A convolution inequality, yielding a sharper Berry–Esseen theorem for summands Zolotarev-close to normal
Author:
Lutz Mattner
Journal:
Theor. Probability and Math. Statist. 111 (2024), 45-122
MSC (2020):
Primary 60F05, 60E15; Secondary 42A85, 26D15
DOI:
https://doi.org/10.1090/tpms/1217
Published electronically:
October 30, 2024
Full-text PDF
Abstract |
References |
Similar Articles |
Additional Information
Abstract:
The classical Berry–Esseen error bound, for the normal approximation to the law of a sum of independent and identically distributed random variables, is here improved by replacing the standardised third absolute moment with a weak norm distance to normality, using Zolotarev’s $\zeta$ norms. We thus sharpen and simplify two results of Ul’yanov (1976) and of Senatov (1998), each of them previously optimal, in the line of research initiated by Zolotarev (1965) and Paulauskas (1969).
Our proof is based on a seemingly incomparable normal approximation theorem of Zolotarev (1986), combined with our main technical result:
The Kolmogorov distance (supremum norm of difference of distribution functions) between a convolution of two laws and a convolution of two Lipschitz laws is bounded homogeneously of degree 1 in the pair of the Kantorovich distances (often called Wasserstein distances, the L$^1$ norms of differences of distribution functions) of the corresponding factors, and also in the pair of the Lipschitz constants.
Side results include a short introduction to $\zeta$ norms on the real line, simpler inequalities for various probability distances, slight improvements of the theorem of Zolotarev (1986) and of a lower bound theorem of Bobkov, Chistyakov and Götze (2012), an application to sampling from finite populations, auxiliary results on rounding and on winsorisation, and computations of a few examples.
The introductory section in particular is aimed at analysts in general rather than specialists in probability approximations.
References
- Ralph Palmer Agnew, Global versions of the central limit theorem, Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 800–804. MR 64342, DOI 10.1073/pnas.40.9.800
- Charalambos D. Aliprantis and Kim C. Border, Infinite dimensional analysis, 3rd ed., Springer, Berlin, 2006. A hitchhiker’s guide. MR 2378491
- Heinz Bauer, Minimalstellen von Funktionen und Extremalpunkte, Arch. Math. 9 (1958), 389–393 (German). MR 100774, DOI 10.1007/BF01898615
- Christian Berg, Jens Peter Reus Christensen, and Paul Ressel, Harmonic analysis on semigroups, Graduate Texts in Mathematics, vol. 100, Springer-Verlag, New York, 1984. Theory of positive definite and related functions. MR 747302, DOI 10.1007/978-1-4612-1128-0
- Andrew C. Berry, The accuracy of the Gaussian approximation to the sum of independent variates, Trans. Amer. Math. Soc. 49 (1941), 122–136. MR 3498, DOI 10.1090/S0002-9947-1941-0003498-3
- Rabi N. Bhattacharya and R. Ranga Rao, Normal approximation and asymptotic expansions, Classics in Applied Mathematics, vol. 64, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2010. Updated reprint of the 1986 edition [ MR0855460], corrected edition of the 1976 original [ MR0436272]. MR 3396213, DOI 10.1137/1.9780898719895.ch1
- Z. W. Birnbaum and F. C. Andrews, On sums of symmetrically truncated normal random variables, Ann. Math. Statistics 20 (1949), 458–461. MR 30721, DOI 10.1214/aoms/1177730001
- Mindaugas Bloznelis and Alfredas Račkauskas, Fifty years in the field of probability: a conversation with professor Vygantas Paulauskas, Lith. Math. J. 59 (2019), no. 4, 425–436. MR 4038059, DOI 10.1007/s10986-019-09464-7
- S. G. Bobkov, G. P. Chistyakov, and F. Götze, Stability problems in Cramér-type characterization in case of i.i.d. summands, Theory Probab. Appl. 57 (2013), no. 4, 568–588. MR 3201665, DOI 10.1137/S0040585X97986217
- V. I. Bogachev, Measure theory. Vol. I, II, Springer-Verlag, Berlin, 2007. MR 2267655, DOI 10.1007/978-3-540-34514-5
- V. I. Bogachev, A. N. Doledenok, and S. V. Shaposhnikov, Weighted Zolotarev metrics and the Kantorovich metric, Dokl. Akad. Nauk 473 (2017), no. 1, 12–16 (Russian, with Russian summary); English transl., Dokl. Math. 95 (2017), no. 2, 113–117. MR 3701579, DOI 10.1134/s1064562417020028
- V. I. Bogachev and A. V. Kolesnikov, The Monge-Kantorovich problem: achievements, connections, and prospects, Uspekhi Mat. Nauk 67 (2012), no. 5(407), 3–110 (Russian, with Russian summary); English transl., Russian Math. Surveys 67 (2012), no. 5, 785–890. MR 3058744, DOI 10.1070/rm2012v067n05abeh004808
- A. L. Bond and J. R. Green, Journal title abbreviations should be eliminated in the digital age, PeerJ PrePrints 2:e445v1, https://peerj.com/preprints/445/, 2014.
- Nicolas Bourbaki, Functions of a real variable, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2004. Elementary theory; Translated from the 1976 French original [MR0580296] by Philip Spain. MR 2013000, DOI 10.1007/978-3-642-59315-4
- Michael V. Boutsikas, Asymptotically optimal Berry-Esseen-type bounds for distributions with an absolutely continuous part, J. Statist. Plann. Inference 141 (2011), no. 3, 1250–1268. MR 2739165, DOI 10.1016/j.jspi.2010.09.026
- Michael V. Boutsikas, Penultimate gamma approximation in the CLT for skewed distributions, ESAIM Probab. Stat. 19 (2015), 590–604. MR 3433428, DOI 10.1051/ps/2015010
- Michael V. Boutsikas and Eutichia Vaggelatou, On the distance between convex-ordered random variables, with applications, Adv. in Appl. Probab. 34 (2002), no. 2, 349–374. MR 1909919, DOI 10.1239/aap/1025131222
- Mikhail Aleksandrovich Shubin (1944–2020), Notices Amer. Math. Soc. 68 (2021), no. 1, 81–93. MR 4202322, DOI 10.1090/noti2208
- H. E. Buchanan and T. H. Hildebrandt, Note on the convergence of a sequence of functions of a certain type, Ann. of Math. (2) 9 (1908), no. 3, 123–126. MR 1502360, DOI 10.2307/1967455
- Louis H. Y. Chen and Xiao Fang, On the error bound in a combinatorial central limit theorem, Bernoulli 21 (2015), no. 1, 335–359. MR 3322321, DOI 10.3150/13-BEJ569
- Louis H. Y. Chen, Larry Goldstein, and Qi-Man Shao, Normal approximation by Stein’s method, Probability and its Applications (New York), Springer, Heidelberg, 2011. MR 2732624, DOI 10.1007/978-3-642-15007-4
- G. P. Chistyakov, A new asymptotic expansion and asymptotically best constants in Lyapunov’s theorem. I, Teor. Veroyatnost. i Primenen. 46 (2001), no. 2, 326–344 (Russian, with Russian summary); English transl., Theory Probab. Appl. 46 (2003), no. 2, 226–242. MR 1968689, DOI 10.1137/S0040585X97978932
- Gustave Choquet, Lectures on analysis. Vol. II: Representation theory, W. A. Benjamin, Inc., New York-Amsterdam, 1969. Edited by J. Marsden, T. Lance and S. Gelbart. MR 250012
- Y. S. Chow and W. J. Studden, Monotonicity of the variance under truncation and variations of Jensen’s inequality, Ann. Math. Statist. 40 (1969), 1106–1108. MR 240901, DOI 10.1214/aoms/1177697619
- Yuan Shih Chow and Henry Teicher, Probability theory, 3rd ed., Springer Texts in Statistics, Springer-Verlag, New York, 1997. Independence, interchangeability, martingales. MR 1476912, DOI 10.1007/978-1-4612-1950-7
- G. Christoph, Convergence rate in integral limit theorem with stable limit law, Lith. Math. J. 19 (1979), 91–101, https://rdcu.be/c6PzJ .
