Characterization of the least squares estimator: Mis-specified multivariate isotonic regression model with dependent errors
Authors:
Pramita Bagchi and Subhra Sankar Dhar
Journal:
Theor. Probability and Math. Statist. 110 (2024), 143-158
MSC (2020):
Primary 62G08, 62G05, 60B10
DOI:
https://doi.org/10.1090/tpms/1210
Published electronically:
May 10, 2024
Full-text PDF
Abstract |
References |
Similar Articles |
Additional Information
Abstract: This article investigates some nice properties of the least squares estimator of multivariate isotonic regression function (denoted as LSEMIR), when the model is mis-specified, and the errors are $\beta$-mixing stationary random variables. Under mild conditions, it is observed that the least squares estimator converges uniformly to a certain monotone function, which is closest to the original function in an appropriate sense.
References
- Jason Abrevaya and Jian Huang, On the bootstrap of the maximum score estimator, Econometrica 73 (2005), no. 4, 1175–1204. MR 2149245, DOI 10.1111/j.1468-0262.2005.00613.x
- D. Anevski and O. Hössjer, A general asymptotic scheme for inference under order restrictions, Ann. Statist. 34 (2006), no. 4, 1874–1930. MR 2283721, DOI 10.1214/009053606000000443
- Pramita Bagchi, Moulinath Banerjee, and Stilian A. Stoev, Inference for monotone functions under short- and long-range dependence: confidence intervals and new universal limits, J. Amer. Statist. Assoc. 111 (2016), no. 516, 1634–1647. MR 3601723, DOI 10.1080/01621459.2015.1100622
- Pramita Bagchi and Subhra Sankar Dhar, A study on the least squares estimator of multivariate isotonic regression function, Scand. J. Stat. 47 (2020), no. 4, 1192–1221. MR 4178191, DOI 10.1111/sjos.12459
- Moulinath Banerjee and Jon A. Wellner, Likelihood ratio tests for monotone functions, Ann. Statist. 29 (2001), no. 6, 1699–1731. MR 1891743, DOI 10.1214/aos/1015345959
- R. E. Barlow, Statistical inference under order restrictions; the theory and application of isotonic regression, Tech. report, 1972.
- R. Berk, L. Brown, A. Buja, E. George, and L. Zhao, Working with misspecified regression models, Journal of Quantitative Criminology 34 (2018), 633–655.
- Michael J. Best and Nilotpal Chakravarti, Active set algorithms for isotonic regression; a unifying framework, Math. Programming 47 (1990), no. 3, (Ser. A), 425–439. MR 1068274, DOI 10.1007/BF01580873
- F. Boussama, Ergodicity, mixing and estimation in garch models, Unpublished Ph. D. Dissertation, University of Paris 7 (1998).
- H. D. Brunk, Conditional expectation given a $\sigma$-lattice and applications, Ann. Math. Statist. 36 (1965), 1339–1350. MR 185629, DOI 10.1214/aoms/1177699895
- Sabyasachi Chatterjee, Adityanand Guntuboyina, and Bodhisattva Sen, On matrix estimation under monotonicity constraints, Bernoulli 24 (2018), no. 2, 1072–1100. MR 3706788, DOI 10.3150/16-BEJ865
- K. Chatzikokolakis and K. Martin, A monotonicity principle for information theory, Electron. Notes Theor. Comput. Sci. 218 (2008), 111–129.
- Ju. A. Davydov, Mixing conditions for Markov chains, Teor. Verojatnost. i Primenen. 18 (1973), 321–338 (Russian, with English summary). MR 321183
- Subhra Sankar Dhar, Trimmed mean isotonic regression, Scand. J. Stat. 43 (2016), no. 1, 202–212. MR 3467002, DOI 10.1111/sjos.12173
- G. Ellison and S. Ellison, Strategic entry deterrence and the behavior of pharmaceutical incumbents prior to patent expiration, American Economic Journal: Microeconomics (2011), 1–36.
