Regularity properties of random wavelet series
Authors:
Céline Esser, Stéphane Jaffard and Béatrice Vedel
Journal:
Theor. Probability and Math. Statist. 110 (2024), 31-53
MSC (2020):
Primary 42C40; Secondary 42A20
DOI:
https://doi.org/10.1090/tpms/1205
Published electronically:
May 10, 2024
Full-text PDF
Abstract |
References |
Similar Articles |
Additional Information
Abstract: We study the regularity properties of random wavelet series constructed by multiplying the coefficients of a deterministic wavelet series with unbounded I.I.D. random variables. In particular, we show that, at the opposite to what happens for Fourier series, the randomization of almost every continuous function gives an almost surely nowhere locally bounded function.
References
- Alexandre Almeida, Wavelet bases in generalized Besov spaces, J. Math. Anal. Appl. 304 (2005), no. 1, 198–211. MR 2124658, DOI 10.1016/j.jmaa.2004.09.017
- Jean-Marie Aubry and Stéphane Jaffard, Random wavelet series, Comm. Math. Phys. 227 (2002), no. 3, 483–514. MR 1910828, DOI 10.1007/s002200200630
- Brian R. Hunt, Tim Sauer, and James A. Yorke, Prevalence: a translation-invariant “almost every” on infinite-dimensional spaces, Bull. Amer. Math. Soc. (N.S.) 27 (1992), no. 2, 217–238. MR 1161274, DOI 10.1090/S0273-0979-1992-00328-2
- P. Billard, S. Kwapień, A. Pełczyński, and Ch. Samuel, Biorthogonal systems of random unconditional convergence in Banach spaces, Texas Functional Analysis Seminar 1985–1986 (Austin, TX, 1985–1986) Longhorn Notes, Univ. Texas, Austin, TX, 1986, pp. 13–35. MR 1017039
- Emile Borel, Sur les séries de Taylor, Acta Math. 21 (1897), no. 1, 243–247 (French). Lettre adressée à l’éditeur. MR 1554891, DOI 10.1007/BF02417979
- Jens Peter Reus Christensen, On sets of Haar measure zero in abelian Polish groups, Israel J. Math. 13 (1972), 255–260 (1973). MR 326293, DOI 10.1007/BF02762799
- Z. Ciesielski, Hölder conditions for realizations of Gaussian processes, Trans. Amer. Math. Soc. 99 (1961), 403–413. MR 132591, DOI 10.1090/S0002-9947-1961-0132591-2
- Ingrid Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. MR 1162107, DOI 10.1137/1.9781611970104
- Lara Daw and Laurent Loosveldt, Wavelet methods to study the pointwise regularity of the generalized Rosenblatt process, Electron. J. Probab. 27 (2022), Paper No. 152, 45. MR 4515708, DOI 10.1214/22-ejp878
- Karel de Leeuw, Yitzhak Katznelson, and Jean-Pierre Kahane, Sur les coefficients de Fourier des fonctions continues, C. R. Acad. Sci. Paris Sér. A-B 285 (1977), no. 16, A1001–A1003 (French, with English summary). MR 510870
- Óscar Domínguez and Sergey Tikhonov, Function spaces of logarithmic smoothness: embeddings and characterizations, Mem. Amer. Math. Soc. 282 (2023), no. 1393, vii+166. MR 4539365, DOI 10.1090/memo/1393
- David L. Donoho, Iain M. Johnstone, Gérard Kerkyacharian, and Dominique Picard, Wavelet shrinkage: asymptopia?, J. Roy. Statist. Soc. Ser. B 57 (1995), no. 2, 301–369. With discussion and a reply by the authors. MR 1323344, DOI 10.1111/j.2517-6161.1995.tb02032.x
- Céline Esser and Stéphane Jaffard, Divergence of wavelet series: a multifractal analysis, Adv. Math. 328 (2018), 928–958. MR 3771146, DOI 10.1016/j.aim.2018.02.010