- Gerd Christoph and Werner Wolf, Convergence theorems with a stable limit law, Mathematical Research, vol. 70, Akademie-Verlag, Berlin, 1992 (English, with English and German summaries). MR 1202035
- A. Clifford Cohen, Truncated and censored samples, Statistics: Textbooks and Monographs, vol. 119, Marcel Dekker, Inc., New York, 1991. Theory and applications. MR 1153408, DOI 10.1201/b16946
- Harald Cramér, Über eine Eigenschaft der normalen Verteilungsfunktion, Math. Z. 41 (1936), no. 1, 405–414 (German). MR 1545629, DOI 10.1007/BF01180430
- —, Mathematical methods of statistics, Almqvist & Wiksells, 1945.
- Giorgio Dall’Aglio, Sugli estremi dei momenti delle funzioni di ripartizione doppia, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 10 (1956), 35–74 (Italian). MR 81577
- Bruno de Finetti, Sur quelques conventions qui semblent utiles, Rev. Roumaine Math. Pures Appl. 12 (1967), 1227–1233 (French). MR 234500
- Bruno de Finetti, Probability, induction and statistics. The art of guessing, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, London-New York-Sydney, 1972. MR 440638
- Michel Denuit, Claude Lefevre, and Moshe Shaked, The $s$-convex orders among real random variables, with applications, Math. Inequal. Appl. 1 (1998), no. 4, 585–613. MR 1646686, DOI 10.7153/mia-01-56
- P. Diaconis and D. Freedman, Finite exchangeable sequences, Ann. Probab. 8 (1980), no. 4, 745–764. MR 577313, DOI 10.1214/aop/1176994663
- J. Dieudonné, Grundzüge der modernen Analysis. Band 3, Logik und Grundlagen der Mathematik [Logic and Foundations of Mathematics], vol. 18, Vieweg, Braunschweig, 1976 (German). Translated from the second French edition by Herbert Gollek, Rolf Sulanke and Peter Wintgen. MR 515871
- Jean Dieudonné, Calcul infinitésimal, Hermann, Paris, 1968 (French). MR 226971
- T. Dinev and L. Mattner, The asymptotic Berry-Esseen constant for intervals, Theory Probab. Appl. 57 (2013), no. 2, 323–325. MR 3201658, DOI 10.1137/S0040585X9798600X
- R. L. Dobrušin, Definition of a system of random variables by means of conditional distributions, Teor. Verojatnost. i Primenen. 15 (1970), 469–497 (Russian, with English summary). MR 298716
- R. M. Dudley, Real analysis and probability, Cambridge Studies in Advanced Mathematics, vol. 74, Cambridge University Press, Cambridge, 2002. Revised reprint of the 1989 original. MR 1932358, DOI 10.1017/CBO9780511755347
- Vladimir Mikhaĭlovich Zolotarev (27.02.1931–07.11.2019), Teor. Veroyatn. Primen. 65 (2020), no. 1, 213–216 (Russian); English transl., Theory Probab. Appl. 65 (2020), no. 1, 175–178. MR 4061873, DOI 10.4213/tvp5390
- Werner Ehm, Binomial approximation to the Poisson binomial distribution, Statist. Probab. Lett. 11 (1991), no. 1, 7–16. MR 1093412, DOI 10.1016/0167-7152(91)90170-V
- R. V. Erickson, $L_{1}$ bounds for asymptotic normality of $m$-dependent sums using Stein’s technique, Ann. Probability 2 (1974), 522–529. MR 383503, DOI 10.1214/aop/1176996670
- Carl-Gustav Esseen, On the Liapounoff limit of error in the theory of probability, Ark. Mat. Astr. Fys. 28A (1942), no. 9, 19. MR 11909
- Carl-Gustav Esseen, Fourier analysis of distribution functions. A mathematical study of the Laplace-Gaussian law, Acta Math. 77 (1945), 1–125. MR 14626, DOI 10.1007/BF02392223
- C. G. Esseen, A moment inequality with an application to the central limit theorem, Skand. Aktuarietidskr. 39 (1956), 160–170 (1957). MR 90166, DOI 10.1080/03461238.1956.10414946
- Carl-Gustav Esseen, On mean central limit theorems, Kungl. Tekn. Högsk. Handl. Stockholm 121 (1958), 31. MR 97111
- William Feller, An introduction to probability theory and its applications. Vol. II, 2nd ed., John Wiley & Sons, Inc., New York-London-Sydney, 1971. MR 270403
- R. Fortet and E. Mourier, Convergence de la répartition empirique vers la répartition théorique, Ann. Sci. École Norm. Sup. (3) 70 (1953), 267–285 (French). MR 61325, DOI 10.24033/asens.1013
- V. J. Francis, On the distribution of the sum of $n$ sample values drawn from a truncated normal population, Suppl. J. Roy. Statist. Soc. 8 (1946), 223–232. MR 21277, DOI 10.2307/2983565
- David Freedman, A remark on the difference between sampling with and without replacement, J. Amer. Statist. Assoc. 72 (1977), no. 359, 681. MR 445667, DOI 10.1080/01621459.1977.10480637
- Larry Goldstein, Bounds on the constant in the mean central limit theorem, Ann. Probab. 38 (2010), no. 4, 1672–1689. MR 2663641, DOI 10.1214/10-AOP527
- C. Hipp and L. Mattner, On the normal approximation to symmetric binomial distributions, Teor. Veroyatn. Primen. 52 (2007), no. 3, 610–617 (English, with Russian summary); English transl., Theory Probab. Appl. 52 (2008), no. 3, 516–523. MR 2743033, DOI 10.1137/S0040585X97983213
- J. Hoffmann-Jørgensen, Probability with a view toward statistics. Vol. I, Chapman & Hall Probability Series, Chapman & Hall, New York, 1994. MR 1278485, DOI 10.1007/978-1-4899-3019-4
- Th. Höglund, Sampling from a finite population. A remainder term estimate, Studia Sci. Math. Hungar. 11 (1976), no. 1-2, 69–74 (1978). MR 545097
- Kenneth E. Iverson, A programming language, John Wiley & Sons, Inc., New York-London, 1962. MR 143354
- Svante Janson, Rounding of continuous random variables and oscillatory asymptotics, Ann. Probab. 34 (2006), no. 5, 1807–1826. MR 2271483, DOI 10.1214/009117906000000232
- L. Kantorovitch, On the translocation of masses, C. R. (Doklady) Acad. Sci. URSS (N.S.) 37 (1942), 199–201. MR 9619
- L. V. Kantorovič and G. Š. Rubinšteĭn, On a space of completely additive functions, Vestnik Leningrad. Univ. 13 (1958), no. 7, 52–59 (Russian, with English summary). MR 102006
- Samuel Karlin and Albert Novikoff, Generalized convex inequalities, Pacific J. Math. 13 (1963), 1251–1279. MR 156927, DOI 10.2140/pjm.1963.13.1251
- Man Kam Kwong and Anton Zettl, Norm inequalities for derivatives and differences, Lecture Notes in Mathematics, vol. 1536, Springer-Verlag, Berlin, 1992. MR 1223546, DOI 10.1007/BFb0090864
- P. Lévy, Calcul des probabilités, Gauthier-Villars, 1925. Reprinted 2004, Édition Jaques Gabay.