- Arnaud Guyader, Nick Hengartner, Nicolas Jégou, and Eric Matzner-Løber, Iterative isotonic regression, ESAIM Probab. Stat. 19 (2015), 1–23. MR 3374866, DOI 10.1051/ps/2014012
- Qiyang Han, Tengyao Wang, Sabyasachi Chatterjee, and Richard J. Samworth, Isotonic regression in general dimensions, Ann. Statist. 47 (2019), no. 5, 2440–2471. MR 3988762, DOI 10.1214/18-AOS1753
- L. Hoffmann, Multivariate isotonic regression and its algorithms, Ph.D. thesis, Wichita State University, 2009.
- Ming-Hong Liu and Vasant A. Ubhaya, Integer isotone optimization, SIAM J. Optim. 7 (1997), no. 4, 1152–1159. MR 1479619, DOI 10.1137/S1052623494272302
- Gary G. Makowski, Consistency of an estimator of doubly nondecreasing regression functions, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 39 (1977), no. 4, 263–268. MR 652723, DOI 10.1007/BF01877494
- Rosa L. Matzkin, Restrictions of economic theory in nonparametric methods, Handbook of econometrics, Vol. IV, Handbooks in Econom., vol. 2, North-Holland, Amsterdam, 1994, pp. 2523–2558. MR 1315977
- D. L. McLeish, A maximal inequality and dependent strong laws, Ann. Probability 3 (1975), no. 5, 829–839. MR 400382, DOI 10.1214/aop/1176996269
- Paul Milgrom and Chris Shannon, Monotone comparative statics, Econometrica 62 (1994), no. 1, 157–180. MR 1258667, DOI 10.2307/2951479
- Abdelkader Mokkadem, Mixing properties of ARMA processes, Stochastic Process. Appl. 29 (1988), no. 2, 309–315. MR 958507, DOI 10.1016/0304-4149(88)90045-2
- E. T. Moolchan, D. L. Hudson, J. R. Schroeder, and S. S. Sehnert, Heart rate and blood pressure responses to tobacco smoking among african-american adolescents, Journal of the National Medical Association 96 (2004), no. 6, 767.
- W. F. Ramirez, Computational methods for process simulation, Elsevier Science, Oxford, 1989.
- Emmanuel Rio, Asymptotic theory of weakly dependent random processes, Probability Theory and Stochastic Modelling, vol. 80, Springer, Berlin, 2017. Translated from the 2000 French edition [ MR2117923]. MR 3642873, DOI 10.1007/978-3-662-54323-8
- Tim Robertson and F. T. Wright, Multiple isotonic median regression, Ann. Statist. 1 (1973), 422–432. MR 378224
- Walter Rudin, Functional analysis, 2nd ed., International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York, 1991. MR 1157815
- Ou Zhao and Michael Woodroofe, Estimating a monotone trend, Statist. Sinica 22 (2012), no. 1, 359–378. MR 2933180, DOI 10.5705/ss.2009.153
References
- J. Abrevaya and J. Huang, On the bootstrap of the maximum score estimator, Econometrica 73 (2005), no. 4, 1175–1204. MR 2149245
- D. Anevski and O. Hössjer, A general asymptotic scheme for inference under order restrictions, Ann. Statist. 34 (2006), no. 4, 1874–1930. MR 2283721
- P. Bagchi, M. Banerjee, and S. A. Stoev, Inference for monotone functions under short-and long-range dependence: Confidence intervals and new universal limits, J. Amer. Statist. Assoc. 111 (2016), no. 516, 1634–1647. MR 3601723
- P. Bagchi and S. S. Dhar, A study on the least squares estimator of multivariate isotonic regression function, Scand. J. Stat. 47 (2020), no. 4, 1192–1221. MR 4178191
- M. Banerjee and J. A. Wellner, Likelihood ratio tests for monotone functions, Ann. Statist. 29 (2001), no. 6, 1699–1731. MR 1891743
- R. E. Barlow, Statistical inference under order restrictions; the theory and application of isotonic regression, Tech. report, 1972.
- R. Berk, L. Brown, A. Buja, E. George, and L. Zhao, Working with misspecified regression models, Journal of Quantitative Criminology 34 (2018), 633–655.
- M. Best and N. Chakarvarti, Active set algorithms for isotonic regression; a unifying framework, Math. Program. 47 (1990), 425–439. MR 1068274
- F. Boussama, Ergodicity, mixing and estimation in garch models, Unpublished Ph. D. Dissertation, University of Paris 7 (1998).