- Céline Esser and Laurent Loosveldt, Slow, ordinary and rapid points for Gaussian wavelets series and application to fractional Brownian motions, ALEA Lat. Am. J. Probab. Math. Stat. 19 (2022), no. 2, 1471–1495. MR 4517730, DOI 10.30757/alea.v19-59
- A. Fraysse, Regularity criteria for almost every function in Sobolev spaces, J. Funct. Anal. 258 (2010), no. 6, 1806–1821. MR 2578456, DOI 10.1016/j.jfa.2009.11.017
- Christopher Heil, A basis theory primer, Expanded edition, Applied and Numerical Harmonic Analysis, Birkhäuser/Springer, New York, 2011. MR 2744776, DOI 10.1007/978-0-8176-4687-5
- Stéphane Jaffard, Wavelet techniques for pointwise regularity, Ann. Fac. Sci. Toulouse Math. (6) 15 (2006), no. 1, 3–33 (English, with English and French summaries). MR 2225745, DOI 10.5802/afst.1111
- Stéphane Jaffard and Yves Meyer, Wavelet methods for pointwise regularity and local oscillations of functions, Mem. Amer. Math. Soc. 123 (1996), no. 587, x+110. MR 1342019, DOI 10.1090/memo/0587
- Svante Janson, Gaussian Hilbert spaces, Cambridge Tracts in Mathematics, vol. 129, Cambridge University Press, Cambridge, 1997. MR 1474726, DOI 10.1017/CBO9780511526169
- Jean-Pierre Kahane, Some random series of functions, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 5, Cambridge University Press, Cambridge, 1985. MR 833073
- Jean-Pierre Kahane, A century of interplay between Taylor series, Fourier series and Brownian motion, Bull. London Math. Soc. 29 (1997), no. 3, 257–279. MR 1435557, DOI 10.1112/S0024609396002913
- V. V. Kvaratskhelia, Unconditional convergence of functional series in problems of probability theory, J. Math. Sci. (N.Y.) 200 (2014), no. 2, 143–294. Translated from Sovrem. Mat. Prilozh. No. 86 (2013). MR 3306166, DOI 10.1007/s10958-014-1912-1
- Michel Ledoux and Michel Talagrand, Probability in Banach spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 23, Springer-Verlag, Berlin, 1991. Isoperimetry and processes. MR 1102015, DOI 10.1007/978-3-642-20212-4
- Stéphane Mallat, A wavelet tour of signal processing, Academic Press, Inc., San Diego, CA, 1998. MR 1614527
- M. B. Marcus and G. Pisier, Necessary and sufficient conditions for the uniform convergence of random trigonometric series, Lecture Notes Series, vol. 50, Aarhus Universitet, Matematisk Institut, Aarhus, 1978. Lecture 1977/78. MR 507061
- Michael B. Marcus and Gilles Pisier, Random Fourier series with applications to harmonic analysis, Annals of Mathematics Studies, No. 101, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1981. MR 630532
- Bernard Maurey, Au centre et autour de mathématiques de Jean-Pierre Kahane, SMF 2018: Congrès de la Société Mathématique de France, Sémin. Congr., vol. 33, Soc. Math. France, Paris, [2019] ©2019, pp. 1–67 (French, with French summary). MR 4508907
- Yves Meyer, Wavelets and operators, Cambridge Studies in Advanced Mathematics, vol. 37, Cambridge University Press, Cambridge, 1992. Translated from the 1990 French original by D. H. Salinger. MR 1228209
- F. L. Nazarov, The Bang solution of the coefficient problem, Algebra i Analiz 9 (1997), no. 2, 272–287 (Russian); English transl., St. Petersburg Math. J. 9 (1998), no. 2, 407–419. MR 1468554
- R. Paley and A. Zygmund, On some series of functions, Proc. Camb. Phil. Soc. 26 (1930), 266–272, 337–357, and 28 (1932) 458–474.
