Non-adaptive estimation for degenerate diffusion processes
Authors:
Arnaud Gloter and Nakahiro Yoshida
Journal:
Theor. Probability and Math. Statist. 110 (2024), 75-99
MSC (2020):
Primary 62M05, 62F12
DOI:
https://doi.org/10.1090/tpms/1207
Published electronically:
May 10, 2024
Full-text PDF
Abstract |
References |
Similar Articles |
Additional Information
Abstract: We consider a degenerate system of stochastic differential equations. The first component of the system has a parameter $\theta _1$ in a non-degenerate diffusion coefficient and a parameter $\theta _2$ in the drift term. The second component has a drift term with a parameter $\theta _3$ and no diffusion term. Parametric estimation of the degenerate diffusion system is discussed under a sampling scheme. We investigate the asymptotic behavior of the joint quasi-maximum likelihood estimator for $(\theta _1,\theta _2,\theta _3)$. The estimation scheme is non-adaptive. The estimator incorporates information of the increments of both components, and under this construction, we show that the asymptotic variance of the estimator for $\theta _1$ is smaller than the one for standard estimator based on the first component only, and that the convergence of the estimator for $\theta _3$ is much faster than for the other parameters. By simulation studies, we compare the performance of the joint quasi-maximum likelihood estimator with the adaptive and one-step estimators investigated in Gloter and Yoshida [Electron. J. Statist 15 (2021), no. 1, 1424–1472].
References
- Quentin Clairon and Adeline Samson, Optimal control for parameter estimation in partially observed hypoelliptic stochastic differential equations, Comput. Statist. 37 (2022), no. 5, 2471–2491. MR 4509616, DOI 10.1007/s00180-022-01212-9
- Fabienne Comte, Clémentine Prieur, and Adeline Samson, Adaptive estimation for stochastic damping Hamiltonian systems under partial observation, Stochastic Process. Appl. 127 (2017), no. 11, 3689–3718. MR 3707242, DOI 10.1016/j.spa.2017.03.011
- Susanne Ditlevsen and Adeline Samson, Hypoelliptic diffusions: filtering and inference from complete and partial observations, J. R. Stat. Soc. Ser. B. Stat. Methodol. 81 (2019), no. 2, 361–384. MR 3928146, DOI 10.1111/rssb.12307
- Arnaud Gloter, Parameter estimation for a discretely observed integrated diffusion process, Scand. J. Statist. 33 (2006), no. 1, 83–104. MR 2255111, DOI 10.1111/j.1467-9469.2006.00465.x
- Arnaud Gloter and Nakahiro Yoshida, Adaptive estimation for degenerate diffusion processes, Electron. J. Stat. 15 (2021), no. 1, 1424–1472. MR 4255288, DOI 10.1214/20-ejs1777
- Mathieu Kessler, Estimation of an ergodic diffusion from discrete observations, Scand. J. Statist. 24 (1997), no. 2, 211–229. MR 1455868, DOI 10.1111/1467-9469.00059
- José R. León and Adeline Samson, Hypoelliptic stochastic FitzHugh-Nagumo neuronal model: mixing, up-crossing and estimation of the spike rate, Ann. Appl. Probab. 28 (2018), no. 4, 2243–2274. MR 3843828, DOI 10.1214/17-AAP1355
- A. Melnykova, Parametric inference for multidimensional hypoelliptic ergodic diffusion with full observations, https://hal.archives-ouvertes.fr/hal-01704010, January 2019.