- H. D. Brunk, Conditional expectation given a $\sigma$-lattice and applications, The Annals of Statistics 36 (1965), 1339–1350. MR 185629
- S. Chatterjee, A. Guntuboyina, and B. Sen, On matrix estimation under monotonicity constraints, Bernoulli 24 (2018), no. 2, 1072–1100. MR 3706788
- K. Chatzikokolakis and K. Martin, A monotonicity principle for information theory, Electron. Notes Theor. Comput. Sci. 218 (2008), 111–129.
- Yu. A. Davydov, Mixing conditions for Markov chains, Teor. Verojatnost. i Primenen. 18 (1973), no. 2, 321–338. MR 321183
- S. S. Dhar, Trimmed mean isotonic regression, Scand. J. Stat. 43 (2016), 202–212. MR 3467002
- G. Ellison and S. Ellison, Strategic entry deterrence and the behavior of pharmaceutical incumbents prior to patent expiration, American Economic Journal: Microeconomics (2011), 1–36.
- A. Guyader, N. Hengartner, N. Jegou, and E. Matzner-Lober, Iterative isotonic regression, ESAIM Probab. Stat. 19 (2015), 1–23. MR 3374866
- Q. Han, T. Wang, S. Chatterjee, and R. J. Samworth, Isotonic regression in general dimensions, Ann. Statist. 47 (2019), no. 5, 2440–2471. MR 3988762
- L. Hoffmann, Multivariate isotonic regression and its algorithms, Ph.D. thesis, Wichita State University, 2009.
- M.-H. Liu and V. Ubhaya, Integer isotone optimization, SIAM J. Optim. 7 (1997), 1152–1159. MR 1479619
- G. G. Makowski, Consistency of an estimator of doubly nondecreasing regression functions, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 39 (1977), no. 4, 263–268. MR 652723
- R. Matzkin, Restrictions of economic theory in nonparametric methods, Handbook of Econometrics (R. Engle and D. McFadden, eds.), vol. IV, 1994, pp. 2523–2558. MR 1315977
- D. L. McLeish, A maximal inequality and dependent strong laws, Ann. Probab. (1975), 829–839. MR 400382
- P. Milgrom and C. Shannon, Monotone comparative statics, Econometrica 62 (1994), 157–180. MR 1258667
- A. Mokkadem, Mixing properties of arma processes, Stochastic Process. Appl. 29 (1988), no. 2, 309–315. MR 958507
- E. T. Moolchan, D. L. Hudson, J. R. Schroeder, and S. S. Sehnert, Heart rate and blood pressure responses to tobacco smoking among african-american adolescents, Journal of the National Medical Association 96 (2004), no. 6, 767.
- W. F. Ramirez, Computational methods for process simulation, Elsevier Science, Oxford, 1989.
- E. Rio, Asymptotic theory of weakly dependent random processes, vol. 80, Springer, 2017. MR 3642873
- T. Robertson and F. T. Wright, Multiple isotonic median regression, Ann. Statist. (1973), 422–432. MR 378224
- W. Rudin, Functional analysis, International Series in Pure and Applied Mathematics, McGraw-Hill, 1991. MR 1157815
- O. Zhao and M. Woodroofe, Estimating a monotone trend, Statist. Sinica 22 (2012), no. 1, 359–378. MR 2933180
Similar Articles
Retrieve articles in Theory of Probability and Mathematical Statistics
with MSC (2020):
62G08,
62G05,
60B10
Retrieve articles in all journals
with MSC (2020):
62G08,
62G05,
60B10
Additional Information
Pramita Bagchi
Affiliation:
Department of Statistics, Volgenau School of Engineering, George Mason University
Email:
pbagchi@gmu.edu
Subhra Sankar Dhar
Affiliation:
Department of Mathematics and Statistics, IIT Kanpur, Kanpur, India
Email:
subhra@iitk.ac.in
Keywords:
Hilbert space,
optimization problem,
projection
Received by editor(s):
August 3, 2022
Accepted for publication:
April 19, 2023
Published electronically:
May 10, 2024
Additional Notes:
The second author was supported by CRG (File no: CRG/2022/001489) and MATRICS (File No: MTR/2019/000039), research grants from the SERB, Government of India.
Article copyright:
© Copyright 2024
Taras Shevchenko National University of Kyiv