- Walter Rudin, Trigonometric series with gaps, J. Math. Mech. 9 (1960), 203–227. MR 116177, DOI 10.1512/iumj.1960.9.59013
- Hugo Steinhaus, Über die Wahrscheinlichkeit dafür, daßder Konvergenzkreis einer Potenzreihe ihre natürliche Grenze ist, Math. Z. 31 (1930), no. 1, 408–416 (German). MR 1545123, DOI 10.1007/BF01246422
- Jan-Olov Strömberg, A modified Franklin system and higher-order spline systems on $\textbf {R}^{n}$ as unconditional bases for Hardy spaces, Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981) Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983, pp. 475–494. MR 730086
- Norbert Wiener, Differential-space, J. Math. and Phys. 2 (1923), 131–174. MR 4250033, DOI 10.1002/sapm192321131
- Yves Meyer, Fabrice Sellan, and Murad S. Taqqu, Wavelets, generalized white noise and fractional integration: the synthesis of fractional Brownian motion, J. Fourier Anal. Appl. 5 (1999), no. 5, 465–494. MR 1755100, DOI 10.1007/BF01261639
References
- A. Almeida, Wavelet bases in generalized Besov spaces, J. Math. Anal. Appl. 304 (2005), 198–211. MR 2124658
- J.-M. Aubry and S. Jaffard, Random wavelet series, Comm. Math. Phys. 227 (2002), no. 3, 483–514. MR 1910828
- J. Yorke, B. Hunt, and T. Sauer, Prevalence: a translation invariance “almost every” on infinite dimensional spaces, Bull. Amer. Math. Soc. 27 (1992), no. 2, 217–238. MR 1161274
- P. Billard, S. Kwapień, A. Pełczyński, and Ch. Samuel, Biorthogonal systems of random unconditional convergence in Banach spaces, Texas Functional Analysis Seminar 1985–1986 (Austin, TX, 1985–1986), Longhorn Notes, Univ. Texas, Austin, TX, 1986, pp 13–35. MR 1017039
- E. Borel, Sur les séries de Taylor, Acta Math. 20 (1897), 243–247. MR 1554891
- J. Christensen, On sets of Haar measure zero in abelian polish groups, Israel J. Math. 13 (1972), no. 3, 255–260. MR 326293
- Z. Ciesielski, Hölder conditions for realizations of Gaussian processes, Trans. Amer. Math. Soc. 99 (1961), 403–413. MR 132591
- I. Daubechies, Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics, Philadelphia, PA, 1992. MR 1162107
- L. Daw and L. Loosveldt, Wavelet methods to study the pointwise regularity of the generalized Rosenblatt process, Electron. J. Probab. 27 (2022), 1–45. MR 4515708
- K. de Leeuw, Y. Katznelson, and J.-P. Kahane, Sur les coefficients de Fourier des fonctions continues, C. R. Acad. Sci. Paris Sér. A-B 285 (1977), no. 16, A1001–A1003. MR 510870
- O. Domínguez and S. Tikhonov, Function spaces of logarithmic smoothness : embeddings and characterizations, arXiv, 2018. MR 4539365
- D. L. Donoho, I. M. Johnstone, G. Kerkyacharian, and D. Picard. Wavelet shrinkage: Asymptopia, J. Roy. Statist. Soc., B 57 (1995), no. 2, 301–369. MR 1323344
- C. Esser and S. Jaffard, Divergence of wavelet series: a multifractal analysis, Adv. Math., 328 (2018), 928–958. MR 3771146
- C. Esser and L. Loosveldt, Slow, ordinary and rapid points for Gaussian wavelets series and application to fractional Brownian motions, ALEA Lat. Am. J. Probab. Math. Stat. 19 (2022), no. 2, 1471–1495. MR 4517730
- A. Fraysse, Regularity criteria for almost every function in Sobolev spaces, J. Funct. Anal. 258 (2010), no. 6, 1806–1821. MR 2578456
- C. Heil. A basis theory primer. Birkhäuser, 2010. MR 2744776
- S. Jaffard, Wavelet techniques for pointwise regularity, Ann. Fac. Sci. Toul., 15 (2006), no. 1, 3–33. MR 2225745
- S. Jaffard and Y. Meyer, Wavelet methods for pointwise regularity and local oscillations of functions, Mem. Amer. Math. Soc. 123 (1996), no. 587. MR 1342019