- B. L. S. Prakasa Rao, Statistical inference from sampled data for stochastic processes, Statistical inference from stochastic processes (Ithaca, NY, 1987) Contemp. Math., vol. 80, Amer. Math. Soc., Providence, RI, 1988, pp. 249–284. MR 999016, DOI 10.1090/conm/080/999016
- Adeline Samson and Michèle Thieullen, A contrast estimator for completely or partially observed hypoelliptic diffusion, Stochastic Process. Appl. 122 (2012), no. 7, 2521–2552. MR 2926166, DOI 10.1016/j.spa.2012.04.006
- Masayuki Uchida and Nakahiro Yoshida, Adaptive estimation of an ergodic diffusion process based on sampled data, Stochastic Process. Appl. 122 (2012), no. 8, 2885–2924. MR 2931346, DOI 10.1016/j.spa.2012.04.001
- Liming Wu, Large and moderate deviations and exponential convergence for stochastic damping Hamiltonian systems, Stochastic Process. Appl. 91 (2001), no. 2, 205–238. MR 1807683, DOI 10.1016/S0304-4149(00)00061-2
- Nakahiro Yoshida, Estimation for diffusion processes from discrete observation, J. Multivariate Anal. 41 (1992), no. 2, 220–242. MR 1172898, DOI 10.1016/0047-259X(92)90068-Q
- Nakahiro Yoshida, Polynomial type large deviation inequalities and quasi-likelihood analysis for stochastic differential equations, Ann. Inst. Statist. Math. 63 (2011), no. 3, 431–479. MR 2786943, DOI 10.1007/s10463-009-0263-z
References
- Q. Clairon and A. Samson, Optimal control for parameter estimation in partially observed hypoelliptic stochastic differential equations, Comput. Statist. 37 (2022), 2471–2491. MR 4509616
- F. Comte, C. Prieur, and A. Samson, Adaptive estimation for stochastic damping hamiltonian systems under partial observation, Stochastic Process. Appl. 127 (2017), no. 11, 3689–3718. MR 3707242
- S. Ditlevsen and A. Samson, Hypoelliptic diffusions: filtering and inference from complete and partial observations, J. R. Stat. Soc. Ser. B. Stat. Methodol. 81 (2019), no. 2, 361–384. MR 3928146
- A. Gloter, Parameter estimation for a discretely observed integrated diffusion process, Scand. J. Stat. 33 (2006), no. 1, 83–104. MR 2255111
- A. Gloter and N. Yoshida, Adaptive estimation for degenerate diffusion processes, Electron. J. Statist. 15 (2021), no. 1, 1424–1472. MR 4255288
- M. Kessler, Estimation of an ergodic diffusion from discrete observations, Scand. J. Stat. 24 (1997), no. 2, 211–229. MR 1455868
- J. R. León and A. Samson, Hypoelliptic stochastic FitzHugh–Nagumo neuronal model: Mixing, up-crossing and estimation of the spike rate, Ann. Appl. Probab. 28 (2018), no. 4, 2243–2274. MR 3843828
- A. Melnykova, Parametric inference for multidimensional hypoelliptic ergodic diffusion with full observations, https://hal.archives-ouvertes.fr/hal-01704010, January 2019.
- B. L. S. Prakasa Rao, Statistical inference from sampled data for stochastic processes, Statistical inference from stochastic processes (Ithaca, NY, 1987), Contemp. Math., vol. 80, Amer. Math. Soc., Providence, RI, 1988, pp. 249–284. MR 999016
- A. Samson and M. Thieullen, A contrast estimator for completely or partially observed hypoelliptic diffusion, Stochastic Process. Appl. 122 (2012), no. 7, 2521–2552. MR 2926166
- M. Uchida and N. Yoshida, Adaptive estimation of an ergodic diffusion process based on sampled data, Stochastic Process. Appl. 122 (2012), no. 8, 2885–2924. MR 2931346
- L. Wu, Large and moderate deviations and exponential convergence for stochastic damping hamiltonian systems, Stochastic Process. Appl. 91 (2001), no. 2, 205–238. MR 1807683
- N. Yoshida, Estimation for diffusion processes from discrete observation, J. Multivariate Anal. 41 (1992), no. 2, 220–242. MR 1172898
- —, Polynomial type large deviation inequalities and quasi-likelihood analysis for stochastic differential equations, Ann. Inst. Statist. Math. 63 (2011), no. 3, 431–479. MR 2786943
Similar Articles
Retrieve articles in Theory of Probability and Mathematical Statistics
with MSC (2020):
62M05,
62F12
Retrieve articles in all journals
with MSC (2020):
62M05,
62F12
Additional Information
Arnaud Gloter
Affiliation:
Laboratoire de Mathématiques et Modélisation d’Evry, CNRS, Univ Evry, Université Paris-Saclay, 91037, Evry, France
Email:
arnaud.gloter@univ-evry.fr
Nakahiro Yoshida
Affiliation:
Graduate School of Mathematical Sciences, University of Tokyo: 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan; and CREST, Japan Science and Technology Agency
Email:
nakahiro@ms.u-tokyo.ac.jp
Keywords:
Degenerate diffusion,
quasi-maximum likelihood estimator
Received by editor(s):
May 4, 2023
Accepted for publication:
December 1, 2023
Published electronically:
May 10, 2024
Additional Notes:
This work was in part supported by Japan Science and Technology Agency CREST JPMJCR14D7, JPMJCR2115; Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research Nos. 17H01702, 23H03354 (Scientific Research); and by a Cooperative Research Program of the Institute of Statistical Mathematics.
Article copyright:
© Copyright 2024
Taras Shevchenko National University of Kyiv