- $^\ast$—, Théorie de l’addition des variables aléatoires, first edition, Gauthier-Villars, 1937.
- J. W. Lindeberg, Eine neue Herleitung des Exponentialgesetzes in der Wahrscheinlichkeitsrechnung, Math. Z. 15 (1922), no. 1, 211–225 (German). MR 1544569, DOI 10.1007/BF01494395
- E. Marczewski and C. Ryll-Nardzewski, Remarks on the compactness and non direct products of measures, Fund. Math. 40 (1953), 165–170. MR 59996, DOI 10.4064/fm-40-1-165-170
- Albert W. Marshall and Ingram Olkin, Life distributions, Springer Series in Statistics, Springer, New York, 2007. Structure of nonparametric, semiparametric, and parametric families. MR 2344835
- Lutz Mattner, Complex differentiation under the integral, Nieuw Arch. Wiskd. (5) 2 (2001), no. 1, 32–35. MR 1823156
- —, Berry–Esseen for summands Zolotarev-$\zeta$-close to normal, Conference abstract for Esseen 100 Years, Uppsala University, 17–18 September 2018, https://indico.uu.se/event/459/attachments/723/928/Lutz_Mattner_Abstract.pdf
- Lutz Mattner and Jona Schulz, On normal approximations to symmetric hypergeometric laws, Trans. Amer. Math. Soc. 370 (2018), no. 1, 727–748. MR 3717995, DOI 10.1090/tran/6986
- Lutz Mattner and Irina Shevtsova, An optimal Berry-Esseen type theorem for integrals of smooth functions, ALEA Lat. Am. J. Probab. Math. Stat. 16 (2019), no. 1, 487–530. MR 3941867, DOI 10.30757/alea.v16-19
- A. Mitalauskas and V. Statuljavičjus, An asymptotic expansion in the case of a stable approximating law, Litovsk. Mat. Sb. 16 (1976), no. 4, 149–166, 255 (Russian, with English and Lithuanian summaries). MR 423484
- D. Morgenstern, zbMATH review of Agnew (1954) [1], 1955, https://zbmath.org/0055.36703 .
- S. V. Nagaev, Some limit theorems for large deviations, Teor. Verojatnost. i Primenen. 10 (1965), 231–254 (Russian, with English summary). MR 185644
- Frank W. J. Olver, Daniel W. Lozier, Ronald F. Boisvert, and Charles W. Clark (eds.), NIST handbook of mathematical functions, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge, 2010. With 1 CD-ROM (Windows, Macintosh and UNIX). MR 2723248
- Ludwig Paditz, A nonclassical error-estimate in the central limit theorem, Math. Nachr. 136 (1988), 59–68. MR 952462, DOI 10.1002/mana.19881360103
- V. I. Paulauskas, A smoothing inequality, Litovsk. Mat. Sb. 11 (1971), 861–866 (Russian, with English and Lithuanian summaries). MR 291392
- Valentin V. Petrov, Limit theorems of probability theory, Oxford Studies in Probability, vol. 4, The Clarendon Press, Oxford University Press, New York, 1995. Sequences of independent random variables; Oxford Science Publications. MR 1353441
- Allan Pinkus and Dan Wulbert, Extending $n$-convex functions, Studia Math. 171 (2005), no. 2, 125–152. MR 2183481, DOI 10.4064/sm171-2-2
- Georg Pólya, Über den zentralen Grenzwertsatz der Wahrscheinlichkeitsrechnung und das Momentenproblem, Math. Z. 8 (1920), no. 3-4, 171–181 (German). MR 1544437, DOI 10.1007/BF01206525
- G. Pólya and G. Szegő, Problems and theorems in analysis. Vol. II, Revised and enlarged translation by C. E. Billigheimer of the fourth German edition, Springer Study Edition, Springer-Verlag, New York-Heidelberg, 1976. Theory of functions, zeros, polynomials, determinants, number theory, geometry. MR 465631
- Svetlozar T. Rachev, Probability metrics and the stability of stochastic models, Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics, John Wiley & Sons, Ltd., Chichester, 1991. MR 1105086
- S. T. Rachev and L. Rüschendorf, Approximation of sums by compound Poisson distributions with respect to stop-loss distances, Adv. in Appl. Probab. 22 (1990), no. 2, 350–374. MR 1053235, DOI 10.2307/1427540
- D. Rasch, Mathematische Statistik. Eine Einführung für Studenten der Mathematik, Statistik, Biometrie und Naturwissenschaften, Barth, 1995.
- B. Roos, On the accuracy in a combinatorial central limit theorem: the characteristic function method, Theory Probab. Appl. 67 (2022), no. 1, 118–139. Translation of Teor. Veroyatn. Primen. 67 (2022), 150–175. MR 4466417, DOI 10.1137/S0040585X97T990794
- Hans-Joachim Rossberg, Bernd Jesiak, and Gerhard Siegel, Analytic methods of probability theory, Mathematische Lehrbücher und Monographien, II. Abteilung: Mathematische Monographien [Mathematical Textbooks and Monographs, Part II: Mathematical Monographs], vol. 67, Akademie-Verlag, Berlin, 1985. MR 833074
- V. I. Rotar′, Summation of independent terms in a nonclassical situation, Uspekhi Mat. Nauk 37 (1982), no. 6(228), 137–156 (Russian). MR 683277
- Walter Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987. MR 924157
- Walter Rudin, Functional analysis, 2nd ed., International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York, 1991. MR 1157815
- M. Hazewinkel (ed.), Encyclopaedia of mathematics. Supplement. Vol. II, Kluwer Academic Publishers, Dordrecht, 2000. MR 1747255, DOI 10.1007/978-94-015-1279-4
- R. Z. Salahutdinov, A refinement of the remainder term in the central limit theorem, Teor. Veroyatnost. i Primenen. 23 (1978), no. 3, 688–691 (Russian, with English summary). MR 509748
- V. V. Sazonov, On a bound for the rate of convergence in the multidimensional central limit theorem, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971) Univ. California Press, Berkeley, CA, 1972, pp. 563–581. MR 400351
- —, A new general estimate of the rate of convergence in the central limit theorem in $R^k$, Proc. Natl. Acad. Sci. USA 71 (1974, 118–121, https://www.jstor.org/stable/62717 .
