On the pointwise regularity of the Multifractional Brownian Motion and some extensions
Authors:
C. Esser and L. Loosveldt
Journal:
Theor. Probability and Math. Statist. 110 (2024), 55-73
MSC (2020):
Primary 60G22, 60G17, 26A15, 42C40
DOI:
https://doi.org/10.1090/tpms/1206
Published electronically:
May 10, 2024
Full-text PDF
Abstract |
References |
Similar Articles |
Additional Information
Abstract: We study the pointwise regularity of the Multifractional Brownian Motion and, in particular, we obtain the existence of so-called slow points of the process, that is points which exhibit a slow oscillation instead of the a.e. regularity. This result entails that a non self-similar process can also exhibit such a behavior. We also consider various extensions with the aim of imposing weaker regularity assumptions on the Hurst function without altering the regularity of the process.
References
- Antoine Ayache, Multifractional stochastic fields, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2019. Wavelet strategies in multifractional frameworks. MR 3839281
- Antoine Ayache and Pierre R. Bertrand, A process very similar to multifractional Brownian motion, Recent developments in fractals and related fields, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Boston, MA, 2010, pp. 311–326. MR 2743002, DOI 10.1007/978-0-8176-4888-6_{2}0
- Antoine Ayache and Yassine Esmili, Wavelet-type expansion of the generalized Rosenblatt process and its rate of convergence, J. Fourier Anal. Appl. 26 (2020), no. 3, Paper No. 51, 35. MR 4110623, DOI 10.1007/s00041-020-09757-3
- Antoine Ayache, Céline Esser, and Thomas Kleyntssens, Different possible behaviors of wavelet leaders of the Brownian motion, Statist. Probab. Lett. 150 (2019), 54–60. MR 3922488, DOI 10.1016/j.spl.2019.02.003
- Antoine Ayache and Murad S. Taqqu, Rate optimality of wavelet series approximations of fractional Brownian motion, J. Fourier Anal. Appl. 9 (2003), no. 5, 451–471. MR 2027888, DOI 10.1007/s00041-003-0022-0
- Antoine Ayache and Murad S. Taqqu, Multifractional processes with random exponent, Publ. Mat. 49 (2005), no. 2, 459–486. MR 2177638, DOI 10.5565/PUBLMAT_{4}9205_{1}1
- Albert Benassi, Pierre Bertrand, Serge Cohen, and Jacques Istas, Identification of the Hurst index of a step fractional Brownian motion, Stat. Inference Stoch. Process. 3 (2000), no. 1-2, 101–111. 19th “Rencontres Franco-Belges de Statisticiens” (Marseille, 1998). MR 1819289, DOI 10.1023/A:1009997729317
- Albert Benassi, Stéphane Jaffard, and Daniel Roux, Elliptic Gaussian random processes, Rev. Mat. Iberoamericana 13 (1997), no. 1, 19–90 (English, with English and French summaries). MR 1462329, DOI 10.4171/RMI/217
- B. Boufoussi, M. Dozzi, and R. Guerbaz, On the local time of multifractional Brownian motion, Stochastics 78 (2006), no. 1, 33–49. MR 2219711, DOI 10.1080/17442500600578073
- Brahim Boufoussi, Marco Dozzi, and Raby Guerbaz, Sample path properties of the local time of multifractional Brownian motion, Bernoulli 13 (2007), no. 3, 849–867. MR 2348754, DOI 10.3150/07-BEJ6140
- Albert Cohen, Biorthogonal wavelets, Wavelets, Wavelet Anal. Appl., vol. 2, Academic Press, Boston, MA, 1992, pp. 123–152. MR 1161250, DOI 10.1016/B978-0-12-174590-5.50010-1
- A. Cohen, Ingrid Daubechies, and J.-C. Feauveau, Biorthogonal bases of compactly supported wavelets, Comm. Pure Appl. Math. 45 (1992), no. 5, 485–560. MR 1162365, DOI 10.1002/cpa.3160450502
- Serge Cohen, From self-similarity to local self-similarity: the estimation problem, Fractals: theory and applications in engineering, Springer, London, 1999, pp. 3–16. MR 1726364
