Parisian times for linear diffusions
Author:
Christophe Profeta
Journal:
Theor. Probability and Math. Statist. 110 (2024), 101-119
MSC (2020):
Primary 60J60, 60G40
DOI:
https://doi.org/10.1090/tpms/1208
Published electronically:
May 10, 2024
Full-text PDF
Abstract |
References |
Similar Articles |
Additional Information
Abstract: We compute the joint distribution of the first times a linear diffusion makes an excursion longer than some given duration above (resp. below) some fixed level. In the literature, such stopping times have been introduced and studied in the framework of Parisian barrier options, mainly in the case of Brownian motion with drift. We also exhibit several independence properties, and provide some formulae for the associated ruin probabilities.
References
- J. H. M. Anderluh and J. A. M. van der Weide, Double-sided Parisian option pricing, Finance Stoch. 13 (2009), no. 2, 205–238. MR 2482052, DOI 10.1007/s00780-009-0090-3
- Andrei N. Borodin and Paavo Salminen, Handbook of Brownian motion—facts and formulae, 2nd ed., Probability and its Applications, Birkhäuser Verlag, Basel, 2002. MR 1912205, DOI 10.1007/978-3-0348-8163-0
- Marc Chesney, Monique Jeanblanc-Picqué, and Marc Yor, Brownian excursions and Parisian barrier options, Adv. in Appl. Probab. 29 (1997), no. 1, 165–184. MR 1432935, DOI 10.2307/1427865
- Angelos Dassios and Jia Wei Lim, An analytical solution for the two-sided Parisian stopping time, its asymptotics, and the pricing of Parisian options, Math. Finance 27 (2017), no. 2, 604–620. MR 3635299, DOI 10.1111/mafi.12091
- Angelos Dassios and Jia Wei Lim, Parisian option pricing: a recursive solution for the density of the Parisian stopping time, SIAM J. Financial Math. 4 (2013), no. 1, 599–615. MR 3090647, DOI 10.1137/120875466
- Angelos Dassios, Jia Wei Lim, and Yan Qu, Azéma martingales for Bessel and CIR processes and the pricing of Parisian zero-coupon bonds, Math. Finance 30 (2020), no. 4, 1497–1526. MR 4154777, DOI 10.1111/mafi.12248
- Angelos Dassios and Shanle Wu, Double-barrier Parisian options, J. Appl. Probab. 48 (2011), no. 1, 1–20. MR 2809883, DOI 10.1239/jap/1300198132
- Angelos Dassios and Shanle Wu, Perturbed Brownian motion and its application to Parisian option pricing, Finance Stoch. 14 (2010), no. 3, 473–494. MR 2670422, DOI 10.1007/s00780-009-0113-0
- Van E. Wood, Table errata: Tables of integral transforms, Vol. I, II (McGraw-Hill, New York, 1954) by A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Math. Comp. 23 (1969), no. 106, 468. MR 415977, DOI 10.1090/S0025-5718-1969-0415977-9
- R. K. Getoor, Excursions of a Markov process, Ann. Probab. 7 (1979), no. 2, 244–266. MR 525052, DOI 10.1214/aop/1176995086
- Kiyosi Itô and Henry P. McKean Jr., Diffusion processes and their sample paths, Die Grundlehren der mathematischen Wissenschaften, Band 125, Springer-Verlag, Berlin-New York, 1974. Second printing, corrected. MR 345224
- Olav Kallenberg, Foundations of modern probability, Probability Theory and Stochastic Modelling, vol. 99, Springer, Cham, [2021] ©2021. Third edition [of 1464694]. MR 4226142, DOI 10.1007/978-3-030-61871-1
- S. Kotani and S. Watanabe, Kreĭn’s spectral theory of strings and generalized diffusion processes, Functional analysis in Markov processes (Katata/Kyoto, 1981) Lecture Notes in Math., vol. 923, Springer, Berlin-New York, 1982, pp. 235–259. MR 661628
- Céline Labart and Jérôme Lelong, Pricing double barrier Parisian options using Laplace transforms, Int. J. Theor. Appl. Finance 12 (2009), no. 1, 19–44. MR 2517580, DOI 10.1142/S0219024909005154
- Ronnie Loeffen, Irmina Czarna, and Zbigniew Palmowski, Parisian ruin probability for spectrally negative Lévy processes, Bernoulli 19 (2013), no. 2, 599–609. MR 3037165, DOI 10.3150/11-BEJ404
- Jim Pitman and Marc Yor, Bessel processes and infinitely divisible laws, Stochastic integrals (Proc. Sympos., Univ. Durham, Durham, 1980) Lecture Notes in Math., vol. 851, Springer, Berlin, 1981, pp. 285–370. MR 620995
- Jim Pitman and Marc Yor, Hitting, occupation and inverse local times of one-dimensional diffusions: martingale and excursion approaches, Bernoulli 9 (2003), no. 1, 1–24. MR 1963670, DOI 10.3150/bj/1068129008
