR 3737916
- A. Basse-O’Connor and M. Podolskij, On critical cases in limit theory for stationary increments Lévy driven moving averages, Festschrift for Bernt Øksendal, Stochastics 81 (2017), no. 1, 360–383. MR 3574707
- A. Basse-O’Connor, M. Podolskij, and C. Thäle, A Berry–Esseén theorem for partial sums of functionals of heavy-tailed moving averages, Electron. J. Probab. 25 (2020), no. 31, 1–31. MR 4073692
- A. Benassi, S. Cohen. and J. Istas, Identification and properties of real harmonizable fractional Lévy motions, Bernoulli 8 (2002), no. 1, 97–115. MR 1884160
- S. Cambanis, C. D. Hardin, and A. Weron, Ergodic properties of stationary stable processes, Stochastic Process. Appl. 24 (1987), 1–18. MR 883599
- S. Cambanis and M. Maejima, Two classes of self-similar stable processes with stationary increments, Stochastic Process. Appl. 32 (1989), no. 2, 305–329. MR 1014456
- T. T. N. Dang and J. Istas, Estimation of the Hurst and the stability indices of a $H$-self-similar stable process, Electron. J. Probab. 11 (2017), 4103–4150. MR 3715823
- M. Dozzi and G. Shevchenko, Real harmonizable multifractional stable process and its local properties, Stochastic Process. Appl. 121 (2011), no. 7, 1509–1523. MR 2802463
- D. Grahovac, N. N. Leonenko and M. S. Taqqu, Scaling properties of the empirical structure function of linear fractional stable motion and estimation of its parameters, J. Stat. Phys. 158 (2015), 105–119. MR 3296276
- J. Hoffmann-Jørgensen, Probability with a view toward statistics, vol. I, Chapman & Hall, New York, 1994. MR 1278485
- O. Kallenberg and J. Szulga, Multiple integration with respect to Poisson and Lévy processes, Probab. Theory and Related Fields. 83 (1989), no. 1-2, 101–134. MR 1012497
- N. Kôno and M. Maejima, Hölder continuity of sample paths of some self-similar stable processes, Tokyo J. Math. 14 (1991), no. 1, 93–100. MR 1108158
- S. Kwapien and W. A. Woyczynski, Double stochastic integrals, random quadratic forms and random series in Orlicz spaces, Ann. Probab. 15 (1987), no. 3, 1072–1096. MR 893915
- M. M. Ljungdahl and M. Podolskij, A limit theorem for a class of stationary increments Lévy moving average process with multiple singularities, Mod. Stoch. Theory Appl. 5 (2018), no. 3, 297–316. MR 3868543
- M. M. Ljungdahl and M. Podolskij, A minimal contrast estimator for the linear fractional stable motion, Stat. Inference Stoch. Process. 23 (2020), 381–413. MR 4123929
- M. M. Ljungdahl and M. Podolskij, Multidimensional parameter estimation of heavy-tailed moving averages, Scand. J. Stat. 49 (2022), no. 2, 593–624. MR 4428498
- B. B. Mandelbrot and J. W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev. 10 (1968), 422–437. MR 242239
- S. Mazur, D. Otryakhin, and M. Podolskij, Estimation of the linear fractional stable motion, Bernoulli 26 (2020), no. 1, 226–252. MR 4036033
- V. Pipiras and M. S. Taqqu, Central limit theorems for partial sums of bounded functionals of infinite-variance moving averages, Bernoulli 9 (2003), 833–855. MR 2047688
- V. Pipiras, M. S. Taqqu, and P. Abry, Bounds for the covariance of functions of infinite variance stable random variables with applications to central limit theorems and wavelet-based estimation, Bernoulli 13 (2007), no. 4, 1091–1123. MR 2364228
- J. Rosinski, On the structure of stationary stable processes, Ann. Probab. 23 (1995), no. 3, 1163–1187. MR 1349166
- G. Samorodnitsky and M. Taqqu, Multiple stable integrals of Banach-valued functions, J. Theoret. Probab. 3 (1990), 267–287. MR 1046334
Similar Articles
Retrieve articles in Theory of Probability and Mathematical Statistics
with MSC (2020):
60F05,
60F15,
60G22,
60G48,
60H05
Retrieve articles in all journals
with MSC (2020):
60F05,
60F15,
60G22,
60G48,
60H05
Additional Information
Andreas Basse-O’Connor
Affiliation:
Department of Mathematics, University of Aarhus, DK-8000 Aarhus, Denmark
Email:
basse@math.au.dk
Mark Podolskij
Affiliation:
Department of Mathematics, University of Luxembourg, Luxembourg
Email:
mark.podolskij@uni.lu
Keywords:
Fractional processes,
harmonizable processes,
limit theorems,
quadratic variation,
stable Lévy motion
Received by editor(s):
February 28, 2023
Accepted for publication:
June 29, 2023
Published electronically:
May 10, 2024
Additional Notes:
The second author gratefully acknowledges financial support of ERC Consolidator Grant 815703 “STAMFORD: Statistical Methods for High Dimensional Diffusions”.
Article copyright:
© Copyright 2024
Taras Shevchenko National University of Kyiv