- Vjačeslav V. Sazonov, Normal approximation—some recent advances, Lecture Notes in Mathematics, vol. 879, Springer-Verlag, Berlin-New York, 1981. MR 643968, DOI 10.1007/BFb0096862
- H. Schneeweiss, J. Komlos, and A. S. Ahmad, Symmetric and asymmetric rounding: a review and some new results, AStA Adv. Stat. Anal. 94 (2010), no. 3, 247–271. MR 2733174, DOI 10.1007/s10182-010-0125-2
- J. Schulz, The optimal Berry–Esseen constant in the binomial case, Dissertation, Universität Trier, 2016, http://ubt.opus.hbz-nrw.de/volltexte/2016/1007/ .
- V. V. Senatov, Some uniform estimates of the convergence rate in the multidimensional central limit theorem, Teor. Veroyatnost. i Primenen. 25 (1980), no. 4, 757–770 (Russian, with English summary). MR 595137
- Vladimir V. Senatov, Normal approximation: new results, methods and problems, Modern Probability and Statistics, VSP, Utrecht, 1998. Translated from the Russian manuscript by A. V. Kolchin. MR 1686374, DOI 10.1515/9783110933666.363
- W. F. Sheppard, On the Calculation of the most Probable Values of Frequency-Constants, for Data arranged according to Equidistant Division of a Scale, Proc. Lond. Math. Soc. 29 (1897/98), 353–380. MR 1576445, DOI 10.1112/plms/s1-29.1.353
- Irina Shevtsova, Moment-type estimates with asymptotically optimal structure for the accuracy of the normal approximation, Ann. Math. Inform. 39 (2012), 241–307. MR 2959891
- —, On the absolute constants in the Berry–Esseen inequality and its structural and nonuniform improvements, Inform. Primen. 7 (2013), no. 1, 124–125, http://mi.mathnet.ru/eng/ia/v7/i1/p124 (Russian).
- I. S. Shiganov, A note on numerical rate of convergence estimates in central limit theorem, J. Soviet Math. 47 (1989), no. 5, 2810–2816. Stability problems for stochastic models. MR 1040115, DOI 10.1007/BF01095613
- A. J. Stam, Distance between sampling with and without replacement, Statist. Neerlandica 32 (1978), no. 2, 81–91. MR 518630, DOI 10.1111/j.1467-9574.1978.tb01387.x
- Uwe Storch and Hartmut Wiebe, Lehrbuch der Mathematik für Mathematiker, Informatiker und Physiker. Band III, Bibliographisches Institut, Mannheim, 1993 (German). Analysis mehrerer Veränderlicher—Integrationstheorie. [Analysis in several variables—integration theory]. MR 1252619
- M. Th. Subbotin, On the law of frequency error, Mat. Sb. 31(1923), no. 2, 296–301, http://www.mathnet.ru/eng/sm6854 .
- L. V. Thành, On the Berry–Esseen bound for a combinatorial central limit theorem, Preprint, 12 pages, Vietnam Institute for Advanced Study in Mathematics, ViAsM13.45, 2013, https://web.archive.org/web/20220302122937/file.viasm.org/Web/TienAnPham-13/Preprint_1352.pdf .
- A. N. Titov, On the determination of a convolution of identical distribution functions from its values on a half line, Teor. Veroyatnost. i Primenen. 26 (1981), no. 3, 610–611 (Russian, with English summary). MR 627868
- F. G. Tricomi and A. Erdélyi, The asymptotic expansion of a ratio of gamma functions, Pacific J. Math. 1 (1951), 133–142. MR 43948, DOI 10.2140/pjm.1951.1.133
- I. S. Tyurin, On the rate of convergence in Lyapunov’s theorem, Teor. Veroyatn. Primen. 55 (2010), no. 2, 250–270 (Russian, with Russian summary); English transl., Theory Probab. Appl. 55 (2011), no. 2, 253–270. MR 2768904, DOI 10.1137/S0040585X97984760
- I. S. Tyurin, On the rate of convergence in Lyapunov’s theorem, Teor. Veroyatn. Primen. 55 (2010), no. 2, 250–270 (Russian, with Russian summary); English transl., Theory Probab. Appl. 55 (2011), no. 2, 253–270. MR 2768904, DOI 10.1137/S0040585X97984760
- I. S. Tyurin, Some optimal bounds in the central limit theorem using zero biasing, Statist. Probab. Lett. 82 (2012), no. 3, 514–518. MR 2887466, DOI 10.1016/j.spl.2011.11.010
- V. V. Ul′janov, A nonuniform estimate for the rate of convergence in the central limit theorem in $R$, Teor. Verojatnost. i Primenen. 21 (1976), no. 2, 280–292 (Russian, with English summary). MR 415733
- Jin Bai Kim, Erratum to: “On the game of Go” [Kyungpook Math. J. 18 (1978), no. 1, 125–134; MR 58 #15226], Kyungpook Math. J. 19 (1979), no. 1, 149. MR 543304
- L. N. Vasershtein, Markov processes over denumerable products of spaces describing large system of automata, Problemy Peredači Informacii 5 (1969), no. 3, 64–72 (Russian); English transl., Problems Inform. Transmission 5 (1969), no. 3, 47–52. MR 314115, DOI 10.1016/s0016-0032(33)90010-1
- Cédric Villani, Optimal transport: Monge meets Riemann and Fourier, J. Egyptian Math. Soc. 19 (2011), no. 1-2, 95–96. MR 2914136, DOI 10.1016/j.joems.2011.09.007
- R. von Mises, Bestimmung einer Verteilung durch ihre ersten Momente, Skandinavisk Aktuarietidskrift 174 (1937), no. 3–4, 220–243. Also in \cite[pp. 295–312]vonMises1964.
- Richard von Mises, Selected papers of Richard von Mises. Vol. Two: Probability and statistics, general, American Mathematical Society, Providence, RI, 1964. Selected and edited by Ph. Frank, S. Goldstein, M. Kac, W. Prager, G. Szegö and G. Birkhoff. MR 170776
- L. S. Yaroslavtseva, Nonclassical error bounds for approximation of asymptotic expansions in the central limit theorem, Teor. Veroyatn. Primen. 53 (2008), no. 2, 390–393 (Russian, with Russian summary); English transl., Theory Probab. Appl. 53 (2009), no. 2, 365–367. MR 3691830, DOI 10.1137/S0040585X97983699
- —, Non-classical error bounds in the central limit theorem, Dissertation, Otto-von-Guericke-Universität Magdeburg, 2008, http://dx.doi.org/10.25673/4893 .