- Daniel Revuz and Marc Yor, Continuous martingales and Brownian motion, 3rd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 293, Springer-Verlag, Berlin, 1999. MR 1725357, DOI 10.1007/978-3-662-06400-9
- Shinzo Watanabe, On time inversion of one-dimensional diffusion processes, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 31 (1974/75), 115–124. MR 365731, DOI 10.1007/BF00539436
References
- J. H. M. Anderluh and J. A. M. van der Weide. Double-sided Parisian option pricing. Finance Stoch. 13 (2009), no. 2, 205–238. MR 2482052
- A. N. Borodin and P. Salminen. Handbook of Brownian motion – facts and formulae. Second edition. Probability and its Applications. Birkhäuser Verlag, Basel, 2002. MR 1912205
- M. Chesney, M. Jeanblanc-Picqué and M. Yor. Brownian excursions and Parisian barrier options. Adv. in Appl. Probab. 29 (1997), no. 1, 165–184. MR 1432935
- A. Dassios and J. W. Lim. An analytical solution for the two-sided Parisian stopping time, its asymptotics, and the pricing of Parisian options. Math. Finance 27 (2017), no. 2, 604–620. MR 3635299
- A. Dassios and J. W. Lim. Parisian option pricing: A recursive solution for the density of the Parisian stopping time. SIAM J. Financial Math. 4 (2013), no. 1, 599–615. MR 3090647
- A. Dassios, J. W. Lim and Y. Qu. Azéma martingales for Bessel and CIR processes and the pricing of Parisian zero-coupon bonds. Math. Finance 30 (2020), no. 4, 1497–1526. MR 4154777
- A. Dassios and S. Wu. Double-barrier Parisian options. J. Appl. Probab. 48 (2011), no. 1, 1–20. MR 2809883
- A. Dassios and S. Wu. Perturbed Brownian motion and its application to Parisian option pricing. Finance Stoch. 14 (2010), no. 3, 473–494. MR 2670422
- A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi. Tables of integral transforms. Vol. I. McGraw-Hill Book Company, Inc., New York–Toronto–London, 1954. MR 415977
- R. K. Getoor. Excursions of a Markov process. Ann. Probab. 7 (1979), no. 2, 244–266. MR 0525052
- K. Itô and H. P. McKean. Diffusion processes and their sample paths. Second printing, corrected. Die Grundlehren der mathematischen Wissenschaften, Band 125. Springer-Verlag, Berlin–New York, 1974. MR 0345224
- O. Kallenberg. Foundations of modern probability. Third edition. Probability Theory and Stochastic Modelling, 99. Springer, Cham, 2021. MR 4226142
- S. Kotani and S. Watanabe. Krein’s spectral theory of strings and generalized diffusion processes. Functional analysis in Markov processes. Lecture Notes in Math., Springer, Berlin-New York, 923 (1982), pp. 235–259. MR 0661628
- C. Labart and J. Lelong. Pricing double barrier Parisian options using Laplace transforms. Int. J. Theor. Appl. Finance 12 (2009), no. 1, 19–44. MR 2517580
- R. Loeffen, I. Czarna and Z. Palmowski. Parisian ruin probability for spectrally negative Lévy processes. Bernoulli 19 (2013), no. 2, 599–609. MR 3037165
- J. Pitman and M. Yor. Bessel processes and infinitely divisible laws. Stochastic integrals, Lecture Notes in Math., 851, Springer, Berlin, 1981, pp. 285–370. MR 0620995
- J. Pitman and M. Yor. Hitting, occupation and inverse local times of one-dimensional diffusions: martingale and excursion approaches. Bernoulli 9 (2003), no. 1, 1–24. MR 1963670
- D. Revuz and M. Yor. Continuous martingales and Brownian motion. Third edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 293. Springer-Verlag, Berlin, 1999. MR 1725357
- S. Watanabe. On time inversion of one-dimensional diffusion processes. Z. Wahrsch. Verw. Gebiete 31 (1974/1975), 115–124. MR 0365731
Similar Articles
Retrieve articles in Theory of Probability and Mathematical Statistics
with MSC (2020):
60J60,
60G40
Retrieve articles in all journals
with MSC (2020):
60J60,
60G40
Additional Information
Christophe Profeta
Affiliation:
Université Paris-Saclay, CNRS, Univ Evry, Laboratoire de Mathématiques et Modélisation d’Evry, 91037, Evry-Courcouronnes, France
Email:
christophe.profeta@univ-evry.fr
Keywords:
Diffusion theory,
excursion theory
Received by editor(s):
July 22, 2022
Accepted for publication:
February 4, 2023
Published electronically:
May 10, 2024
Article copyright:
© Copyright 2024
Taras Shevchenko National University of Kyiv