- K. Daoudi, J. Lévy Véhel, and Y. Meyer, Construction of continuous functions with prescribed local regularity, Constr. Approx. 14 (1998), no. 3, 349–385. MR 1626706, DOI 10.1007/s003659900078
- Ingrid Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. MR 1162107, DOI 10.1137/1.9781611970104
- Lara Daw and Laurent Loosveldt, Wavelet methods to study the pointwise regularity of the generalized Rosenblatt process, Electron. J. Probab. 27 (2022), Paper No. 152, 45. MR 4515708, DOI 10.1214/22-ejp878
- Gustavo Didier, Stéphane Jaffard, and Vladas Pipiras, On the vaguelet and Riesz properties of $L^2$-unbounded transformations of orthogonal wavelet bases, J. Approx. Theory 176 (2013), 94–117. MR 3119252, DOI 10.1016/j.jat.2013.09.001
- David L. Donoho, Nonlinear solution of linear inverse problems by wavelet-vaguelette decomposition, Appl. Comput. Harmon. Anal. 2 (1995), no. 2, 101–126. MR 1325535, DOI 10.1006/acha.1995.1008
- Céline Esser and Laurent Loosveldt, Slow, ordinary and rapid points for Gaussian wavelets series and application to fractional Brownian motions, ALEA Lat. Am. J. Probab. Math. Stat. 19 (2022), no. 2, 1471–1495. MR 4517730, DOI 10.30757/alea.v19-59
- Kenneth J. Falconer, Tangent fields and the local structure of random fields, J. Theoret. Probab. 15 (2002), no. 3, 731–750. MR 1922445, DOI 10.1023/A:1016276016983
- Kenneth J. Falconer, The local structure of random processes, J. London Math. Soc. (2) 67 (2003), no. 3, 657–672. MR 1967698, DOI 10.1112/S0024610703004186
- Jean-Pierre Kahane, Some random series of functions, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 5, Cambridge University Press, Cambridge, 1985. MR 833073
- T. Kleyntssens and S. Nicolay, From the Brownian motion to a multifractal process using the Lévy-Ciesielski construction, Statist. Probab. Lett. 186 (2022), Paper No. 109450, 5. MR 4398453, DOI 10.1016/j.spl.2022.109450
- P. G. Lemarié and Y. Meyer, Ondelettes et bases hilbertiennes, Rev. Mat. Iberoamericana 2 (1986), no. 1-2, 1–18 (French). MR 864650, DOI 10.4171/RMI/22
- Yves Meyer, Wavelets and operators, Cambridge Studies in Advanced Mathematics, vol. 37, Cambridge University Press, Cambridge, 1992. Translated from the 1990 French original by D. H. Salinger. MR 1228209
- R. F. Peltier and J. Lévy Véhel, Multifractional Brownian motion: Definition and preliminary results, Rapport de recherche de l’INRIA 2645 (1995).
References
- A. Ayache, Multifractional stochastic fields: Wavelet strategies in multifractional frameworks, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2019. MR 3839281
- A. Ayache and P. R. Bertrand, A process very similar to multifractional Brownian motion, Recent developments in fractals and related fields, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Boston, MA, 2010, pp. 311–326. MR 2743002
- A. Ayache and Y. Esmili, Wavelet-type expansion of the generalized Rosenblatt process and its rate of convergence, J. Fourier Anal. Appl. 26 (2020), no. 3, Paper No. 51, 35. MR 4110623
- A. Ayache, C. Esser, and T. Kleyntssens, Different possible behaviors of wavelet leaders of the Brownian motion, Statist. Probab. Lett. 150 (2019), 54–60. MR 3922488
- A. Ayache and M. S. Taqqu, Rate optimality of wavelet series approximations of fractional Brownian motion, J. Fourier Anal. Appl. 9 (2003), no. 5, 451–471. MR 2027888
- —, Multifractional processes with random exponent, Publ. Mat. 49 (2005), no. 2, 459–486. MR 2177638
- A. Benassi, P. Bertrand, S. Cohen, and J. Istas, Identification of the Hurst index of a step fractional Brownian motion, vol. 3, 2000, 19th “Rencontres Franco-Belges de Statisticiens” (Marseille, 1998), pp. 101–111. MR 1819289