- V. M. Zolotarev, On the closeness of the distributions of two sums of independent random variables, Teor. Verojatnost. i Primenen. 10 (1965), 519–526 (Russian, with English summary). MR 189109
- V. M. Zolotarev, Several new probabilistic inequalities connected with the Lévy metric, Dokl. Akad. Nauk SSSR 190 (1970), 1019–1021 (Russian). MR 256440
- V. M. Zolotarev, Estimates of the difference between distributions in the Lévy metric, Trudy Mat. Inst. Steklov. 112 (1971), 224–231, 388 (Russian). MR 321156
- V. M. Zolotarev, The accuracy of approximation in the central limit theorem, Dokl. Akad. Nauk SSSR 203 (1972), 22–24 (Russian). MR 310945
- V. M. Zolotarev, Exactness of an approximation in the central limit theorem, Proceedings of the Second Japan-USSR Symposium on Probability Theory (Kyoto, 1972) Lecture Notes in Math., Vol. 330, Springer, Berlin-New York, 1973, pp. 531–543. MR 443048
- —, Metric distances in spaces of random variables and their distributions, Math. USSR Sbornik 30 (1976), no. 3, 373–401, https://www.mathnet.ru/eng/sm2908 . MR 0467869
- V. M. Zolotarev, Pseudomoments, Teor. Verojatnost. i Primenen. 23 (1978), no. 2, 284–294 (Russian, with English summary). MR 517340
- —, Properties of and relations among certain types of metrics, Zap. Nauchn. Sem. LOMI 87 (1979), 18–35, http://www.mathnet.ru/eng/znsl2968 (Russian). English transl. Journal of Soviet Mathematics 17 (1981), no. 6, 2218–2232, https://rdcu.be/dtbKg . MR 0554598
- V. M. Zolotarev, Sovremennaya teoriya summirovaniya nezavisimykh sluchaĭ nykh velichin, Teoriya Veroyatnosteĭ i Matematicheskaya Statistika. [Probability Theory and Mathematical Statistics], “Nauka”, Moscow, 1986 (Russian). MR 917274
- —, Modern theory of summation of random variables, VSP, Utrecht, The Netherlands, 1997. MR 1640024
References
- R. P. Agnew, Global versions of the central limit theorem, Proc. Natl. Acad. Sci. USA 40 (1954), no. 9, 800–804, https://www.jstor.org/stable/88892 . MR 64342
- C. D. Aliprantis and K. D. Border, Infinite dimensional analysis. A hitchhiker’s guide, 3rd edition, Springer, 2006. MR 2378491
- H. Bauer, Minimalstellen von Funktionen und Extremalpunkte, Archiv der Mathematik 9 (1958), 389–393, https://rdcu.be/c6O2M . MR 100774
- C. Berg, J. P. R. Christensen, and P. Ressel, Harmonic analysis on semigroups. Theory of positive definite and related functions, Springer, 1984. MR 747302
- A. C. Berry, The accuracy of the Gaussian approximation to the sum of independent variates, Trans. Amer. Math. Soc. 49 (1941), no. 1, 122–136, https://www.ams.org/journals/tran/1941-049-01/home.html . MR 3498
- R. N. Bhattacharya and R. Ranga Rao, Normal approximation and asymptotic expansion, SIAM, 2010. MR 3396213
- Z. W. Birnbaum and F. C. Andrews, On sums of symmetrically truncated normal variables, Annals of Mathematical Statistics 20 (1949), no. 3, 458–461, https://doi.org/10.1214/aoms/1177730001 . MR 30721
- M. Bloznelis and A. Račkauskas, Fifty years in the field of probability: A conversation with professor Vygantas Paulauskas, Lith. Math. J. 59 (2019), no. 4, 425–436, https://rdcu.be/cQXk8 . MR 4038059
- A. G. Bobkov, G. P. Chistyakov, and F. Götze, Stability problems in Cramér-type characterization in case of i.i.d. summands, Teor. Veroyatnost. i Primenen. 57 (2012), no. 4, 701–723, http://www.mathnet.ru/eng/tvp4475 (English, with Russian summary). English transl. Theory Probab. Appl. 57 (2013), no. 4, 568–588. MR 3201665
- V. I. Bogachev, Measure theory, Vol. I, Springer, 2007. MR 2267655
- V. I. Bogachev, A. N. Doledenok, and S. V. Shaposhnikov, Weighted Zolotarev metrics and the Kantorovich metric, Doklady Mathematics 95 (2017), no. 2, 113–117, https://rdcu.be/c6PgV . MR 3701579
- V. I. Bogachev and A. V. Kolesnikov, The Monge-Kantorovich problem: achievements, connections, and perspectives, Russian Math. Surveys 67 (2012), no. 5, 785–890, https://doi.org/10.1070/RM2012v067n05ABEH004808 . MR 3058744
- A. L. Bond and J. R. Green, Journal title abbreviations should be eliminated in the digital age, PeerJ PrePrints 2:e445v1, https://peerj.com/preprints/445/, 2014.
- N. Bourbaki, Elements of mathematics. Functions of a real variable. Elementary theory, Springer, 2004. MR 2013000
- M. V. Boutsikas, Asymptotically optimal Berry–Esseen-type bounds for distributions with an absolutely continuous part, Journal of Statistical Planning and Inference 141 (2011), no. 3, 1250–1268. MR 2739165
- —, Penultimate gamma approximation in the CLT for skewed distributions, ESAIM: Probability and Statistics 19 (2015), 590–604. https://doi.org/10.1051/ps/2015010. MR 3433428
- M. V. Boutsikas and E. Vaggelatou, On the distance between convex-ordered random variables, with applications, Adv. in Appl. Probab. 34 (2002), no. 2, 349–374, https://www.jstor.org/stable/1428292 . MR 1909919
- M. Braverman, A. Dikansky, L. Friedlander, M. Gromov, V. Ivrii, Y. Kordyukov, P. Kuchment, V. Maz’ya, R. McOwen, T. Sunada, and A. Zvonkin, Mikhail Aleksandrovich Shubin (1944–2020), Notices of the American Mathematical Society 68 (2021), no. 1, 81–93, https://doi.org/10.1090/noti2208 . MR 4202322
- H. E. Buchanan and T. H. Hildebrandt, Note on the convergence of a sequence of functions of a certain type, Annals of Mathematics, Second Series, 9 (1908), 123–126, https://doi.org/10.2307/1967455 . MR 1502360
- L. H. Y. Chen and X. Fang, On the error bound in a combinatorial central limit theorem, Bernoulli 21 (2015), no. 1, 335–359, https://doi.org/10.3150/13-BEJ569 . MR 3322321
- L. H. Y. Chen, L. Goldstein, and Q.-M. Shao, Normal approximation by Stein’s method, Springer, 2011. MR 2732624
- G. P. Chistyakov, A new asymptotic expansion and asymptotically best constants in Lyapunov’s theorem. I, II, III. Teor. Veroyatn. Primen. 46 (2001), no. 2, 326–344, https://www.mathnet.ru/eng/tvp3921 ; 46 (2001), no. 2, 573–579; 47 (2002), no. 3, 475–497 (Russian). English transl. Theory Probab. Appl. 46 (2002), no. 2, 226–242; 46 (2002), no. 3, 516–522; 47 (2003), no. 3. 395–414. MR 1968689
- G. Choquet, Lectures on analysis II: Representation theory, Benjamin, 1969. MR 250012
- Y. S. Chow and W. J. Studden, Monotonicity of the variance under truncation and variations of Jensen’s inequality, Annals of Mathematical Statistics 40 (1969), no. 3, 1106–1108, https://doi.org/10.1214/aoms/1177697619 . MR 240901
- Y. S. Chow and H. Teicher, Probability theory. Independence, interchangeability, martingales, 3rd ed., Springer, 1997. MR 1476912
- G. Christoph, Convergence rate in integral limit theorem with stable limit law, Lith. Math. J. 19 (1979), 91–101, https://rdcu.be/c6PzJ .
- G. Christoph and W. Wolf, Convergence theorems with a stable limit law, Akademie Verlag, 1992. MR 1202035
- A. C. Cohen, Truncated and censored samples. Theory and applications, Dekker, 1991. MR 1153408
- H. Cramér, Über eine Eigenschaft der normalen Verteilungsfunktion, Math. Z. 41 (1936), 405–414, https://eudml.org/doc/168674 . MR 1545629
- —, Mathematical methods of statistics, Almqvist & Wiksells, 1945.