- S. Janson. Gaussian Hilbert Spaces. Cambridge Tracts in Mathematics, Cambridge University Press, 1997. MR 1474726
- J.-P. Kahane. Some random series of functions. Cambridge studies in advanced mathematics 5, 1968. MR 833073
- J.-P. Kahane, A century of interplay between Taylor series, Fourier series and Brownian motion, Bull. London Math. Soc., 29 (1997), 257–279. MR 1435557
- V. Kvaratskhelia, Unconditional convergence of functional series in problems of probability theory, J. Math. Sci. 200 (2014), no. 2. MR 3306166
- M. Ledoux and M. Talagrand, Probability in Banach spaces, volume 23 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3). Springer-Verlag, Berlin, 1991. MR 1102015
- S. Mallat, A Wavelet Tour of Signal Processing. Academic Press, San Diego, CA, 1998. MR 1614527
- M. B. Marcus and G. Pisier, Necessary and sufficient conditions for the uniform convergence of random trigonometric series, Lecture Note Series, Arhus University, 50, 1978. MR 507061
- M. B. Marcus and G. Pisier, Random Fourier series with applications to harmonic analysis. Ann. Math. Studies, Princeton Univ. Press, 1981. MR 630532
- B. Maurey, Excursion au centre et autour des mathématiques de Jean-Pierre Kahane, avec quelques écarts Sèminaires et Congrés, S. M. F. 33 (2019), 1–68. MR 4508907
- Y. Meyer, Ondelettes et Opérateurs. Hermann, Paris, 1990. English translation: Wavelets and operators, Cambridge University Press, 1992. MR 1228209
- F. L. Nazarov, The Bang solution of the coefficient problem, St. Petersburg Math J. 9 (1997), 407–419. MR 1468554
- R. Paley and A. Zygmund, On some series of functions, Proc. Camb. Phil. Soc. 26 (1930), 266–272, 337–357, and 28 (1932) 458–474.
- W. Rudin, Trigonometric series with gaps, J. Math. Mech. 9 (1960), no. 9, 203–227. MR 116177
- H. Steinhaus, Über die wehrscheinlichkeit dafür, dass der Konvergenzkreis einer Potenzreihe ihre natürlich Grenze ist, Math. Z. 31 (1930), 408–416. MR 1545123
- J. O. Strömberg, A modified Franklin system and higher order spline systems on $\mathbb {R}^n$ as unconditional bases for Hardy spaces, Conference in honor of Antoni Zygmund, W.Beckner ed., Wadsworth Math series, 2, 1983, pp. 475–493. MR 730086
- N. Wiener, Differential-space, J. Math. Phys., 2 (1923), 131–174. MR 4250033
- F. Sellan Y. Meyer, and M. Taqqu, Wavelets, generalized white noise and fractional integration: The synthesis of fractional Brownian motion, J. Four. Anal. Applic. 27 (1999), 465–494. MR 1755100
Similar Articles
Retrieve articles in Theory of Probability and Mathematical Statistics
with MSC (2020):
42C40,
42A20
Retrieve articles in all journals
with MSC (2020):
42C40,
42A20
Additional Information
Céline Esser
Affiliation:
Université de Liège, Bât. B37 Zone Polytech, Allée de la Découverte 12, B-4000 Liège, Belgique
Email:
Celine.Esser@uliege.be
Stéphane Jaffard
Affiliation:
Univ Paris Est Creteil, Univ Gustave Eiffel, CNRS, LAMA UMR8050, F-94010 Creteil, France
Email:
jaffard@u-pec.fr
Béatrice Vedel
Affiliation:
Univ Bretagne Sud, CNRS UMR 6205, LMBA, F-56000, Vannes, France
Email:
beatrice.vedel@univ-ubs.fr
Keywords:
Random wavelet series,
random Fourier series,
unconditional bases,
generic regularity
Received by editor(s):
April 2, 2023
Accepted for publication:
November 10, 2023
Published electronically:
May 10, 2024
Article copyright:
© Copyright 2024
Taras Shevchenko National University of Kyiv