- A. Benassi, S. Jaffard, and D. Roux, Elliptic Gaussian random processes, Rev. Mat. Iberoamericana 13 (1997), no. 1, 19–90. MR 1462329
- B. Boufoussi, M. Dozzi, and R. Guerbaz, On the local time of multifractional Brownian motion, Stochastics 78 (2006), no. 1, 33–49. MR 2219711
- —, Sample path properties of the local time of multifractional Brownian motion, Bernoulli 13 (2007), no. 3, 849–867. MR 2348754
- A. Cohen, Biorthogonal wavelets, Wavelets, Wavelet Anal. Appl., vol. 2, Academic Press, Boston, MA, 1992, pp. 123–152. MR 1161250
- A. Cohen, I. Daubechies, and J.-C. Feauveau, Biorthogonal bases of compactly supported wavelets, Comm. Pure Appl. Math. 45 (1992), no. 5, 485–560. MR 1162365
- S. Cohen, From self-similarity to local self-similarity: the estimation problem, Fractals: theory and applications in engineering, Springer, London, 1999, pp. 3–16. MR 1726364
- K. Daoudi, J. Lévy Véhel, and Y. Meyer, Construction of continuous functions with prescribed local regularity, Constr. Approx. 14 (1998), no. 3, 349–385. MR 1626706
- I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, 1992. MR 1162107
- L. Daw and L. Loosveldt, Wavelet methods to study the pointwise regularity of the generalized Rosenblatt process, Electron. J. Probab. 27 (2022), 1–45. MR 4515708
- G. Didier, S. Jaffard, and V. Pipiras, On the vaguelet and Riesz properties of $L^2$-unbounded transformations of orthogonal wavelet bases, J. Approx. Theory 176 (2013), 94–117. MR 3119252
- D. L. Donoho, Nonlinear solution of linear inverse problems by wavelet-vaguelette decomposition, Appl. Comput. Harmon. Anal. 2 (1995), no. 2, 101–126. MR 1325535
- C. Esser and L. Loosveldt, Slow, ordinary and rapid points for Gaussian Wavelets Series and application to Fractional Brownian Motions, ALEA Lat. Am. J. Probab. Math. Stat. 19 (2022), no. 2, 1471–1495. MR 4517730
- K. J. Falconer, Tangent fields and the local structure of random fields, J. Theoret. Probab. 15 (2002), no. 3, 731–750. MR 1922445
- —, The local structure of random processes, J. London Math. Soc. (2) 67 (2003), no. 3, 657–672. MR 1967698
- J.-P. Kahane, Some random series of functions, second ed., Cambridge Studies in Advanced Mathematics, vol. 5, Cambridge University Press, Cambridge, 1985. MR 833073
- T. Kleyntssens and S. Nicolay, From the Brownian motion to a multifractal process using the Lévy–Ciesielski construction, Statist. Probab. Lett. 186 (2022), Paper No. 109450, 5. MR 4398453
- P. G. Lemarié and Y. Meyer, Ondelettes et bases hilbertiennes, Rev. Mat. Iberoamericana 2 (1986), no. 1-2, 1–18. MR 864650
- Y. Meyer and D. Salinger, Wavelets and Operators, vol. 1, Cambridge University Press, 1995. MR 1228209
- R. F. Peltier and J. Lévy Véhel, Multifractional Brownian motion: Definition and preliminary results, Rapport de recherche de l’INRIA 2645 (1995).
Similar Articles
Retrieve articles in Theory of Probability and Mathematical Statistics
with MSC (2020):
60G22,
60G17,
26A15,
42C40
Retrieve articles in all journals
with MSC (2020):
60G22,
60G17,
26A15,
42C40
Additional Information
C. Esser
Affiliation:
Université de Liège, Département de mathématique – zone Polytech 1, 12 allée de la Découverte, Bât. B37, B-4000 Liège
Email:
celine.esser@uliege.be
L. Loosveldt
Affiliation:
Université de Liège, Département de mathématique – zone Polytech 1, 12 allée de la Découverte, Bât. B37, B-4000 Liège
Email:
l.loosveldt@uliege.be
Keywords:
Multifractional Brownian motion,
random wavelets series,
modulus of continuity,
slow/ordinary/rapid points
Received by editor(s):
February 10, 2023
Accepted for publication:
July 27, 2023
Published electronically:
May 10, 2024
Article copyright:
© Copyright 2024
Taras Shevchenko National University of Kyiv