- G. Dall’Aglio, Sugli estremi dei momenti delle funzioni di ripartizione doppia, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 3e série 10 (1956), 35–74. MR 81577
- $^\ast$B. de Finetti, Sur quelques conventions qui semblent utiles, Revue Roumaines de Mathématiques Pures e Appliquées 12 (1967), 1227–1233. [English translation in [33, pp. xviii–xxiv].] MR 234500
- —, Probability, induction and statistics. The art of guessing, Wiley, 1972. MR 440638
- M. Denuit, C. Lefèvre, and M. Shaked, The $s$-convex orders among real random variables, with applications, Mathematical Inequalities & Applications 1 (1998), 585–613. MR 1646686
- P. Diaconis and D. Freedman, Finite exchangeable sequences, Ann. Probab. 8 (1980), 745–764, https://doi.org/10.1214/aop/1176994663 . MR 577313
- J. Dieudonné, Grundzüge der modernen Analysis, Band 3, Vieweg, 1976. MR 515871
- —, Calcul infinitésimal, 2ième édition, Hermann, 1980. MR 226971
- T. Dinev and L. Mattner, The asymptotic Berry–Esseen constant for intervals, Teor. Veroyatn. Primen. 57 (2012), 381–325 (English, with Russian summary), http://www.mathnet.ru/eng/tvp4454 . English transl. Theory Probab. Appl. 57 (2013), 323–325. MR 3201658
- R. L. Dobrushin, Prescribing a system of random variables by conditional distributions, Teor. Veroyatn. Primen. 15 (1970), 469–497 (Russian), https://www.mathnet.ru/eng/tvp1856 . English transl. Theory Probab. Appl. 15 (1970), 458–486. MR 298716
- R. M. Dudley, Real analysis and probability, 2nd edition, Cambridge University Press, 2003. MR 1932358
- Editorial Board of TVP, Vladimir Mikhailovich Zolotarev (27.02.1931 – 07.11.2019), Teor. Veroyatnost. Primen. 65 (2020), no. 1, 213–216. http://www.mathnet.ru/eng/tvp5390 (Russian). English transl. Theory Probab. Appl. 65 (2020), no. 1, 175–178., MR 4061873
- W. Ehm, Binomial approximation to the Poisson binomial distribution, Statistics & Probability Letters 11 (1991), no. 1, 7–16. MR 1093412
- R. Erickson, $\mathrm {L}_1$ bounds for asymptotic normality of m-dependent sums using Stein’s technique, Ann. Probab. 2 (1974), 522–529, MR 383503
- C.-G. Esseen, On the Liapounoff limit of error in the theory of probability, Arkiv Mat., Astr. och Fysik 28A (1942), 1–19. MR 11909
- —, Fourier analysis of distribution functions. A mathematical study of the Laplace–Gaussian law, Acta Mathematica 77 (1945), no. 1, 1–125, https://doi.org/10.1007/BF02392223 . MR 14626
- —, A moment inequality with an application to the central limit theorem, Skandinavisk Aktuarietidskrift 39 (1956), 160–170. MR 90166
- —, On mean central limit theorems, Transactions of the Royal Institute of Technology Stockholm, Sweden 121 (1958). MR 0097111
- W. Feller, An introduction to probability theory and its applications, Vol. II, Second edition, Wiley, 1971. MR 270403
- R. Fortet and E. Mourier, Convergence de la répartition empirique vers la répartition théorique, Annales scientifiques de l’É.N.S. 3e série 70 (1953), no. 3, 267–285, MR 61325
- V. J. Francis, On the distribution of the sum of $n$ sample values drawn from a truncated normal population, Supplement to the Journal of the Royal Statistical Society, 8 (1946), no. 2, 223–232, https://www.jstor.org/stable/2983565 . MR 21277
- D. Freedman, A remark on the difference between sampling with and without replacement, J. Amer. Statist. Assoc. 72 (1977), 681. MR 445667
- L. Goldstein, Bounds on the constant in the mean central limit theorem, Ann. Probab. 38 (2010), 1672–1689, https://doi.org/10.1214/10-AOP527 . MR 2663641
- C. Hipp and L. Mattner, On the normal approximation to symmetric binomial distributions, Teor. Veroyatn. Primen. 52 (2007), no. 3, 610–617, http://mi.mathnet.ru/eng/tvp/v52/i3/p610 (English, with Russian summary). English transl. Theory Probab. Appl. 52 (2008), no. 3, 516–523. MR 2743033
- J. Hoffmann-Jørgensen, Probability with a view toward statistics, Vol. I, Chapman & Hall, 1994. MR 1278485
- T. Höglund, Sampling from a finite population. A remainder term estimate, Studia Sci. Math. Hungar. 11 (1976), 69–74. Also in Scand. J. Statist. 5 (1978), 69–71, https://www.jstor.org/stable/4615687 . MR 545097
- K. E. Iverson, A programming language, Wiley, 1962. MR 143354
- S. Janson, Rounding of continuous random variables and oscillatory asymptotics, Ann. Probab. 34 (2006), no. 5, 1807–1826, https://doi.org/10.1214/009117906000000232 . MR 2271483
- L. V. Kantorovich, On the translocation of masses, C. R. (Doklady) Acad. Sci. URSS (N.S.) 37 (1942), 199–201. Also in: J. Math. Sci. 133 (2006), no. 4, 1381–1382, https://rdcu.be/dtbOK . MR 9619
- $^\ast$L. V. Kantorovich and G. Sh. Rubinstein, On a space of completely additive functions, Vestnik Leningrad Univ., Ser. Mat. Mekh. i Astron. 13 (1958), no. 7, pp. 52–59 (In Russian). MR 102006
- S. Karlin and A. Novikoff, Generalized convex inequalities, Pacific J. Math. 13 (1963), 1251–1279, https://projecteuclid.org/journalArticle/Download?urlId=pjm/1103034561 . MR 156927
- M. K. Kwong and A. Zettl, Norm inequalities for derivatives and differences, Springer, 1992. MR 1223546
- P. Lévy, Calcul des probabilités, Gauthier-Villars, 1925. Reprinted 2004, Édition Jaques Gabay.
- $^\ast$—, Théorie de l’addition des variables aléatoires, first edition, Gauthier-Villars, 1937.
- J. W. Lindeberg, Eine neue Herleitung des Exponentialgesetzes in der Wahrscheinlichkeitsrechnung, Math. Z. 15 (1922), 211–225, https://rdcu.be/dtanj . MR 1544569
- E. Marczewski and C. Ryll-Nardzewski, Remarks on the compactness and non direct products of measures, Fundamenta Mathematicae 40 (1953), 165–170, https://www.infona.pl//resource/bwmeta1.element.bwnjournal-article-fmv40i1p17 . MR 59996
- A. W. Marshall and I. Olkin, Life distributions. Structure of nonparametric, semiparametric, and parametric families, Springer, 2007. MR 2344835
- L. Mattner, Complex differentiation under the integral, Nieuw Arch. Wiskd. (5) 2 (2001), 32–35, http://www.nieuwarchief.nl/serie5/pdf/naw5-2001-02-1-032.pdf . MR 1823156
- —, Berry–Esseen for summands Zolotarev-$\zeta$-close to normal, Conference abstract for Esseen 100 Years, Uppsala University, 17–18 September 2018, https://indico.uu.se/event/459/attachments/723/928/Lutz_Mattner_Abstract.pdf
- L. Mattner and J. Schulz, On normal approximations to symmetric hypergeometric laws, Trans. Amer. Math. Soc. 370 (2018), 727–748. MR 3717995
- L. Mattner and I. Shevtsova, An optimal Berry–Esseen type theorem for integrals of smooth functions, ALEA, Lat. Am. J. Probab. Math. Stat. 16 (2019), 487–530, http://alea.impa.br/articles/v16/16-19.pdf . MR 3941867
- A. Mitalauskas and V. Statulevičius, An asymptotic expansion in the case of a stable approximating law, Lith. Math. J. 16 (1976), 574–586, https://rdcu.be/cQ68n . MR 423484
- D. Morgenstern, zbMATH review of Agnew (1954) [1], 1955, https://zbmath.org/0055.36703 .
- S. V. Nagaev, Some limit theorems for large deviations, Teor. Veroyatn. Primen. 10 (1965), no. 2, 231–254 (Russian), https://www.mathnet.ru/eng/tvp519 . English transl. Theory Probab. Appl. 10 (1965), no. 2, 214–235. MR 185644
- F. W. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, NIST handbook of mathematical functions, NIST and Cambridge University Press, 2010. MR 2723248
- L. Paditz, A non-classical error-estimate in the central limit theorem, Math. Nachr. 136 (1988), no. 1, 59–68. MR 952462
- V. I. Paulauskas, On the reinforcement of the Liapunov theorem, Litovsk. Mat. Sb. 9 (1969), 323–328 (Russian, with Lithuanian and English summaries), https://doi.org/10.15388/LMJ.1969.20757 . MR 291392
- V. V. Petrov, Limit theorems of probability theory. Sequences of independent random variables, Oxford University Press, 1995. MR 1353441
- A. Pinkus and D. Wulbert, Extending $n$-convex functions, Studia Mathematica 171 (2005), 125–152, https://doi.org/10.4064/sm171-2-2 . MR 2183481
- G. Pólya, Über den zentralen Grenzwertsatz der Wahrscheinlichkeitsrechnung und das Momentenproblem, Math. Z. 8 (1920), 171–181, https://eudml.org/doc/167598 . MR 1544437
- G. Pólya and G. Szegö, Problems and theorems in analysis II, Springer, 1976. MR 465631
- S. T. Rachev, Probability metrics and the stability of stochastic models, Wiley, 1991. MR 1105086
- S. T. Rachev and L. Rüschendorf, Approximation of sums by compound Poisson distributions with respect to stop-loss distances, Adv. Appl. Prob. 22 (1990), 350–374, https://www.jstor.org/stable/pdf/1427540 . MR 1053235
- D. Rasch, Mathematische Statistik. Eine Einführung für Studenten der Mathematik, Statistik, Biometrie und Naturwissenschaften, Barth, 1995.
- B. Roos, On the accuracy in a combinatorial central limit theorem: the characteristic function method, Teor. Veroyatnost. i Primenen. 67 (2022), no. 1, 150–175, http://mi.mathnet.ru/eng/tvp5412. (English, with Russian summary). English transl. Theory Probab. Appl. 67 (2022), no. 1, 118–139. MR 4466417
- H.-J. Rossberg, B. Jesiak, and G. Siegel, Analytic methods of probability theory, Akademie-Verlag, Berlin, 1985. MR 833074
- V. I. Rotar’, On summation of independent variables in a non-classical situation, Russian Math. Surveys 37 (1982), no. 6, 151–175, https://www.mathnet.ru/eng/rm3948 . MR 683277
- W. Rudin, Real and complex analysis, third edition, McGraw–Hill, 1987. MR 924157
- —, Functional analysis, second Edition, McGraw–Hill, 1991. MR 1157815
- L. Rüschendorf, Wasserstein metric, Encyclopedia of Mathematics (M. Hazewinkel, ed.), Supplement Volume II, Kluwer, 2000, pp. 487–488. MR 1747255
- R. Z. Salakhutdinov, On refining the remainder term in the central limit theorem, Teor. Veroyatn. Primen. 23 (1978), no. 3, 688–691 (Russian), https://www.mathnet.ru/eng/tvp3094 . English transl. Theory Probab. Appl. 23 (1979), no. 3, 663–667. MR 509748
- V. V. Sazonov, On a bound for the rate of convergence in the multidimensional central limit theorem, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Vol. II, University of California Press, 1972, pp. 563–581, https://projecteuclid.org/proceedings/berkeley-symposium-on-mathematical-statistics-and-probability/Proceedings-of-the-Sixth-Berkeley-Symposium-on-Mathematical-Statistics-and/Chapter/On-a-bound-for-the-rate-of-convergence-in-the/bsmsp/1200514238 . MR 400351
- —, A new general estimate of the rate of convergence in the central limit theorem in $R^k$, Proc. Natl. Acad. Sci. USA 71 (1974, 118–121, https://www.jstor.org/stable/62717 .
- —, Normal approximation – some recent advances, Lecture Notes in Math. 879, Springer, 1981. MR 643968
- H. Schneeweiss, J. Komlos, and A. S. Ahmad, Symmetric and asymmetric rounding: a review and some new results, AStA Advances in Statistical Analysis 94 (2010), 247–271, https://rdcu.be/c7Yrg . MR 2733174
- J. Schulz, The optimal Berry–Esseen constant in the binomial case, Dissertation, Universität Trier, 2016, http://ubt.opus.hbz-nrw.de/volltexte/2016/1007/ .
- V. V. Senatov, Several uniform estimates of the rate of convergence in the multidimensional central limit theorem, Teor. Veroyatn. Primen. 25 (1980), no. 4, 757–770 (Russian), https://www.mathnet.ru/eng/tvp1230 . English transl. Theory Probab. Appl. 25 (1981), no. 4, 745–759. MR 595137
- —, Normal approximation: New results, methods and problems, VSP, Utrecht, Netherlands, 1998. MR 1686374
- W. F. Sheppard, On the calculation of the most probable values of frequency-constants, for data arranged according to equidistant division of a scale, Proc. London Math. Soc. 29 (1898), 353–380. MR 1576445
- I. G. Shevtsova, Moment-type estimates with asymptotically optimal structure for the accuracy of the normal approximation, Annales Mathematicae et Informaticae 39 (2012), 241–307, https://ami.uni-eszterhazy.hu/index.php?vol=39 . MR 2959891
- —, On the absolute constants in the Berry–Esseen inequality and its structural and nonuniform improvements, Inform. Primen. 7 (2013), no. 1, 124–125, http://mi.mathnet.ru/eng/ia/v7/i1/p124 (Russian).
- I. S. Shiganov, A note on numerical rate of convergence estimates in central limit theorem, Problemy Ustoichivosti Stokhasticheskikh Modelei, Trudy Seminara, 1987, pp. 142–149 (Russian). English transl. J. Soviet Math. 47 (1989), no. 5, 2810–2816, https://rdcu.be/c7YrJ . MR 1040115
- A. J. Stam, Distance between sampling with and without replacement, Statistica Neerlandica 32 (1978), no. 2, 81–91. MR 518630
- U. Storch and H. Wiebe, Lehrbuch der Mathematik. Band III: Analysis mehrerer Veränderlicher – Integrationstheorie, BI Wissenschaftsverlag, 1993. MR 1252619
- M. Th. Subbotin, On the law of frequency error, Mat. Sb. 31(1923), no. 2, 296–301, http://www.mathnet.ru/eng/sm6854 .
- L. V. Thành, On the Berry–Esseen bound for a combinatorial central limit theorem, Preprint, 12 pages, Vietnam Institute for Advanced Study in Mathematics, ViAsM13.45, 2013, https://web.archive.org/web/20220302122937/file.viasm.org/Web/TienAnPham-13/Preprint_1352.pdf .
- A. N. Titov, On the determination of a convolution of identical distribution functions by its values on halfline, Teor. Veroyatn. Primen. 26 (1981), no. 3, 610–611 (Russian), https://www.mathnet.ru/eng/tvp2618 . English transl. Theory Probab. Appl. 26 (1982), no. 3, 599–600. MR 627868
- F. G. Tricomi and A. Erdelyi, The asymptotic expansion of a ratio of gamma functions, Pacific J. Math. 1 (1951), no. 1, 133–142, https://msp.org/pjm/1951/1-1/pjm-v1-n1-p14-s.pdf . MR 43948
- I. Tyurin, New estimates of the convergence rate in the Lyapunov theorem, https://arxiv.org/abs/0912.0726 , 2009. MR 2768904
- —, On the convergence rate in Lyapunov’s theorem, Teor. Veroyatn. Primen. 55 (2010), no. 2, 250–270, http://mi.mathnet.ru/eng/tvp4200 (Russian). English transl. Theory Probab. Appl. 55 (2011), no. 2, 253–270. MR 2768904
- —, Some optimal bounds in CLT using zero biasing, Stat. Prob. Letters 82 (2012), no. 3, 514–518. MR 2887466
- V. V. Ul’yanov, A non-uniform estimate of the speed of convergence in the central limit theorem in $R$, Teor. Veroyatn. Primen. 21 (1976), no. 2, 280–292 (Russian), https://www.mathnet.ru/eng/tvp3345 . English transl. Theory Probab. Appl. 21 (1977), no. 2, 270–282. MR 415733
- —, Some improvements of convergence rate estimates in the central limit theorem, Teor. Veroyatn. Primen. 23 (1978), no. 3, 684–688 (Russian), https://www.mathnet.ru/eng/tvp3093 ; erratum 24 (1979), no. 1, 236. English transl. Theory Probab. Appl. 23 (1978), no. 3, 660–663; erratum 24 (1979), no. 1, 237. MR 543304
- L. N. Vasershtein, Markov processes on a countable product space, describing large systems of automata, Problemy Peredachi Informatsii 5 (1969), no. 3, 64–73 (Russian), https://www.mathnet.ru/eng/ppi1811 . English transl. Problems. Inform. Transmission 5 (1969), no. 3, 47–52. MR 314115
- C. Villani, Optimal transport. Old and new, Springer, 2009. MR 2914136
- R. von Mises, Bestimmung einer Verteilung durch ihre ersten Momente, Skandinavisk Aktuarietidskrift 174 (1937), no. 3–4, 220–243. Also in \cite[pp. 295–312]vonMises1964.
- —, Selected Papers of Richard von Mises, Volume II, American Mathematical Society, 1964. MR 0170776
- L. S. Yaroslavtseva, Nonclassical error bounds for asymptotic expansions in the central limit theorem, Teor. Verojatn. Primen. 53 (2008), no. 2, 390–393 (Russian), https://www.mathnet.ru/eng/tvp2422 . English transl. Theory Probab. Appl. 53 (2009), no. 2, 365–367. MR 3691830
- —, Non-classical error bounds in the central limit theorem, Dissertation, Otto-von-Guericke-Universität Magdeburg, 2008, http://dx.doi.org/10.25673/4893 .
- V. M. Zolotarev, On the closeness of the distributions of two sums of independent random variables, Teor. Veroyatn. Primen. 10 (1965), no. 3, 519–526 (Russian), https://www.mathnet.ru/eng/tvp547 . English transl. Theory Probab. Appl. 10 (1965), no. 3, 472–479. MR 189109
- —, Several new probabilistic inequalities connected with the Lévy metric, Dokl. Akad. Nauk SSSR 190 (1970), no. 5, 1019–1021, http://mi.mathnet.ru/eng/dan/v190/i5/p1019 (Russian). English transl. Sov. Math., Doklady 11, 231–234 (1970). MR 0256440
- —, Estimates of the difference between distributions in the Lévy metric, Trudy Mat. Inst. Steklov. 112 (1971), 224–231, http://mi.mathnet.ru/eng/tm/v112/p224 (Russian). English transl. Proc. Steklov Inst. Math. 112 (1971), 232–240. MR 321156
- —, On the accuracy of approximation in the central limit theorem, Doklady Akad. Nauk SSSR 203 (1972), 22–24, http://mi.mathnet.ru/eng/dan/v203/i1/p22 (Russian). English transl. Soviet Math., Doklady 13 (1972), 326–328. MR 310945
- —, Exactness of an approximation in the central limit theorem, Proceedings of the Second Japan-USSR Symposium on Probability Theory, Lect. Notes Math. 330 (1973), 531–543, https://rdcu.be/dtbJq . MR 0443048
- —, Metric distances in spaces of random variables and their distributions, Math. USSR Sbornik 30 (1976), no. 3, 373–401, https://www.mathnet.ru/eng/sm2908 . MR 0467869
- —, On pseudomoments, Teor. Veroyatn. Primen. 23 (1978), no. 2, 284–294, http://mi.mathnet.ru/eng/tvp/v23/i2/p284 (Russian). English transl. Theory Probab. Appl. 23, no. 2, 269–278. MR 517340
- —, Properties of and relations among certain types of metrics, Zap. Nauchn. Sem. LOMI 87 (1979), 18–35, http://www.mathnet.ru/eng/znsl2968 (Russian). English transl. Journal of Soviet Mathematics 17 (1981), no. 6, 2218–2232, https://rdcu.be/dtbKg . MR 0554598
- $^\ast$—, Contemporary theory of summation of independent random variables, Nauka, Moscow (Russian), 1986. MR 0917274
- —, Modern theory of summation of random variables, VSP, Utrecht, The Netherlands, 1997. MR 1640024
Similar Articles
Retrieve articles in Theory of Probability and Mathematical Statistics
with MSC (2020):
60F05,
60E15,
42A85,
26D15
Retrieve articles in all journals
with MSC (2020):
60F05,
60E15,
42A85,
26D15
Additional Information
Lutz Mattner
Affiliation:
Universität Trier, Fachbereich IV – Mathematik, 54286 Trier, Germany
MR Author ID:
315405
Email:
mattner@uni-trier.de
Keywords:
Central limit theorem,
sums of independent random variables
Received by editor(s):
March 19, 2023
Accepted for publication:
November 4, 2023
Published electronically:
October 30, 2024
Dedicated:
Dedicated to Ukraine
Article copyright:
© Copyright 2024
Taras Shevchenko National University of Kyiv